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Effect of reconnection probability on cosmic (super)string network density
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We perform numerical simulations of cosmic string evolution with intercommuting probability P in the
range 5� 10�3 � P � 1, both in the matter and radiation eras. We find that the dependence of the scaling
density on P is significantly different than the suggested � / P�1 form. In particular, for probabilities
greater than P ’ 0:1, ��1=P� is approximately flat, but for P less than this value it is well-fitted by a
power-law with exponent 0:6�0:15

�0:12. This shows that the enhancement of string densities due to a small
intercommuting probability is much less prominent than initially anticipated. We interpret the flat part of
��1=P� in terms of multiple opportunities for string reconnections during one crossing time, due to small-
scale wiggles. We also propose a two-scale model, which satisfactorily fits our results over the whole
range of P covered by the simulations.
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FIG. 1. Dimensionless string density plotted against confor-
mal time � for a network with intercommuting probability P �
I. INTRODUCTION

Cosmic strings have recently been reincarnated in the
form of ‘‘cosmic superstrings‘‘, fundamental strings and
one-dimensional D-branes produced at the end of brane
inflation [1–4] (for reviews see [5–8]). These objects have
properties which can be significantly different than usual
field theory strings, and this opens up the possibility that
cosmic string observations could yield information about
string theory, while providing new ways to constrain vari-
ous brane inflation models [9,10]. Cosmic superstrings
reconnect with probabilities which can be significantly
less than unity [11,12], unlike ordinary cosmic strings
[13]. This reduced reconnection probability results in an
enhancement of the string number density today [4,11,14].
The evolution of cosmic superstring networks has recently
been studied in Refs. [14–18]. The key issue is whether
these networks reach a scaling regime, that is one in which
their characteristic lengthscale stays constant relative to the
horizon. In all studies of models of cosmic supersting
networks so far, evidence for scaling behavior has been
found, though the issue is not yet completely resolved.

Assuming that an attractor scaling solution exists, an
interesting question to ask is how the density of the scaling
network depends on the intercommuting probability P.
Using a simple one-scale model [19], Jones, Stoica and
Tye have argued in Ref. [11] that the expected behavior is
� / P�2. This is a dramatic effect, as a probability of 10�2,
for example, would lead to an enhancement of the string
density by a factor of 104 compared to ordinary strings: we
could live in a universe packed with F=D-string relics from
a brane inflation era! However, string intercommuting is a
small-scale process and can be expected to depend cru-
cially on small-scale wiggles on strings, which are not
captured by the simple one-scale model. One should expect
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that, since wiggly strings may have more than one oppor-
tunity to reconnect in each encounter, the effect of P on
string density could be somewhat counterbalanced by the
strings’ small-scale-structure. Thus a power-law weaker
than � / P�2 may be anticipated.

Indeed, Sakellariadou recently performed flat space
simulations of cosmic strings with small reconnection
probabilities and found a power law � / P�1 in the range
10�3 � P � 0:3 [15]. The purpose of this letter is to
investigate the dependence of the string energy density �
on the intercommuting probability P for strings evolving in
more realistic cosmological backgrounds. We perform nu-
merical simulations in the matter and radiation era, and
find a power law significantly weaker than that of Ref. [15].
We explain our results in terms of string small-scale struc-
ture and the importance of a second scale in the problem.
We thus propose a two-scale analytic model which pro-
vides a good fit to our numerical results.
II. SIMULATIONS

We have performed numerical simulations of string net-
works, with reduced intercommuting probabilities and
0:75. Each curve corresponds to a different initial horizon to
correlation length ratio. The asymptotic curves bracket the
scaling solution, which can be estimated to be �t2=� � 3:6�0:2

�0:1.
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FIG. 2. Dimensionless string scaling density plotted against
the inverse intercommuting probability 1=P, for matter and
radiation era runs (1� errors displayed) . The constant slope
part of the matter era data can be fitted by a power law with
exponent 0:6�0:15

�0:12. The overall dependence of � on P is much
weaker than the previously suggested � / 1=P2 and � / 1=P2

forms.
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FIG. 3 (color online). Dimensionless effective string tension
~� plotted against physical distance (measured in units of physi-
cal time t) for matter era networks with P � 1; 0:1; 0:05 and
0:01. As P is reduced, the effective tension increases signalling
the accumulation of small-scale structure.
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evolving in FRW spacetime, using a modified version of
the Allen-Shellard code [22]. Each network was given a
different intercommuting probability in the range 5�
10�3 � P � 1 and was evolved both in the matter and
radiation eras for a dynamical range of order 3. For each
network characterized by a given intercommuting proba-
bility P, approximately ten runs were performed, each with
different initial string density. By plotting the time evolu-
tion of the string density for different initial conditions, one
can bracket the scaling solution, as shown in Fig. 1, getting
successively more accurate convergence with subsequent
runs. We have thus obtained, within errors, the scaling
density � of these networks.

In Fig. 2 we plot the dimensionless parameter �t2=�
(where � is the string tension) versus the inverse inter-
commuting probability 1=P for matter and radiation era
runs. In the former case P ranges from 5� 10�3 to 1, but in
the latter our limited dynamical range has at present only
allowed us to bracket the scaling densities for P in the
range 0:1 � P � 1. We see that for probabilities greater
than P ’ 0:1, the function ��1=P� is approximately flat, but
for smaller P it develops a constant slope, on a log-log
scale, at least in the matter era. A weighted fit gives a slope
1The function y � �2x
3�20x�8
1�x2 �0:6, where x � 1=P, gives a good

fit to the matter-era data, in the whole range of intercommuting
probabilities studied.
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of 0:6�0:15
�0:12 for the matter runs, and the radiation era data are

consistent with this picture, though more data points are
needed to confirm the value of the slope.1 Comparing to the
� / P�2 and � / P�1 forms of Refs. [11,15] respectively
(also plotted), we see that the enhancement of string den-
sities due to a reduced intercommuting probability is much
less prominent than what was initially anticipated. For
example, a probability of 5� 10�3 leads to an enhance-
ment in � by only a factor of 10, to be contrasted with the
predictions of 200 (resp. 104) obtained from � / P�1

(resp. � / P�2).
We have also investigated the effect of reducing the

intercommuting probability P on the amount of string
small-scale-structure [23]. This can be quantified by the
dimensionless effective tension defined as ~� � �eff=�,
where �eff is the effective energy per unit length at the
scale of the correlation length � (this is the average length
beyond which string directions are not correlated). For
wiggly strings ~� is greater than unity, reflecting the fact
that string structure at subcorrelation length scales ‘‘re-
normalizes’’ the tension at the scale of the correlation
length to �eff >� (see [23]). In Fig. 3 we plot the dimen-
sionless effective tension ~� against physical distance (in
units of physical time t) for a range of intercommuting
probabilities. As the intercommuting probability de-
creases, we see a significant increase in the effective ten-
sion, especially at the scale of the correlation length. This
is strong evidence for the accumulation of small-scale
structure as P is reduced.
III. DISCUSSION

We can interpret the flat part of Fig. 2 in terms of string
small-scale-structure. On large scales, correlation length
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segments move together slowly and coherently (vc � 0:15
for P � 1 [23]), but their small-scale structure is relativis-
tic and rapidly oscillates (vrms � 1=

���
2
p

). One therefore
expects the strings to cross several times as they pass,
thus the overall process should be described by an effective
probability of reconnection Peff >P. Thus reducing P by a
factor of a few should not have a big impact on the string
density [14], as seen in Fig. 2. Furthermore we can explain
the position where the slope starts to change, by using the
following simple model for string interactions.

Consider two colliding straight strings, described on
small-scales by a monochromatic mode of amplitude A
and period T. If vc is their relative coherent speed, the
duration of the collision is approximately �t � 2A=vc.
Now on small scales the strings are oscillating with period
T, so the number of reconnection opportunities during their
crossing time is N � �t=T � 2A=vcT. But since on these
scales string modes are propagating with velocity c	 1, T
is equal to the wavelength of the mode, and so A=T is a
measure of string wiggliness. In particular, for large am-
plitudes we may write 1� A=T 	 ~� from which we can
infer that

N 	
2� ~�� 1�

vc
: (1)

Interestingly, this simple estimate gives about the right
value for the position where the curve changes slope in
Fig. 2. Indeed, from Fig. 3 we see that for P> 0:1, ~� is in
the range 1:6 � ~� � 1:7, while we know that string veloc-
ities at the scale of the correlation length are approximately
vc � 0:15. This gives N 	 10 intercommuting opportuni-
ties and one therefore expects that, to see a significant
effect on the scaling string density, P should be reduced
by a factor of order 10. Furthermore, we can estimate the
effective probability by considering the N reconnection
opportunities, assuming each has an independent probabil-
ity P, that is

Peff � 1� �1� P�N: (2)

For N ’ 10, a probability as low as 0:2 yields Peff ’ 1, and
significant deviations from unity only occur for P ’ 0:1 for
which Peff ’ 0:65, as observed in Fig. 2. In the limit P

1, Eq. (2) gives Peff ’ NP � �2� ~�� 1�=vc�P and so P can
only be enhanced by a factor of order 10 (see Fig. 3), which
results in an effective reconnection probability that is still
much less than unity.

We now turn to explaining the constant slope part of
Fig. 2 for small probabilities. First recall that a simple one-
scale model with P< 1 predicts � / P�2 in direct contra-
diction with our numerical results. As discussed above, the
introduction of an effective intercommuting probability
can dramatically weaken this but only for relatively large
P (say P> 0:1). However, to accommodate the constant
slope part for P
 1 one would need Peff / P�, with � a
constant less than 1=2. At present there seems no motiva-
tion for such a Peff ; instead, Eq. (2) suggests that Peff is
linear in P for P
 1. Thus, it appears that no one-scale
041301
model can fit our numerical results for P
 1: as the string
intercommuting probability decreases, the one-scale ap-
proximation becomes increasingly poor. This is in agree-
ment with the results of Ref. [24] in which long-string
intercommutings were switched off in numerical simula-
tions of evolving strings, while small-loop production was
allowed. It was found that this prevented the string density
from scaling, that is, the interstring distance L was no
longer proportional to t (the solution being � / L�2 /

t�7=8). Nevertheless, the actual correlation length � along
the string did scale at approximately the size of the horizon
(� / t).

This is very similar to the situation we observe in our
simulations. Reducing the intercommuting probability
leads to an increase of the string density and therefore a
decrease of the characteristic length associated with it (the
interstring distance L). The correlation length �, however,
is only weakly affected by this, and stays at a scale of order
the horizon (Fig. 3). This can be understood by considering
the two distinct mechanisms for producing loops: (i) self-
intersections of the same string and (ii) collisions between
long strings. The former tends to chop off small loops,
straightening the strings out (thus affecting mainly the
correlation length �) and controlling the amount of
small-scale structure ~�. This alone is a significant energy
loss mechanism, but not sufficient to ensure scaling [24].
On the other hand, long-string reconnections have much
more dramatic effects introducing large-scale ‘‘bends’’ in
the strings which catalyse the collapse of large regions of
string and the formation of many more loops. In contrast,
these energy losses are sufficient to govern the interstring
distance L and cause scaling.

The first mechanism, is not greatly affected by reducing
the intercommuting probability: once the string is suffi-
ciently wiggly, left and right moving modes which fail to
interact due to a small P will keep propagating and meet
more incoming modes, with which they will eventually
interact and form loops. It might take longer, but such
interactions are inevitable even for P
 1. The relevant
question is whether enough of these interactions can take
place in each Hubble time in order to straighten the strings
out at the horizon scale, but this seems reasonable given the
much shorter timescale on which small-loop production
operates. It appears to be confirmed by Fig. 3, where there
is only a very weak build-up of small-scale structure (a
factor of 2–3 in ~�) while P changes by over 2 orders of
magnitude. On the other hand, long-string intercommuting,
the second mechanism, depends more crucially on P: two
colliding strings have a given interval of time in which to
interact, so intercommuting is no longer inevitable for
relatively small P< 0:1. A reduced P necessarily means
less string interactions and less energy dumped from the
long-string network in the form of loops. This leads to an
increase in the long-string density and thus a significant
decrease of the characteristic length relative to the corre-
lation/horizon scale.
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FIG. 4. Scaling string density obtained from simulations (data
points with errors) and from the analytic two-scale model (5) and
(6) (solid line). The fit is improved further (dashed line) by
phenomenologically incorporating the dependence of the effec-
tive string tension ~� on the reconnection probability P.
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To obtain an analytic model for such networks, it is
therefore necessary to introduce two scales: a characteristic
length L (roughly the interstring distance) quantifying the
energy density in strings, and a correlation length �, de-
fined to be the distance beyond which string directions are
not correlated. Indeed, similar models have appeared in the
literature (e.g. the three-scale model of Ref. [25]), but for
normal P � 1 cosmic strings these two scales are compa-
rable so the one-scale (velocity-dependent) approximation
[20,21] can be surprisingly accurate [26]. Here, we develop
a two-scale velocity-dependent model which fits our nu-
merical results, again surprisingly well given its simplicity.

Consider a string network, characterized by tension �,
correlation length � and energy density �. We define the
characteristic lengthscale L of the network by �  �=L2

and note that the number of strings per correlation volume
V � �3 isN� � �V=�� � �2=L2. If v is the typical string
velocity, each string intersects N� � 1 other strings in time
�t � �=v, so we have N2

� � N� intercommutings per cor-
relation volume per time �t. Assuming that each inter-
commuting produces a loop of length ~c� [27] the energy
loss due to the formation of loops can be written as

�
��
�t

�
2�scale

�
�N2

� � N��v

�4 �~c� � ~c�
�
�

L2 �
1

�

�
: (3)

This is to be contrasted with the corresponding result for
the one-scale model�

��
�t

�
1�scale

� ~c
�
L
: (4)

As an interesting aside, we note that the last term in Eq. (3)
/ 1=� has the same form (though opposite sign) as the
term which would need to be introduced to account for
direct small-loop production (or string radiation); it cannot
itself cause L to scale as t.

Our velocity-dependent two-scale model can therefore
be constructed by using the usual VOS model equations
[21], derived from the Nambu-Goto action, but using the
phenomenological loop production term (3) instead of (4).
The result is a system of two coupled ODEs, governing the
time evolution of the characteristic length L and the aver-
age velocity v of string segments:

2
dL
dt
� 2

_a
a
L�1� v2� � ~cv

�
�
L
�
L
�

�
(5)

dv
dt
� �1� v2�

�
k
�
� 2

_a
a
v
�

(6)

In Eq. (6), k is the so-called momentum parameter, which
is a measure of the angle between the curvature vector and
the velocity of string segments and thus is related to the
smoothness of strings [20]. Note that we have made no
attempt to derive an evolution equation for the correlation
length � as the simulations show that this depends weakly
on P and moreover, unlike L, it remains comparable to the
horizon (Fig. 3). We will neglect this weak dependence of
041301
� on P and take � � t in Eqs. (5) and (6). To apply the
model to our simulated networks, we have also introduced
an effective intercommuting probability given by (2), that
is, we have replaced ~c in Eq. (5) by Peff ~c. As a first
approximation, we have neglected the dependence of N
on P and we have simply taken N � 10 (a rough average
value over the range of P). For the loop production pa-
rameter, we have used the value ~c � 0:23 of Refs. [21,26]
which fits both radiation and matter era runs in the P � 1
case.

In Fig. 4 we plot the matter era scaling energy densities,
obtained both from the simulations and our two-scale
model (solid line). We see that the model provides a
surprisingly good fit to the numerical data and it reprodu-
ces the observed change of slope around P � 0:1. We
stress that we have made no special parameter choices to
obtain this fit, and by modifying parameters further we
could do much better. Nevertheless, it is clear from the
dashed line in Fig. 4 how the model could be improved by
taking into account the dependence of the collision number
N on ~��P�. In this case, we have estimated the effective
string tension ~� as a function of P from Fig. 3, which
yields N from Eq. (1) and then Peff�P� from Eq. (2) which
is finally input ‘‘by hand‘‘ in our two-scale model. We note
the need also to take into account the dependence of � on
the reconnection probability, and a direct small-loop pro-
duction term. Here we highlight the fact that a simple
version of our two-scale model with the addition of the
effective probability of Eq. (2) seems to provide a satis-
factory fit to the numerical data.
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IV. CONCLUSION

We have performed numerical simulations of cosmic
strings with intercommuting probabilities in the range 5�
10�3 � P � 1 evolving in a matter- or radiation-
dominated FRW universe. We have found that the depen-
dence of the string density � on the intercommuting proba-
bility P is much weaker than previously suggested in the
literature. In particular, the function ��1=P� has an initially
flat dependence, up to probabilities of about 0:1, and then
develops a constant slope (on a log-log scale) of 0:6�0:15

�0:12.
This yields very different predictions from the generally
expected � / P�1 form; a probability of P � 5� 10�3,
for example, gives an energy density enhancement of a
factor of 10, compared to a factor of 200 with � / P�1.
Clearly our results are important for determining the quan-
titative observational predictions of models with cosmic
(super-)strings and various limits in the literature will have
to be re-examined in light of these results.

We have also endeavoured to provide some physical
explanations for why the string density depends nontri-
vially on the reconnection probability. We can explain the
flat dependence of ��1=P� in terms of small-scale wiggles
on strings, which lead to multiple opportunities for recon-
nection in each crossing time, thus introducing an effective
reconnection probability Peff � f�P�. By approximating
the small-scale structure on long strings by a monochro-
matic mode, we suggested a physically motivated form for
Peff , which adequately explains the large P behavior of
��1=P�.
041301
The simulations demonstrated that, although the string
density increases for small P leading to a reduction of the
interstring distance L, the correlation length � depends
only weakly on P and scales at a size comparable to the
horizon. We have explained how one can understand this in
terms of the two distinct mechanisms for loop production:
the self-intersection of wiggly strings which produces
small loops and tends to straighten the strings, determining
the correlation length �, and long-string collisions, which
cause much greater loop energy losses, determining the
characteristic length L. We suggested a simple two-scale
model to describe the behavior of ��1=P� over the whole
range of probabilities probed by the simulations and this
provided an adequate fit to the numerical data. We leave a
more detailed numerical investigation and further improve-
ments of the analytic model for a future publication.
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