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Recent results on the nonunitary character of quantum time evolution in the family of Gowdy T3

spacetimes bring the question of whether one should abandon the most sacred principle of unitary
evolution in cosmology. In this work we show that the answer is in the negative. We put forward a full
nonperturbative canonical quantization of the polarized Gowdy T3 model that implements the dynamics
while preserving unitarity. We discuss possible implications of this result.
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The issue of unitarity in quantum gravity has been of
central importance for the past 30 years, ever since the
possibility of black holes evaporating suggested that uni-
tary evolution might be violated. However, most of the
attention on this issue has been within the semiclassical
and minisuperspace scenarios where the gravitational de-
grees of freedom are at most finite in number. It is then
quite natural to investigate the issue of time evolution
within the full theory, or at least for models that still
possess an infinite number of degrees of freedom. Of
particular relevance are cosmological, spatially closed
models where no canonical notion of a (asymptotic) uni-
tary time evolution exists (as is the case for asymptotically
flat and anti-de Sitter boundary conditions). It is with this
in mind that we consider the simplest of all inhomogeneous
closed models, namely, the Gowdy T3 cosmology.

Since the mid-1970s, the quantization of the Gowdy T3

model [1] has received a great deal of attention [2,3]. The
first preliminary attempts [2–4] to define a quantum theory
and extract physics from the model were followed by more
detailed analyses [5,6]. Considerable progress has recently
been achieved in defining a complete quantization of the
(sub-)model with linear polarization [7].

The quantization proposed in [7] is based on the fact that
the polarized model can be treated as 2� 1 gravity coupled
to an axially symmetric, massless scalar field, defined in a
manifold whose topology is T2 � R�. More precisely,
once the system is (partially) gauge fixed and a choice of
internal time is made, the spacetimes are characterized
(modulo a remaining global constraint) by a point particle
degree of freedom and a free scalar field� propagating in a
fictitious two-dimensional expanding torus. Thus, the
problem of quantization of the local gravitational degrees
of freedom reduces to a quantum theory of the scalar field
in the fictitious background. The quantum Gowdy T3

model is defined by using a representation for � on a
fiducial Fock space, where the remaining constraint is
imposed to get the physical Hilbert space.

Despite this progress, the quantization put forward in [7]
has a serious drawback: the dynamics cannot be imple-
06=73(4)=041502(5)$23.00 041502
mented as a unitary transformation, neither on the kine-
matical [8] nor in the physical [9] Hilbert space. Even
though the dynamics can be approximated as much as
desired by means of unitary transformations [10], the
model is still lacking a unitary operator that represents
the genuine time evolution. The failure of unitarity is, in
the best of cases [11], a nontrivial complication that im-
pedes the availability of a Schrödinger picture in which
dynamics preserves the conventional notion of probability
[9,12]. The question then arises of whether one should
really abandon the concept of unitary evolution or look
instead for a different quantization of the model compat-
ible with unitarity. The relevance of this question surpasses
the restricted context of the Gowdy cosmology, which can
be viewed as a particular arena in which one is addressing
the issue. The aim of this work is to show that, opposite any
pessimistic perspective, it is possible to achieve a unitary
quantum dynamics in the polarized Gowdy cosmology. At
least as far as this system is concerned, there is no intrinsic
obstruction to the standard probabilistic interpretation of
quantum physics (neither in the Heisenberg nor in the
Schrödinger picture) in a cosmological scenario.

Let us briefly recall the model introduced in [7], which
was essentially constructed starting with a (partially)
gauge-fixed system [10] that, modulo a global constraint,
consists of a reduced phase space �r � �0 � ~�, where �0

and ~� admit as respective coordinates a point particle
canonical pair �Q;P� and a ‘‘field’’ canonical pair
���t; ��; P��t; ���. Here, � and P� are functions of the
(internal) time coordinate t and the spatial coordinate
� 2 S1. The corresponding reduced Hamiltonian is

Hr �
1

2

I
d�
�P2

�

t
� t�02

�
: (1)

Thus, the point particle degrees of freedom are constants of
motion, whereas a nontrivial evolution takes place only in
the field sector ~�. To be more precise, � must satisfy the
second-order differential equation
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���
_�
t
��00 � 0: (2)

All smooth solutions to (2), that we will generically denote
by ’, can be written as

’�t; �� �
X
n2Z

�Anfn�t; �� � A
	
nf
	
n�t; ��
; (3)

with

f0�t; �� �
1� i lnt�������

4�
p ; fn�t; �� �

H0�jnjt����
8
p ein� n � 0:

The symbol 	 denotes complex conjugation, H0 is the
zeroth-order Hankel function of the second kind [13],
and in order to guarantee point-wise convergence, the
sequence of constant coefficients fAngmust decrease faster
than the inverse of any polynomial in n as n! �1.

Equation (2) is the Klein-Gordon equation for a mass-
less, axially symmetric, free scalar field propagating in a
fictitious background �M ’ T2 � R�; g�f�ab �, where

g�f�ab � ��dt�a�dt�b � �d��a�d��b � t
2�d��a�d��b;

with t 2 R� and �; � 2 S1 [14]. Hence, we can identify ~�
with the canonical phase space of the field in this back-
ground, while the space ~S of smooth solutions can be
considered as the covariant phase space of this Klein-
Gordon field. Endowing the space ~S ( ~� being its symplec-
tic form) with the ‘‘natural’’ ~�-compatible complex struc-
ture ~J [7],

~J� �fn� � i �fn; ~J� �f	n� � �i �f	n; (4)

where �fn�t� :� fn�t; �� exp��in�
, one can construct the
‘‘one-particle’’ Hilbert space ~H and, from it, the symmet-
ric Fock space F � ~H � on which the formal field operator is
written in terms of creation and annihilation operators
[corresponding to the positive and negative frequency de-
composition defined by the complex structure (4)].
However, the Bogoliubov transformation that implements
the dynamics in the quantum theory—by relating at differ-
ent times either states in ~H [8] (Schrödinger picture) or
creation and annihilation operators [9] (Heisenberg pic-
ture)—turns out not to be square summable in its antilinear
part. As a consequence, the evolution dictated by the
Hamiltonian (1) fails to be unitarily implementable both
at the kinematical level [8] and in the physical Hilbert
space [9]. This ends our brief review of the current status
of the quantization proposed in [7].

In order to arrive at a unitary theory, we will use the
freedom available to redefine the classical phase space
through time-dependent canonical transformations. With
the resulting set of new canonical variables and its corre-
sponding Hamiltonian, one may then reformulate the quan-
tum Gowdy model. Thus, let us consider the specific
canonical transformation [15]:
041502
�Q :� Q; �P :� P; � :�
��
t
p
�;

P� :�
P���
t
p �

�

2
��
t
p :

(5)

Taking into due account the explicit time dependence of
this transformation, the reduced Hamiltonian for the new
system of variables becomes

�H r �
1

2

I
d�
�
P2
� � �

02 �
�2

4t2

�
: (6)

Note that this is the Hamiltonian of an axially symmetric,
free scalar field with a time-dependent potential that rep-
resents an effective mass 1=�2t�, propagating in a fictitious
static background �M � T2 � R�; �g�f�ab � with

�g �f�ab � ��dt�a�dt�b � �d��a�d��b � �d��a�d��b:

The Hamiltonian equations derived from (6) lead to

��� �00 �
�

4t2
� 0: (7)

We will denote by � the smooth solutions to (7), which
adopt the generic form

��t; �� �
X
n2Z

�Angn�t; �� � A
	
ng
	
n�t; ��
; (8)

where gn�t; �� :�
��
t
p
fn�t; ��, as it is clear from (3) and (5).

The complete set of mode solutions fgn�t; ��g is ‘‘ortho-
normal’’ in the product �gl; gn� � �i��g	l ; gn� [i.e.
�gl; g	n� � 0, �gl; gn� � �ln � ��g	l ; g

	
n�], with [16]

���1; �2� �
I
d���2@t�1 � �1@t�2�:

Hence, in the field sector, the covariant phase space is the
symplectic vector space S :� ��; f�g�, which can equally
be coordinatized by the (pairs of complex conjugate) var-
iables f�An; A	n�n2Zg.

Alternatively, we can consider the canonical phase space
�, coordinatized by the set of (complex) canonically con-
jugate pairs f��n; P�n� �n2Zg, where �n and Pn� are the (im-
plicitly time-dependent) Fourier coefficients of the
configuration and momenta of the massive scalar field.
Let us now introduce the following transformations for
the zero and nonzero modes, respectively:

b0 �
�0 � iP

0
����

2
p ; b	0 �

�0 � iP
0
����

2
p ;

bn �
jnj�n � iPn����������

2jnj
p ; b	�n �

jnj�n � iPn����������
2jnj

p :

They are canonical, inasmuch as fbn; ib	mg � �nm. So, one
can adopt as coordinates for � the (complex conjugate)
variables f�bn; b	n�n2Zg.
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The map from S to � is given by

b0�t� � r0�t�A0 � s0�t�A	0;

bn�t� � c�xn�An � d�xn�A
	
�n

(9)

(for the zero and nonzero modes), where

s0�t� �
����
�
p

g	0�t; ��
�

1�
i
2t

�
�

1

2
��
t
p ;

r0�t� � 2
����
�
p

g0�t; �� � s
	
0�t�;

and

d�xn� �
���������
�xn

8

r ��
1�

i
2xn

�
H	0�xn� � iH

	
1�xn�

�
;

c�xn� �
���������
�xn

2

r
H0�xn� � d	�xn�:

Here, xn :� jnjt and H1 is the first-order Hankel function
of the second kind [13]. It is not difficult to see that

jr0�t�j
2 � js0�t�j

2 � 1; jc�xn�j
2 � jd�xn�j

2 � 1;

for all t > 0. This reflects the fact that (9) is a Bogoliubov
transformation between annihilationlike and creationlike
variables. Moreover, it can be shown that this time-
dependent canonical transformation is generated by the
Hamiltonian (6). From (9), it follows that in the canonical
phase space a state �bn�t0�; b	n�t0�� at time t0 evolves to the
state �bn�t�; b	n�t�� at time t according to

bn�t� � �n�t; t0�bn�t0� � 	n�t; t0�b
	
�n�t0�; (10)

where, for the nonzero modes,

�n�t; t0� � c�xn�c	�x0
n� � d�xn�d	�x0

n�;

	n�t; t0� � d�xn�c�x
0
n� � c�xn�d�x

0
n�;

with x0
n :� jnjt0. For the zero modes, one gets a similar

expression, with the functions c and d substituted by r0 and
s0, and the arguments xn and x0

n replaced with t and t0. We
note that j�n�t; t0�j2 � j	n�t; t0�j2 � 1 for all n, as it
should be because the map (10) on � is given by the
composition of two Bogoliubov transformations and there-
fore is itself a transformation of this kind.

Taking a fixed time t0 > 0 and considering the inverse of
(9), expression (8) can be written in terms of a new ‘‘or-
thonormal’’ set of solutions fGn�t; ��g:

��t; �� �
X
n2Z

�Gn�t; ��bn�t0� �G
	
n�t; ��b

	
n�t0�
: (11)

Explicitly, for the zero and nonzero modes,

G0�t; �� �
��
t
p
�r	0�t0�f0�t; �� � s

	
0�t0�f

	
0�t; ��
;

Gn�t; �� �
���
t
8

r
�c	�x0

n�H0�xn� � d	�x0
n�H	0�xn�
e

in�:

Using the fact that the solutions in (11) are decomposed
in complex conjugate pairs, we define a �-compatible
041502
complex structure J as

J� �Gn�t�� � i �Gn�t�; J� �G	n�t�� � �i �G	n�t�;

where �Gn�t� :� Gn�t; �� exp��in�
. With ��; f�g; J� we
can construct the ‘‘one-particle’’ Hilbert space H and
the associated symmetric Fock space F �H �, which will
be the (kinematical) Hilbert space of the quantum theory.
Following this prescription, we can introduce the formal
field operator �̂ in terms of creation and annihilation
operators corresponding to the positive and negative fre-
quency decomposition provided by the complex structure
J:

�̂�t; �� �
X
n2Z

�Gn�t; ��b̂n �G	n�t; ��b̂
y
n 
:

A comparison with (11) shows that we could have obtained
this field operator by naively promoting the constants of
motion fbn�t0�; b	n�t0�g in the solution to annihilation and
creation operators fb̂n�t0� � b̂n; b̂

y
n �t0� � b̂yn g. This can be

understood as the Schrödinger picture.
In the Heisenberg picture, time evolution is provided by

the Bogoliubov transformation (10). Namely, by calling
b̂�H�n �t0� :� b̂n, the relation between the annihilation and
creation operators at different times t0 and t is

b̂ �H�n �t� � �n�t; t0�b̂
�H�
n �t0� � 	n�t; t0�b̂

�H�y
�n �t0�:

Thus, in this picture we get

�̂�t; �� �
1�������
4�
p

X
n2Z

Nn�e
in�b̂�H�n �t� � e

�in�b̂�H�yn �t�
;

where Nn � 1=
������
jnj

p
, except for N0 � 1.

Time evolution is unitarily implementable on the (kine-
matical) Fock space F �H � if and only if the sequence
f	ng is square summable [17]. Since 	n � 	�n, it suffices
to analyze the sequence f	kg with k 2 N. From the large-
argument asymptotic expansions of the Hankel functions
[13] one can check that, given any fixed T > 0, the se-
quence fd�kT�g (with k 2 N� f0g) is square summable. In
particular, so are fd�kt�g and fd�kt0�g. This implies that
there exists an integer k0 such that both jd�kt�j and jd�kt0�j
are smaller than the unity for all k > k0. Since jcj2 � 1�
jdj2, one also has that jc�kt�j and jc�kt0�j are smaller than���

2
p

for k > k0. In this case,

j	k�t; t0�j2 
 2�jd�x0
k�j � jd�xk�j�

2


 4�jd�x0
k�j

2 � jd�xk�j
2�:

The square summability of the sequence f	kg follows then
from that of fd�kt�g and fd�kt0�g.

Time evolution is hence unitarily implementable on the
(kinematical) Fock space F �H �. Moreover, the evolution
leaves invariant the constraint

Ĉ �
X
k2N

k�b̂yk b̂k � b̂
y
�kb̂�k�;
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which quantum mechanically implements the requirement
that the total (�-)momentum of the field � vanish [10]. As a
consequence, the dynamics is unitarily implementable not
only on F �H �, but also on the physical Hilbert space
F phys�H �, defined as the kernel of the above constraint.
Thus, we have achieved a quantization of the Gowdy T3

model where physical states (as well as operators) evolve
in a unitary way. This is our main result.

In what follows, we discuss some consequences of this
quantization and compare it with previous ones. The first
remark is that, whereas �̂�t0; �� evolves unitarily to �̂�t; ��,
the formal operator �̂�t; �� :� �̂�t; ��=

��
t
p

(considered in
[7]) does not. Namely, �̂�t0; �� and �̂�t; �� are not unitarily
related. Thus, a suitable choice of the fundamental field
seems very important for a consistent quantization. In
making this choice, we have employed the freedom avail-
able to redistribute the time dependence [via the time-
dependent transformation (5)] in an implicit part, gener-
ated by the reduced Hamiltonian of the model, and an
explicit part (the factor 1=

��
t
p

in �), whose time variation
does not need to be described by means of a unitary trans-
formation. Note also that it is natural to consider time-
dependent canonical transformations in the Gowdy model,
since the reduced Hamiltonian obtained by gauge fixing is
already explicitly time dependent.

Let us now explore the new description proposed here
from the viewpoint of the classical structure needed to find
the quantum representation. It is known [18] that evolution
between two Cauchy surfaces, say t � t1 and t � t2, can be
described on the space of solutions S by a uniparametric
family of symplectic maps T t1;T , with T 2 �t1; t2
. We can
consequently obtain a uniparametric family of induced
complex structures JT � T t1;TJT

�1
t1;T

. In fact, since the
dynamics is unitarily implementable, JT � J is Hilbert-
Schmidt (HS) on H for every element of this family.
Similarly, for the description discussed in [7] in terms of

the field �, one gets a family ~JT �
~T t1;T

~J ~T
�1
t1;T on ~S.

However, ~JT � ~J fails to be HS on ~H for T � t1. In
addition, recall that the correspondence ’ � �=

��
t
p

defines
a map R:S! ~S between both spaces of solutions. We can
then consider the complex structures J0T � RJTR�1 in-
duced on ~S by this map, and ask whether J0T � ~JT is HS
on ~H . It is easy to show that this happens only for T � t1
(i.e., for RJR�1 and ~J). Therefore, even when the complex
structures J and ~J are (R) equivalent, they do not connect
unitarily equivalent theories in the explained sense, be-
cause the evolution is unitary in one case (in the quantum
theory with fundamental field �) but not in the other (in the
quantization in which � is viewed as the fundamental
field). It would also be interesting to explore different
041502
quantum representations for each of these choices of fun-
damental fields and study their equivalence and the unitary
implementability of the dynamics [19].

Our results are worthy of some specific comments from
the perspective of quantum field theory in curved space-
times. The Gowdy model was described in [7] in terms of a
free massless scalar field � on a flat, but time-dependent
background. A conventional quantization of this field leads
to a nonunitary theory. By a field redefinition, which
involves the time parameter, we have mapped the system
into a scalar field � subject to a time-dependent potential
(interpreted as a time-dependent mass), though now the
background is flat and time independent (like three-
dimensional Minkowski spacetime, except for the topol-
ogy). The natural quantization of this new field that we
have put forward provides a theory in which the dynamics
is unitary. Besides, one can check that JT approaches, for
asymptotically large values of T, the (analog of the)
Poincaré-invariant complex structure of Minkowski space-
time in the limit in which the system becomes massless.
Note that it is only in that limit that the system is invariant
under time translations. This result points towards a pos-
sible connection between unitary implementability and
asymptotic symmetries, but the matter certainly calls for
a more thorough investigation.

Finally, let us point out that the vacuum of the quantum
theory proposed for � is not left invariant by the time
evolution, as can be seen either from the presence of the
time-dependent potential in the reduced Hamiltonian or
from the fact that the induced complex structures JT differ
from J except at T � t1. The quantum description provides
in this way a Hilbert space of physical states F phys�H �,
obtained from a kinematical Fock space F �H �, in which
the vacuum evolves approaching the ‘‘Poincaré-invariant’’
vacuum associated with the asymptotic region at large
times. This evolution may be interpreted as a production
of ‘‘particles’’ by the vacuum [19,20]. Nevertheless, no
conflict arises for unitarity. In conclusion, we have suc-
ceeded in constructing a consistent quantization of the
polarized Gowdy model in which, on the one hand, a
notion of vacuum that displays a cosmological evolution
is available and, on the other hand, dynamics is unitary.
This is the first cosmological model with an infinite num-
ber of degrees of freedom for which a quantization with
these features has been constructed.
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(México) 40035-F and U47857-F, and by the DGAPA-
UNAM Grant No. IN108103. J. C. was funded by the
Spanish MEC, No./Ref. SB2003-0168.
-4



UNITARY EVOLUTION IN GOWDY COSMOLOGY PHYSICAL REVIEW D 73, 041502 (2006)

RAPID COMMUNICATIONS
[1] R. H. Gowdy, Ann. Phys. (N.Y.) 83, 203 (1974).
[2] C. W. Misner, Phys. Rev. D 8, 3271 (1973); B. K. Berger,

Phys. Rev. D 11, 2770 (1975).
[3] B. K. Berger, Ann. Phys. (N.Y.) 83, 458 (1974).
[4] B. K. Berger, Ann. Phys. (N.Y.) 156, 155 (1984).
[5] V. Husain and L. Smolin, Nucl. Phys. B327, 205 (1989).
[6] G. A. Mena Marugán, Phys. Rev. D 56, 908 (1997).
[7] M. Pierri, Int. J. Mod. Phys. D 11, 135 (2002).
[8] A. Corichi, J. Cortez, and H. Quevedo, Int. J. Mod. Phys.

D 11, 1451 (2002).
[9] C. G. Torre, Phys. Rev. D 66, 084017 (2002).

[10] J. Cortez and G. A. Mena Marugán, Phys. Rev. D 72,
064020 (2005).

[11] For a more pessimistic view of the implications of this
problem see e.g. [8].

[12] T. Jacobson, in Conceptual Problems of Quantum Gravity,
edited by A. Ashtekar and J. Stachel (Birkhäuser, Boston,
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