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I. INTRODUCTION

The aim of this paper is that of pointing out the possi-
bility of introducing a generalized gauge fixing which
interpolates among the Landau, Coulomb, and maximal
Abelian gauges. These gauges have been employed inten-
sively through theoretical analysis and lattice numerical
simulations in order to investigate several aspects of Yang-
Mills theories in the infrared region. A partial list of them
is given by1:
(i) s
tudy of the Gribov copies and their influence on
the gluon and ghost propagators,
(ii) a
nalysis of Yang-Mills theories through the
Schwinger-Dyson equations,
(iii) s
tudy of renormalization group invariant effective
couplings and their behavior in the low energy
region,
(iv) d
ual superconductivity mechanism for color
confinement,
(v) d
imension two gauge condensates and their rele-
vance for the infrared dynamics of gauge theories.
To some extent, this interpolating gauge can be seen as a
generalization of previous results in which suitable gauge
fixings interpolating between the Landau and the Coulomb
gauges [3] as well as between the Landau and the maximal
Abelian gauges [4] have been obtained and proven to be
renormalizable to all orders of perturbation theory. As we
shall also introduce a generalized interpolating dimension
two mass operator, it is worthwhile here spending a few
words on the issue of the gauge invariance of the dimension
two condensates, a topic which is still under debate.
Although the dimension two operator

R
d4xA2 is not left

invariant by the gauge transformations, it enjoys the prop-
erty of being Becchi-Rouet-Stora-Tyutin invariant on shell
in the Landau, Curci-Ferrari, and maximal Abelian
gauges.2 This property has made it possible to prove that
the operator A2 is multiplicatively renormalizable to all
orders in all these gauges (see Refs. [5,6]), a feature which
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iews [1,2] and references therein.
of the Curci-Ferrari and maximal Abelian gauge, a
general operator has to be considered, namely,
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has been extended to the case of the more general class of
the linear covariant gauges [7]. This has enabled us to
construct a renormalizable effective potential for the com-
posite operator A2 and to investigate its condensation in all
the aforementioned gauges; see Refs. [4,8–12] which pro-
vide evidence of a nonvanishing condensate, i.e. hA2i � 0,
resulting in an effective gluon massmeff / hA2i. Moreover,
the output of our calculations shows that the condensate
itself is not gauge invariant, i.e. the effective gluon mass
meff depends on the gauge parameter; see, for example,
Ref. [12] where the case of the linear covariant gauge has
been considered. Notice that, due to color confinement,
gluons cannot be observed as free particles, so that the
effective gluon mass cannot be associated to a quantity
which can be directly observable. Nevertheless, a well-
defined gauge invariant quantity can be introduced and
computed order by order, and this in the presence of a
nonvanishing condensate hA2i � 0. This quantity is the
vacuum energy of the theory, Evac, its physical meaning
being, of course, apparent. The construction and the com-
putation of the vacuum energy Evac in the presence of a
nonvanishing condensate hA2i, as well as its independence
from the gauge parameters, can be found in [4,8–12]. In
this context, the possibility of having at our disposal a
generalized gauge which interpolates among the Landau,
Coulomb, and maximal Abelian gauges might be very
useful. It could allow us to give a proof of the fact that
the vacuum energy of the theory has to be the same for all
three gauges. The present work is organized as follows. In
Sec. II we briefly remind some basic properties of the
maximal Abelian gauge. Section III is devoted to the
introduction of the aforementioned interpolating gauge.
A suitable dimension two operator which turns out to be
BRST invariant on shell and which interpolates between
the dimension two gluon mass operators already studied in
the Landau, Coulomb, and maximal Abelian gauges is
introduced in Sec. IV. A few remarks on possible further
analytic studies and lattice numerical investigations will be
outlined in the conclusion.

II. THE MAXIMAL ABELIAN GAUGE AND ITS
NONRENORMALIZATION THEOREM

In order to introduce the maximal Abelian gauge, let us
briefly fix the notation. According to [4], we decompose
-1 © 2006 The American Physical Society
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the gauge field AA�, A � 1::::N2 � 1 into off-diagonal and
diagonal components, namely,

AA�TA � Aa�Ta � Ai�Ti; (1)

where TA are the generators of the gauge group SU�N�,
�TA; TB� � ifABCTC. The indices i; j; . . . label the N � 1
diagonal generators of the Cartan subalgebra. The remain-
ing N�N � 1� off-diagonal generators will be labeled by
the indices a; b; . . . . For the nilpotent BRST transforma-
tions of the fields, we have

sAa� � ��Dab
� cb � gfabcAb�cc � gfabiAb�ci�;

sAi� � ��@�c
i � gfabiAa�c

b�;

sca � gfabicbci �
g
2
fabccbcc; sci �

g
2
fabicacb;

s �ca � ba; sba � 0; s �ci � bi; sbi � 0:

(2)

where �ci; �ci�, �ca; �ca� stand for the diagonal and off-
diagonal Faddeev-Popov ghosts, while �bi; ba� denote the
diagonal and off-diagonal Lagrange multipliers. The co-
variant derivative Dab

� in Eq. (2) is defined as

Dab
� � �ab@� � gfabiAi�: (3)
041701
Also, for the field strength one gets FA�� � �Fi��; Fa���, i.e.

Fa�� � Dab
� A

b
� �D

ab
� A

b
� � gf

abcAb�A
c
�;

Fi�� � @�Ai� � @�Ai� � gfabiAa�Ab�:
(4)

Thus, for the Yang-Mills action, SYM, quantized in the
maximal Abelian gauge, SMAG, we have

SYM � SMAG; (5)

with

SYM �
1

4

Z
d4xFA��FA�� �

1

4

Z
d4x�Fa��Fa�� � Fi��Fi���;

(6)

and

SMAG � s
Z
d4x� �ca@�Aa� � g �cafabiAi�Ab� �

�
2

�caba

�
�
2
gfabi �ca �cbci �

�
4
gfabcca �cb �cc � �ci@�A

i
��;

(7)

which yields
SMAG �
Z
d4x

�
ba
�
Dab
� Ab� �

�
2
ba
�
� caDab

� Dbc
� cc � gcafabi�Dbc

� Ac��ci � gcaDab
� �fbcdAc�cd� � �gfabibacbci

� g2fabifcdicacdAb�Ac� �
�
2
gfabcbacbcc �

�
4
g2fabifcdicacbcccd �

�
4
g2fabcfadicbcccdci

�
�
8
g2fabcfadecbcccdce � bi@�A

i
� � c

i@��@�c
i � gfiabAa�c

b��: (8)
The gauge parameter � in expression (7) has to be intro-
duced for renormalization purposes [4]. The action (5)
displays mutiplicative renormalizability. In particular, we
underline that as a consequence of the Ward identities
which can be established in the maximal Abelian gauge,
the following nonrenormalization theorem holds; see for
instance Eq. (40) of [4], i.e.

ZgZ
1=2
Ai � 1: (9)

This relationship states that the renormalization of the
gauge coupling constant g is related to the renormalization
factor of the diagonal components, Ai�, of the gauge field.
Until now, Eq. (9) has been established to all orders of
perturbation theory, being explicitly checked at three loops
in [13].
III. THE GENERALIZED INTERPOLATING
GAUGE

Following [3], let us make use of the notation
~@� � �r; a@4�; ~Ai� � � ~A
i; aAi4�;

~Aa� � � ~A
a; aAa4�; ~Dab

� � �ab ~@� � gfabi ~Ai�;
(10)
where a is the gauge parameter which interpolates between
the Coulomb and Landau gauges. The gauge fixing, SCLM,
which interpolates among the Landau, Coulomb, and
maximal Abelian gauges contains three gauge parameters,
�a; k; ��, being given by
-2
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SCLM � s
Z
d4x

�
�ca ~@�A

a
� � g �cafabi ~Ai�A

b
� �

�
2

�caba �
�
2
gfabi �ca �cbci �

�
4
gfabcca �cb �cc � �ci ~@�A

i
� � kgf

iab ~Ai�A
a
�c

b
�
:

(11)

Acting with the BRST operator s on the elementary fields, one obtains

SCLM �
Z
d4x

�
ba
�

~Dab
� Ab� �

�
2
ba
�
� ca ~Dab

� Dbc
� cc � gcafabi� ~Dbc

� Ac��ci � gca ~Dab
� �fbcdAc�cd� � �gfabibacbci

� g2fabifcdicacd ~Ab�A
c
� �

�
2
gfabcbacbcc �

�
4
g2fabifcdicacbcccd �

�
4
g2fabcfadicbcccdci

�
�
8
g2fabcfadecbcccdce � bi ~@�Ai� � ci ~@��@�ci � gfiabAa�cb� � kgfabi ~Aa��@�ci�cb � kg2fabifcdicacd ~Ab�Ac�

� kgfabi ~Ai�Aa��bb � gfbcjcccj� � kgfabi ~Ai��Dac
� cc�cb � kg2fabifacd ~Ai�Ac�cdcb

�
: (12)
Let us now show how the various gauges can be recovered
from expression (11) when appropriate limits for the pa-
rameters �a; k; �� are taken. Let us begin with the Landau
gauge.

A. The Landau gauge

The Landau gauge is recovered by taking

a � 1; k � 1; � � 0: (13)

In fact, from expression (11), one obtains

SL � s
Z
d4x� �ca@�A

a
� � �ci@�A

i
�� � s

Z
d4x� �cA@�A

A
��;

(14)

which is the Landau gauge.

B. The Coulomb gauge

The Coulomb gauge is obtained from (11) by setting

a � 0; k � 1; � � 0: (15)

Expression (11) is easily seen to reduce to the Coulomb
gauge, namely,

SC � s
Z
d4x� �ca�r � ~Aa� � �ci�r � ~Ai��

� s
Z
d4x �cA�r � ~AA�: (16)
C. The maximal Abelian gauge

Finally, the maximal Abelian gauge corresponds to

a � 1; k � 0; (17)

yielding
041701
SMAG � s
Z
d4x

�
�ca@�A

a
� � g �cafabiAi�A

b
� �

�
2

�caba

�
�
2
gfabi �ca �cbci �

�
4
gfabcca �cb �cc � �ci@�A

i
�

�
;

(18)

which is recognized to be the maximal Abelian gauge,
Eq. (7).

IV. AN INTERPOLATING MASS DIMENSION TWO
OPERATOR

It is worth remarking that the interpolating gauge fixing
(11) allows us to introduce a generalized mass dimension
two operator OCLM

OCLM �
1

2
~Aa�Aa� �

k
2

~Ai�Ai� � � �caca; (19)

which enjoys the property of being BRST invariant on
shell. More precisely, one has

s
Z
d4xOCLM �

Z
d4x

�
kci

��SYM � SCLM�

�bi

� ca
��SYM � SCLM�

�ba

�
: (20)

Interestingly, the operator OCLM interpolates among all
dimension two mass operators already introduced in the
Coulomb, Landau, and maximal Abelian gauges, namely,

OCLM ! OCoulomb �
1
2A

A � AA;

for a � 0; k � 1; � � 0; (21)

OCLM ! OLandau �
1
2A

A
�AA�;

for a � 1; k � 1; � � 0; (22)

OCLM ! OMAG �
1
2A

a
�A

a
� � � �caca;

for a � 1; k � 0: (23)
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Analytic evidence for the condensation of all these mass
dimension two operators have been given in Refs. [4,8–
10,14].
V. CONCLUSION

In this work a generalized gauge, Eq. (11), which inter-
polates among the Landau, Coulomb, and maximal
Abelian gauges has been introduced. It could lead to
several interesting features worth being analyzed.
(i) A
 first aspect to be faced is the renormalizability of
the interpolating gauge (11). This point is being
investigated along the lines of [3], where an all
orders BRST algebraic proof of the multiplicative
renormalizability of the gauge fixing interpolating
between the Landau and Coulomb gauges has been
achieved. Also, it would be interesting to see if the
algebraic setup of [3] could be generalized so as to
include the dimension two mass operator OCLM,
Eq. (19), as well as the nonlocal gauge invariant
operator Tr

R
d4xF��

1
D2 F�� recently discussed in

[15] within the class of the linear covariant gauges,
which includes the Landau gauge as a particular
case.
As already mentioned in the introduction, although
the dimension two operator A2 has been proven to
be multiplicatively renormalizable to all orders in
the Landau, Curci-Ferrari, maximal Abelian, and
linear covariant gauges (Refs. [5–7]), a clear under-
standing of the aspects related to the gauge invari-
ance of the dimension two condensate hA2i is still
under analysis. As discussed in [16], a possible
gauge invariant extension of the operator A2 could
be provided by the gauge invariant operator A2

min,
obtained by minimizing A2 along the gauge orbit of
A�. However, the operator A2

min appears to be
highly nonlocal, a feature which jeopardizes the
standard perturbative renormalization procedure
for an arbitrary choice of the gauge fixing [17];
see also [15]. Nevertheless, as shown in [4,11,12],
the vacuum energy Evac evaluated in the presence
of the dimension two condensate hA2i turns out to
be independent from the gauge parameters.
Therefore, the possibility of having at our disposal
a generalized gauge which interpolates among the
Landau, Coulomb, and maximal Abelian gauges
might allow us to achieve the result that the vacuum
energy evaluated in the presence of the generalized
dimension two operator, Eq. (19), has to be same
for all three gauges.
(ii) A
 second aspect which could be exploited is to
investigate whether the nonrenormalization theo-
rem of the maximal Abelian gauge, as expressed by
Eq. (9), would remain valid beyond perturbation
041701-4
theory. The natural framework to discuss this issue
is through lattice numerical simulations as done,
for example, in the case of the nonrenormalization
theorem of the ghost-gluon vertex in the Landau
gauge [18]. It is worth underlining that the relation-
ship (9) could open the interesting possibility of
studying, through lattice simulations, the infrared
behavior of the running coupling constant in the
maximal Abelian gauge. More precisely, Eq. (9)
suggests that the infrared behavior of the running
coupling constant in the maximal Abelian gauge
could be accessed by looking at the behavior of the
diagonal component of the gluon propagator.
Interestingly, a recent study of the gluon propagator
in momentum space has been performed in [19],
reporting an infrared suppression of the diagonal
component. Moreover, according to [19], the di-
agonal gluon propagator could attain a finite non-
vanishing value at k 	 0, a feature which could
signal the possible existence of an infrared fixed
point for the running coupling constant in the
maximal Abelian gauge.
(iii) F
inally, we point out that the authors in [20] have
shown that the use of the interpolating Landau-
Coulomb gauge allows one to introduce two renor-
malization group invariant running couplings. In
particular, one of these two couplings turns out to
be independent from the interpolating gauge pa-
rameter, displaying an infrared fixed point whose
value coincides with that already known in the
Landau gauge. The existence of such an infrared
fixed point extends thus to the Coulomb gauge too
[20]. It would be worthwhile investigating if similar
effective renormalization group invariant couplings
could be introduced also in the present interpolat-
ing gauge. This might provide further indication on
the possible existence of an infrared fixed point for
the running coupling constant in the maximal
Abelian gauge.
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