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Cosmic microwave background multipole alignments in slab topologies
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4Université Pierre et Marie Curie, Paris 6, UMR 7095, Paris, F-75014 France

(Received 2 December 2005; published 7 February 2006)
1550-7998=20
Several analyses of the microwave sky maps from the Wilkinson Microwave Anisotropy Probe
(WMAP) have drawn attention to alignments amongst the low-order multipoles. Amongst the various
possible explanations, an effect of cosmic topology has been invoked by several authors. We focus on an
alignment of the first four multipoles (‘ � 2 to 5) found by Land and Magueijo (2005), and investigate the
distribution of their alignment statistic for a set of simulated cosmic microwave background maps for
cosmologies with slablike topology. We find that this topology does offer a modest increase in the
probability of the observed value, but that even for the smallest topology considered the probability of the
observed value remains below 1%.
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I. INTRODUCTION

Several recent analyses of the WMAP satellite maps
have pointed out an unexpected degree of alignment be-
tween the low-order multipoles of the cosmic microwave
background (CMB) anisotropy [1–9]. Various explana-
tions have been put forward for these alignments, ranging
from statistical fluke or foreground contamination through
to a genuinely cosmological interpretation in terms of
breakdown of statistical isotropy. Such a breakdown would
be a natural consequence of the Universe possessing a
nontrivial topology of characteristic scale comparable to
the observable Universe (for a selection of cosmic topol-
ogy review papers see Ref. [10]).

In this paper, we do not seek to address the interpretation
of the observational data, but rather aim to test whether or
not slab-space cosmic topologies give rise to the kind of
alignments that are tentatively reported to have been ob-
served in the first-year WMAP data. The observational
indication is that there exists a preferred direction for the
low multipoles. For instance, Tegmark et al. [1] and de
Oliveira-Costa et al. [2] noted that the quadrupole and
octupole were closely aligned with one another, and ap-
proximately planar. Land and Magueijo [7] (hereafter LM)
sought the alignment for each multipole ‘ that maximized
the proportion of power contributed by a single m mode,
and noted that the alignments of the first four multipoles
were much closer than would be expected under statistical
isotropy. These authors have all suggested that such align-
ments may be an indication of a slab topology where only
one dimension is compact (finite and unbounded).

The principal aim of this paper is to determine whether
the LM alignment is a prediction of slab-space cosmic
topology. We simulate CMB maps for spatially-flat slab
topologies, for different sizes of the compact dimension,
and derive the statistics of the alignments as defined by
LM. We find that the degree of alignment in the observed
data remain anomalous even in slab-space topologies.
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II. COSMIC TOPOLOGY AND THE CMB

If the Universe has a nontrivial topology, that would lead
to a breakdown of global isotropy. The spherical harmonic
expansion coefficients a‘m of the observed map of CMB
temperature anisotropies would then no longer be uncorre-
lated random variables, their correlation matrix having off-
diagonal terms. Riazuelo et al. [11,12] found this corre-
lation matrix for many multiconnected spaces, by comput-
ing the eigenmodes of the Laplacian with boundary
conditions reflecting the particular topology.

Let us briefly recall how this is done. The power spec-
trum coefficients, the C‘, are computed via the formula

C‘ /
Z

�2
‘�k�P�k�k

2dk; (1)

where P�k� corresponds to the initial power spectrum of
cosmological perturbations of wave number k, and �‘�k�
are transfer functions defined in Ref. [13].

In the case of Gaussian perturbations, the full statistical
information is encoded within the two-point correlation
function. The observable quantities correspond to the a‘m
coefficients of the decomposition of the temperature field
in spherical harmonics. The quantity we are interested in is
therefore the correlation matrix ha‘ma�‘0m0 i. In a simply-
connected Universe, the cosmological principle implies
that the cosmological perturbations must be statistically
isotropic. This in turn implies that the above correlation
matrix is necessarily diagonal: ha‘ma�‘0m0 i � �‘‘0�mm0C‘,
where C‘ is defined above. In the case of a multiconnected
Universe, the Universe is no longer isotropic and the
correlation matrix has nonzero off-diagonal components.

In a spatially-flat multiconnected Universe, the eigen-
modes of the Laplacian �k

s can be decomposed into the
usual basis of spherical harmonics and spherical Bessel
functions as

�k
s � �ks‘mj‘�kr�Y

m
‘ ��;’�; (2)
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where the index s distinguishes between modes with iden-
tical wave number k. With this decomposition, the coef-
ficients of the correlation matrix read

ha‘ma
�
‘0m0 i /

X
k;s

�ks‘m�
k�
s‘0m0�‘�k��‘0 �k�P�k�: (3)

Once the �ks‘m coefficients are known, all the statistical
information about a given topology can be computed using
an existing CMB code. This method therefore naturally
takes into account all the contributions (Sachs-Wolfe,
Doppler and integrated Sachs-Wolfe (ISW)) to the tem-
perature anisotropies, unlike the analytical formula of
Ref. [2] which performs an estimate of the Sachs-Wolfe
term only in the large-wavelength limit.

Should one take into account the Sachs-Wolfe contribu-
tion only, then the CMB maps would exhibit sets of pairs of
circles whose temperature pattern would perfectly match.
These correlated temperature patterns arise from the fact
that we see two copies of the same region along different
lines of sight. The Doppler and ISW contributions reduce
this correlation because the Doppler term depends on the
direction in which the electron velocity field is observed,
and the ISW effect depends on the photon history along the
line of sight [14]. The simulated maps neglect reionization.
As with the ISW effect, reionization tends to blur the
topological signature in the correlation matrix, so that
our simulated maps exhibit a stronger departure from
statistical isotropy than more realistic maps.

Following LM’s suggestion, we restrict our study to slab
spaces. Our computational method requires all directions
to be finite, so we chose rectangular tori with dimensions of
the form 15� 15� X, labeled T�15; 15; X� in the notation
of Kunz et al. [15], where X � 1; 2; . . . ; 15 and the sizes
are in Hubble radius units. Recall that the distance to the
last-scattering region today is around 3.1 Hubble radii in a
flat �CDM model with �� ’ 0:7. The dimensions of size
15 Hubble units are essentially infinite, which we checked
by comparing the correlation matrix of T�15; 15; 15� to that
of a standard simply-connected, infinite universe. Hence
T�15; 15; X� is a computationally- favorable approximation
to a slab space (that is, a space with only one compact
dimension). Another reason to consider slab spaces is that
matched circles searches have so far given negative results
[16], so that it seems likely that only topologies exhibiting
a small number of circles, such as slab spaces, are compat-
ible with the data.
1Their paper quotes ‘‘of order of 20 degrees’’; we thank Kate
Land for providing the actual value.

2Thanks to Kate Land for providing this argument, not given in
their original paper.
III. RESULTS

A. The Land-Magueijo statistic and its observed value

LM devised a statistic to study the alignments of multi-
poles. For each multipole, they found the orientation of the
coordinate axes which maximized the concentration of the
multipole power into a single m, defining
041302
r‘ � max
m;n

C‘m
�2‘	 1�C‘

; (4)

where n is the coordinate axis orientation, C‘ the usual
power spectrum, and C‘m measures the power at a singlem
value, defined as C‘0�ja‘0j

2 and C‘m�2ja‘mj
2 form>0.

The vector n‘ is defined as the one which provides the
maximum value of the statistic r‘ for each ‘.

They noticed a strong alignment of the n‘ of the lowest
four multipoles, ‘ � 2; . . . ; 5 and quantified this by defin-
ing the mean angle between the six different pairs of
alignments. As the orientation vectors are headless (the
same results are achieved by interchanging n‘ with �n‘),
one must choose the angle �ij which is less than 90
degrees. The average alignment angle is then

�̂ � mean��ij�; i; j � 2; 3; 4; 5 with i � j: (5)

They evaluated this alignment angle for the Tegmark, de
Oliveira-Costa, Hamilton (TOH) cleaned and Wiener fil-
tered maps of Ref. [1] and found the values of 22.4
 and
22.3
, respectively.1 We have confirmed this result using
the code described below.

For a Gaussian map, the predicted value of �̂ is 1 rad.
This arises as follows.2 Remembering that the alignment
direction is a headless vector, the average separation be-
tween two such vectors can be found by rotating coordi-
nates so that one is at the north pole. The other then has one
end uniformly distributed in the northern hemisphere, so
the average angle is given by the average distance of a
point in the northern hemisphere from the north pole,
which is 1 rad.

Land and Magueijo found that the low observed value
arose in only 5 out of 5000 simulated Gaussian maps, a
result which we confirm below. On the face of it, this
strongly excludes statistical isotropy, but one does need
to bear in mind the strong a posteriori selection of their
statistic; for instance the signal would be much weaker if
the average angle included alignment with even just the
sixth multipole.

It is also found that because the statistic involves max-
imization, it can be highly sensitive to small changes in the
map, because multipole concentrations can have near
double maxima for differentm, giving completely different
alignment directions. For example, while in the result
above using the TOH maps, the quadrupole alignment
was one which maximized the m � 2 multipole, with n2

in the direction �b; l� � �60;�100�, we find (as did LM)
that for the Lagrange internal linear combination map
(LILC) produced by Eriksen et al. [4] a completely differ-
ent orientation is selected for the quadrupole, this time
maximizing the m � 0 multipole (in the TOH map this
-2
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FIG. 1 (color online). The ensemble average alignment h�̂i and
its standard error for the T�15; 15; X� topologies, as a function of
topology scale X. The horizontal line is the Gaussian prediction.
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maximum is just slightly less than the one chosen), which
significantly increases �̂ to 55.2
. Similarly, in the case of
the internal linear combination map (ILC) produced by the
WMAP team [17], while the preferred axis of the quadru-
pole is similar to that in the TOH maps, this time it is the
direction of the octupole that is the cause of a discrepancy
that increases �̂. We note this as a caveat; in both these
cases of near double maxima, three of four maps agree as
regards the direction of the preferred axis for the concerned
multipole. The maps differ in the details of how fore-
grounds are removed from them.

Again, we do not here seek to address data-related
aspects such as the likelihood of finding the observed �̂
given the uncertainties in foreground subtraction, the sky-
cut, cosmic variance, etc. While these issues are important
to consider when determining whether the claimed detec-
tion of a breakdown of isotropy is significant, papers that
reported the detections in the first place have delved into
such questions to some extent, and there is only limited
progress one can make with an a posteriori detection.
Aspects of foreground contamination have been studied
in Refs. [4,8,18–20]. For instance, Copi et al. [8] consid-
ered the nature of known foregrounds without finding any
clear connection to low-‘ alignments, at least as regards
the LM kind.

Despite the above-mentioned caveats, the value of �̂
found by LM is very low, and they speculate that it may
be a signature of slab topology, already invoked in
Refs. [1,2] as a possible explanation of the quadrupole
and octupole planarity. Our aim is to test this suggestion
by evaluating the distribution of the �̂ statistic for simu-
lated slab-topology maps, and checking whether, relative
to the case of a trivial topology, such topologies can better
explain a low �̂.

B. The Land-Magueijo statistic for simulated maps of
slab topology

Given the full ensemble average correlation matrix
ha‘ma�‘0m0 i of the spherical harmonic coefficients for slab-
space topologies of form T�15; 15; X�, we create corre-
sponding random realizations of the a‘m. These are then
rotated through a two-dimensional grid of galactic angles b
and l (we used spacings of 1
 in each). The a‘m transform
under rotations as (see e.g. Ref. [21])

a‘m �
X‘

m0��‘

a‘m0e�im�d‘mm0 ���e
�im0�; (6)

where (�;�; �) are the Euler angles corresponding to the
rotation, and d‘mm0 ��;�; �� is part of the representation of
the Wigner rotation matrix [21]. Rotating the a‘m over the
entire grid, the rotation n‘ (and associated m) that maxi-
mized r‘ was recorded, for each ‘. Thus �̂ was found for
each simulation. This was repeated for an ensemble of
universes so that the distribution of �̂ was built up. The
041302
ensemble average value h�̂i was also found. This was then
repeated for different dimensions X of the rectangular
toroid T�15; 15; X�.

Figure 1 shows the ensemble average values h�̂i, to-
gether with their standard error, against X. For Gaussian
maps, the expected result of 1 rad is accurately recovered.
We further see that the large-scale topology maps behave
essentially as Gaussian maps. Only for X < 3 do we begin
to see an effect of topology, with the ensemble average
reducing slightly with respect to the Gaussian result. The
shift is very small as compared to the observed value of �̂.

Although the shift of the ensemble mean is small, to-
pology might nevertheless help explain the observation if it
alters the distribution of �̂ for small angles. Figure 2 shows
the full distribution of mean angle �̂ obtained from 10 000
realizations of the corresponding topologies. Such a large
number of simulations was used in order to trace the tails of
the distribution accurately. The value of 1 rad, which is the
expected mean angle for a Gaussian random realization, is
shown with a thick dashed line, and the observed value is
shown as a dotted line. While the distribution of �̂ extends
a little towards smaller values as the size of the smaller
dimension of the toroid decreases, the observed value
remains significantly low even for the smallest dimension
considered.

We quantify this further in Fig. 3, which shows the
fraction of the ensemble giving a value at least as low as
the observed one. The uncertainties are estimated using the
Poisson error on the number of such ensemble members.
We confirm the result of LM that approximately 0.1% of
Gaussian skies give the observed value or lower. For small
topology scales we see an enhancement in this fraction, but
even for the smallest topology considered, the probability
remains below 1%. We conclude that the observed align-
ment is not predicted by slab-space topologies.
-3



FIG. 2 (color online). The full distribution of �̂ for three T�15; 15; X� topologies, X � 15; 4; 1, and for a Gaussian random realization.
The dashed line shows the mean value and the dotted line the observed value. Note the extended low-end tail of the T�15; 15; 1�
distribution, corresponding to the increased probability of this topology being able to produce the observed result.
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We have only asked whether the topologies within our
set can explain the result found by LM. This is not achieved
even by the smallest topologies we consider. However we
note further that such small topologies are almost certainly
already excluded by other observations [22]. For instance,
a harmonic space analysis of precisely these same simu-
lated topologies [15] suggests that X < 3 is excluded by
comparison to WMAP data (see also Ref. [23]). Such
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FIG. 3 (color online). The fraction of realizations of a given
T�15; 15; X� topology which provide a result at least as low as the
observed result (�̂ � 22:5
), shown as a function of the charac-
teristic topology scale X.
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topologies are also constrained by the null results of
matched circles tests for such topologies [14,16], corre-
sponding to a limit of about X� 5. [The very tentative
indications of dodecahedral topology found in Ref. [24] are
interesting but of no significance for the topologies we
consider here.] We have found that such topologies also
do not receive any real support even from the observed
alignments of the type discussed here.

C. The Land-Magueijo statistic for ILC simulations

Stepping somewhat aside from the main drive of this
paper, we have made a small study of foreground effects by
finding the distribution of �̂ that results from the 10 000
ILC simulations provided by Eriksen et al. [25]. These
simulations additionally (over an assumed Gaussian CMB
sky) contain the residual level of foregrounds that can be
expected from the ILC method of foreground subtraction.
The distribution of �̂ that results is much broader and flatter
towards smaller angles. That is expected because the simu-
lations contain residuals of the galaxy, so that a preferred
axis going through the galactic poles or thereabouts will be
expected for the lower ‘ and hence �̂ will be smaller.

This result does not, however, explain the Land-
Magueijo result, as the alignment they find (which is
identified in the TOH maps) is not directed towards the
galactic poles. It seems that if there were a preferred axis in
a Gaussian CMB sky contaminated by galactic residuals,
then it would be in the direction of the poles. This agrees
-4
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with the conclusion of Copi et al. [8] that the alignments
seen do not correlate with known foregrounds. Also, note
that the real ILC maps do not show the same alignment
direction effect, the effect being spoilt due to the
previously-mentioned presence of a near double maxima
in one of the 4 multipoles considered.

To summarize, foreground contamination could explain
a small �̂ about the poles, but the observed orientation is
not explained. Further, the alignment effect is detected in
maps using a different foreground cleaning method [1].
Hence this may be a case where a curious real feature is
being obscured by the presence of galactic contamination
(and cosmic variance). Interestingly, this point has already
be made for related alignment statistics by Slosar and
Seljak [26].

IV. CONCLUSIONS

Our main results are as follows. We have confirmed the
observed value of �̂ found by Land and Magueijo, while
041302
noting that it is quite dependent on the choice of maps
used. We have also confirmed their result that Gaussian
skies have only about 0.1% chance of finding a value as low
as that observed in the TOH maps. By analyzing a set of
slab-topology maps, we have found that there is a slightly-
enhanced probability of such a low value being obtained,
but in absolute terms it remains extremely unlikely. We
conclude that slab topology is not the explanation for the
multipole alignment found by Land and Magueijo. The
resolution must lie elsewhere, perhaps in other topologies,
or instead in other cosmological assumptions, or in fore-
ground or instrumental noise.
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