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We consider the electric dipole form factor, F3�q
2�, as well as the Dirac and Pauli form factors, F1�q

2�
and F2�q2�, of the nucleon in the light-front formalism. We derive an exact formula for F3�q2� to
complement those known for F1�q

2� and F2�q
2�. We derive the light-front representation of the discrete

symmetry transformations and show that time-reversal- and parity-odd effects are captured by phases in
the light-front wave functions. We thus determine that the contributions to F2�q

2� and F3�q
2�, Fock state

by Fock state, are related, independent of the fundamental mechanism through which CP violation is
generated. Our relation is not specific to the nucleon, but, rather, is true of spin-1=2 systems in general, be
they lepton or baryon. The empirical values of the anomalous magnetic moments, in concert with
empirical bounds on the associated electric dipole moments, can better constrain theories of CP violation.
In particular, we find that the neutron and proton electric dipole moments echo the isospin structure of the
anomalous magnetic moments, �n ���p.
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I. INTRODUCTION

The electric dipole moments of particles such as the
neutron, electron, muon, or neutrino, provide important
windows into the fundamental origin of CP violation at
the Lagrangian level. The underlying source, or sources, of
CP violation in nature could arise in any of a number of
ways. Such sources include not only the phase structure of
the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1],
which describes quark mixing and provides CP violation
in the standard model, but also the phase structure of the
lepton-mixing matrix [2], as well as flavor-diagonal,
CP-violating interactions, as could occur in theories with
extended Higgs sectors, such as in supersymmetry [3]. The
fundamental theory then leads to effective, higher-
dimension, CP-violating operators, such as the antisym-
metric product of three gluonic [4] or SU�2�L field
strengths [5] or the electric-dipole interaction
 �5���F�� . Thus far experiment has provided upper
bounds on the magnitude of the electron [6] and neutron
[7] electric dipole moments; current limits imply that
models with weak-scale supersymmetry and O�1�
CP-violating parameters can produce electric dipole mo-
ments significantly in excess of experimental bounds [8].
New, improved experiments, as in Refs. [9–11], have the
capacity to sharpen such constraints severely; it is our
purpose to consider the ramifications of such improve-
ments for theories of CP violation.

An essential question is how to relate the electric dipole
moments of leptons and baryons to the CP-violating pa-
rameters of the underlying theory. The light-front Fock
expansion [12,13] provides an exact Lorentz-invariant rep-
resentation of the matrix elements of the electromagnetic
current in terms of the overlap of light-front wave functions
06=73(3)=036007(13)$23.00 036007
[14–16]—note Ref. [17] for a comprehensive review. The
current takes an elementary form in the light-front formal-
ism because, in the interaction picture, the full Heisenberg
current can be replaced by the free quark current J��0�,
evaluated at the light-cone time x� � 0. As first shown by
Drell and Yan [14,15], such matrix elements are most
readily evaluated from the matrix elements of the current
J��0� in the q� � 0 frame. In contrast to the covariant
Bethe-Salpeter formalism, familiar from the analysis of
hydrogenic bound states in quantum electrodynamics
(QED) [18], in the light-front formalism one does not
need to sum over the contributions to the current from an
infinite number of irreducible kernels. Indeed, the evalu-
ation of the current matrix elements is intractable in the
standard, i.e., instant-form, Hamiltonian formalism, since
the wave functions are frame-dependent, and as one must
also take into account all interactions of the current with
vacuum fluctuations [17].

The light-front formalism is thus ideally suited for com-
puting electromagnetic properties of both elementary and
composite states. The electric dipole form factor is ren-
dered nonzero by time-reversal-odd and parity-odd effects
in the light-front Fock-state wave functions themselves.
This could occur, for example, at a fundamental level
through higher Fock states which explicitly contain three
generations of quarks. Alternatively, one can integrate out
the effects of the heavy particles to obtain an effective
chiral theory in which the light-front wave functions are
expressed in terms of effective meson and baryon degrees
of freedom.

In this paper we evaluate the electric dipole form factor,
F3�q2�, in the light-front formalism and compare it with the
well-known expressions for the Dirac and Pauli form fac-
tors, F1�q2� and F2�q2� [15]. In order to explore the struc-
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ture of the resulting expression for F3�q
2� we explicitly

construct and classify the action of the discrete operators
corresponding to the time-reversal, parity, and charge-
conjugation transformations acting on wave functions real-
ized from quantization on the light front. We then construct
the general form of a light-front wave function in the
presence of fundamental CP violation. This, in turn, leads
to a model-independent relation which connects the time-
reversal-odd and parity-odd F3�q

2� form factor to the Pauli
form factor F2�q

2�, Fock state by Fock state—for any
spin-1=2 system. Thus we are able to relate the contribu-
tion of a particular Fock state to the electric dipole moment
to a corresponding contribution to the anomalous magnetic
moment. At q2 � 0, the universal relation for a spin-1=2
baryon is

di � 2�i tan�i; (1)

where repeated indices are not summed and i denotes the
contribution of Fock state i. Note that the electric dipole
moment d is d � �idi � �e=M�F3�0� and that the anoma-
lous magnetic moment � is � � �i�i � �e=2M�F2�0�,
where e � jej is the fundamental unit of electric charge
and M is the proton mass. The parameter �i is the
CP-violating phase appearing in Fock state i of the light-
front wave function for the baryon of interest. Although it
has long been recognized that the hadronic matrix element
yielding the neutron electric dipole moment must be com-
mensurate in size, up to CP-violating effects, to that of the
anomalous magnetic moment [19], ours is the first con-
struction of a general equality based on first principles. A
relationship of this kind has also been noted by Feng,
Matchev, and Shadmi in their study of the electric-dipole
and anomalous-magnetic moments of the muon in super-
symmetric models [20], though we find our Eq. (1) to be of
more general validity. Indeed, the connection is general
and holds for any spin-1=2 state, be it charged lepton,
neutrino,1 quark, or baryon, irrespective of the sources of
CP violation. We proceed to examine its implications for
constraints on models of CP violation before concluding
with a summary and outlook.

II. THE LIGHT-FRONT FOCK REPRESENTATION

The light-front Fock expansion of any hadronic system
is constructed by quantizing quantum chromodynamics
(QCD) at fixed light-cone time x� � x0 � x3,2 with c �
@ � 1, and forming the invariant light-cone Hamiltonian
HLC : HLC � P�P� � P2

? [12,13,17]. The momentum
generators P� and P? are kinematical, so that they are
independent of interactions [12]. The generator P� �
P�=2 � i@=@x� gives rise to light-cone time translations.
In principle, solving the HLC eigenvalue problem gives the
1The connection is nontrivial only in the case of a Dirac
neutrino.

2We summarize our conventions in the Appendix.
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entire mass spectrum of the color-singlet hadron states in
QCD, together with their respective light-front wave func-
tions. In particular, the proton state satisfies HLCj pi �
M2j pi, where j pi is an expansion in multiparticle Fock
states. The resulting equations can be solved, in principle,
using the discretized light-cone quantization (DLCQ)
method [21]. A recent example of nonperturbative light-
front solutions for a 3� 1 theory is given in Ref. [22]. The
connection to the Bethe-Salpeter formalism is described in
Ref. [23], and explicit examples thereof are given in
Ref. [24]. In the case of elementary fields such as the
electron, one can construct the Fock space in perturbation
theory.

The expansion of the proton eigenstate j pi in QCD on
the eigenstates, fjnig, of the free light-cone Hamiltonian
gives the light-front Fock expansion:

j p�P�;P?;Sz�i�
X

n;�i2n

Z Yn
i�1

�
dxid

2k?i
2
����
xi
p
�2��3

�
16�3

�	
�

1�
Xn
i�1

xi

�
	�2�

�Xn
i�1

k?i

�

� Szn=p�xi;k?i;�i�jn;xiP
�;xiP?

�k?i;�ii; (2)

where we consider a proton with momentum P and spin
projection Sz along the z � x3 axis. The Fock state n
contains n constituents, and we sum over the helicities,
f�ig, of the constituents as well. The light-cone momentum
fractions xi � k�i =P

� and k?i represent the relative mo-
mentum coordinates of constituent i in Fock state n,
whereas the physical momentum coordinates of constitu-
ent i are k�i and p?i � xiP? � k?i: The label �i deter-
mines the helicity of a constituent quark or gluon along the
z axis. A free fermion constituent of mass mi is specified
not only by its momentum components k�i , k?;i and he-
licity �i, but also by its color ci and flavor fi. In writing
Eq. (2) we suppress the presence of ci and fi in the argu-
ments of the free Fock states and light-front wave functions
for notational simplicity. Note, too, that we also implicitly
sum over the constituents’ colors, fcig, and flavors, ffig.
The n-particle states are normalized as

hn;p0�i ;p
0
?i; �0ijn;p�i ;p?i; �ii

�
Yn
i�1

�16�3p�i 	�p
0�
i � p

�
i �	

�2��p0?i � p?i�	�0i�i�:

(3)

The solutions of HLCj pi � M2j pi are independent of
P� and P?. Thus, given the Fock projections
hn; xi;k?i; �ij p�P�;P?; Sz�i, or  Szn=p�xi;k?i; �i�, the
wave function of the proton is determined in any frame
[23]. The light-front wave functions  Szn=h�xi;k?i; �i� en-
code all of the bound-state quark and gluon properties of a
-2
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hadron h, including its momentum, spin, and flavor corre-
lations, in the form of universal process- and frame-
independent amplitudes.

III. THE LIGHT-FRONT REPRESENTATION OF
THE ELECTROMAGNETIC FORM FACTORS

In the case of a spin-1=2 system, with exact eigenstate
jP; Szi, the Dirac and Pauli form factors F1�q

2� and F2�q
2�,

and the electric dipole moment form factor F3�q
2� are

defined by

hP0; S0zjJ��0�jP; Szi � u�P0; �0�
�
F1�q2��� � F2�q2�

�
i

2M
��
q
 � F3�q

2�

�
�1

2M
��
�5q


�
u�P;��; (4)

where q� � �P0 � P�� and u�P; �� is the Dirac spinor
associated with a spin-1=2 state of momentum P and
helicity �. We employ the standard light-cone frame
throughout, so that q � �q�; q�;q?� � �0;�q2=P�;q?�
and P � �P�; P�;P?� � �P�;M2=P�; 0?�, where q2 �

�2P 	 q � �q2
? is the square of the momentum trans-

ferred by the photon to the system. We detail other perti-
nent conventions in the Appendix and note

1

2P�
u�P0; �0���u�P;�� � 	�;�0 ;

1

2P�
u�P0; �0�i��1��5�u�P;�� � �����	�;��0 ;

1

2P�
u�P0; �0�i��2��5�u�P;�� � �i���	�;��0 :

(5)

Using Eq. (5) in conjunction with Eq. (4) we find

F1�q2� �

�
P� q; "

��������J
��0�

2P�

��������P; "
�

�

�
P� q; #

��������J
��0�

2P�

��������P; #
�
; (6)

F2�q
2�

2M
�

1

2

�
�

1

qL

�
P� q; "

��������J
��0�

2P�

��������P; #
�

�
1

qR

�
P� q; #

��������J
��0�

2P�

��������P; "
��
; (7)

F3�q
2�

2M
�
i
2

�
�

1

qL

�
P� q; "

��������J
��0�

2P�

��������P; #
�

�
1

qR

�
P� q; #

��������J
��0�

2P�

��������P; "
��
; (8)

where " and # denote spin states aligned parallel and anti-
parallel to the z axis and qR;L � q1 
 iq2. The Dirac and
Pauli form factors, for q2 � 0, can thus be identified from
the helicity-conserving and helicity-flip vector-current ma-
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trix elements of the J��0� current in the q� � 0 frame
[15]—and we find this true of F3�q

2� as well. The mag-
netic and electric dipole moments are defined in the q2 !
0 limit, namely,

� �
e

2M
�F1�0� � F2�0�; d �

e
M
F3�0�; (9)

where e is the charge and M is the mass of the proton if we
consider a spin-1=2 baryon system. Recall that � �
�e=2M�F2�0� is the anomalous magnetic moment. For
leptons, such as the electron or neutrino, it is convenient
to employ the electron mass for M, so that the magnetic
moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving
and helicity-flip vector-current matrix elements in the
light-front formalism. In the interaction picture, the current
J��0� is represented as a bilinear product of free fields, so
that it has an elementary coupling to the constituent fields
[14–16]. The Dirac form factor can then be calculated
from the expression

F1�q2� �
X
a

Z
�dx

� �d2k?
X
j

ej� 
"�
a �xi;k0?i; �i� 

"
a�xi;k?i; �i�;

(10)

whereas the Pauli and electric dipole form factors are given
by

F2�q
2�

2M
�
X
a

Z
�dx�d2k?

X
j

ej
1

2

�

�
�

1

qL
 "�a �xi;k0?i; �i� 

#
a�xi;k?i; �i�

�
1

qR
 #�a �xi;k0?i; �i� 

"
a�xi;k?i; �i�

�
; (11)
F3�q2�

2M
�
X
a

Z
�dx�d2k?

X
j

ej
i
2

�

�
�

1

qL
 "�a �xi;k0?i; �i� 

#
a�xi;k?i; �i�

�
1

qR
 #�a �xi;k0?i; �i� 

"
a�xi;k?i; �i�

�
: (12)

The summations are over all contributing Fock states a and
struck constituent charges ej. Here, as earlier, we refrain
from including the constituents’ color and flavor depen-
dence in the arguments of the light-front wave functions.
The phase-space integration is
-3
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Z
�dx�d2k? �

X
�i;ci;fi

�Yn
i�1

�ZZ dxid2k?i
2�2��3

��
16�3

� 	
�
1�

Xn
i�1

xi

�
	�2�

�Xn
i�1

k?i

�
; (13)

where n denotes the number of constituents in Fock state a
and we sum over the possible f�ig, fcig, and ffig in state a.
The arguments of the final-state, light-front wave function
differentiate between the struck and spectator constituents,
namely, we have [14,16]

k 0?j � k?j � �1� xj�q? (14)

for the struck constituent j and

k 0?i � k?i � xiq? (15)

for each spectator i, where i � j. Note that because of the
frame choice q� � 0, only diagonal (n0 � n) overlaps of
the light-front Fock states appear [15].

The simple expressions of Eqs. (11) and (12) rely on the
ability to employ the interaction picture for the electro-
magnetic current and on the assumed simple structure of
the vacuum in the light-front formalism. Indeed, the k� >
0 constraint for massive particles in the light-front formal-
ism removes all qq pairs from the physical vacuum.
However, gluon modes, which are massless, may possess
k� � 0 and k? � 0 [25] and can contribute, in principle,
in color-singlet combinations to the physical vacuum [26].
If these contributions do not enter, then the free, Fock-
space vacuum is also an eigenstate ofHLC and the relations
of Eqs. (11) and (12) follow. As an example where zero
modes do occur, and indeed are essential to the description
of spontaneous symmetry breaking and the Higgs mecha-
nism, see Ref. [27]. For a discussion of the role of zero
modes in the vacuum structure of the (chiral) Schwinger
model, see Refs. [28,29]. It is worth noting that an explicit
computation of the electron’s anomalous magnetic mo-
ment, �g� 2�=2, in light-front perturbation theory yields
the expected result [30]: in this case, photon zero modes
simply do not appear. The putative gluon zero modes are
electrically neutral, so that the electromagnetic coupling of
the photon to the constituent fields would be given by the
quark charges regardless; the overlap formulas of Eqs. (11)
and (12) could miss a contribution, however, when a spec-
tator gluon has zero k� and k?.

We now turn to the development of discrete symmetry
transformations in the light-front formalism, in order to
ascertain the features of the light-front wave functions
needed to give rise to a nonzero value of F3�q

2�.

IV. DISCRETE SYMMETRIES ON THE LIGHT
FRONT

The development of the transformation properties of the
various fermion bilinears under P, T, and C in the light-
front formalism can be made in a manner analogous to that
036007
of the equal-time formalism [31]. One crucial difference,
however, is that we invoke the transformation properties on
the perpendicular components of k� only, so that we can
avoid transformations such as k� $ k�, or negative defi-
nite values of k� or k�. To be specific, we consider trans-
formations on k? alone, so that jk?j2, k�, and k� all
remain unchanged. This means that our particles will
remain on their energy shell throughout, in analogy to
the on-mass-shell condition in the equal-time formalism.

A. Parity

To implement the light-cone parity operation P? we let
the spatial components of any vector d� transform as dR !
�dL; dL ! �dR, d
 ! d
. This is equivalent to letting
d1 ! �d1, with all other components transforming into
themselves. Note that if we do not flip d3 we cannot flip the
signs of both d1 and d2, as this can be realized via a
continuous Lorentz transformation from the identity.
Flipping the sign of d1 alone does yield an improper
Lorentz transformation, as needed, and we would find
analogous results were we to flip simply the sign of d2

instead. Considering the commutator �xi; pj � i	ij and
L � r� p, we find that P? is a unitary operator and
that it flips the spin as well. We thus realize the parity
transformation at the operator level via

P ?a�pL;pRP
y
? � �aa���pR;�pL;

P?b
�
pL;pRP

y
? � �bb

��
�pR;�pL;

(16)

where we suppress, here and throughout, possible internal
indices such as color or flavor in the fermion and antifer-
mion annihilation operators, respectively. The fermion
field operator  �x� on the light front, namely,

 �x� �
Z dk�d2k?��������������������

2k��2��3
p fa�kL;kRu�k; �� exp��ik 	 x�

� by�kL;kRv�k; �� exp�ik 	 x�g; (17)

thus transforms as

P? �x�P
y
? �

Z d~k�d2 ~k?��������������������
2~k��2��3

q �a
X
�

fa��~kL;~kR
�1�5u�~k;���

� exp��i~k 	 �x�; x�;�xR;�xL��

� by��~kL;~kR
�1�5v�~k;���

� exp�i~k 	 �x�; x�;�xR;�xL��g

� �a�
1�5 �x

�; x�;�xR;�xL�; (18)

where we note ~k� � �k�; k�;�kR;�kL�, u�k; �� �
�1�5u�~k; ��, v�k; �� � �1�5v�~k; ��, and ��b � �a. With

P ? 
y�x�P y? � ��a�

1�5 
y�x�; x�;�xR;�xL�; (19)

and j�aj2 � 1, we thus conclude that
-4
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P ?  �x�P
y
? �   �x�; x�;�xR;�xL�; (20)

P ?i �5 �x�P
y
? � �i �5 �x�; x�;�xR;�xL�; (21)

P ? �� �x�P
y
? � �� �� �x�; x�;�xR;�xL�; (22)

P ? ���5 �x�P
y
? � ��

� ���5 �x�; x�;�xR;�xL�;

(23)

where �� � �1 for � � 1 and �� � �1 for � � 1.
Repeated indices in � are not summed. Note that the
determined vector and axial-vector transformations are
analogous to that of the equal-time case. Moreover, we
have

P ? ��� �x�P
y
? � ��� ��� �x�; x�;�xR;�xL�;

(24)

P ? ����5 �x�P
y
?���

�� ����5 �x�;x�;�xR;�xL�

(25)

where��� � ���� and repeated indices in� and � are not
summed. These transformations also parallel those found
in the equal-time formalism. Applying these transforma-
tion properties to the matrix elements which yield F2 and
F3, in specific Eq. (4), as such are shared by the matrix
elements of the Dirac spinors, we see that F2 is even and F3

is odd under P?. Turning to the explicit forms of Eqs. (7)
and (8), we see that since �! ��, qR ! �qL, and qL !
�qR under P?, that if

�
1

qL
hP� q; " jJ��0�jP; #i!

P? 1

qR
hP� q; # jJ��0�jP; "i;

(26)

1

qR
hP� q; # jJ��0�jP; "i!

P?
�

1

qL
hP� q; " jJ��0�jP; #i;

(27)

we can conclude here as well that F2 is even and F3 is odd
under P?, precisely as desired. Since the form factors are
functions of q2 only, we note that the matrix element in the
left-hand side (LHS) of Eq. (26) must be proportional to
qL, whereas the matrix element in the LHS of Eq. (27)
must be proportional to qR. Indeed, if

�
1

qL
hP� q; " jJ��0�jP; #i �

1

qR
hP� q; # jJ��0�jP; "i

(28)

is also satisfied, then F3 � 0 and P? is a ‘‘good’’
symmetry.

Now let us consider the transformation properties of the
light-front wave functions in greater detail, as matrix ele-
ments of these quantities give rise to F3�q2�, a P-odd,
T-odd observable. To summarize our earlier discussion,
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the action of P? is such that it transforms the matrix
elements entering F2�q

2� and F3�q
2� as per Eqs. (26) and

(27). At the level of the wave functions themselves, we
have

 #a�k?i; xi; �i�!
P? "a�~k?i; xi;��i�; (29)

 "a�k?i; xi; �i�!
P? #a�~k?i; xi;��i�; (30)

with ~k?i � ��k1
i ; k

2
i �. These transformation properties are

consistent with those in Eqs. (26) and (27). We have sup-
pressed the introduction of an overall phase factor as it is
without physical relevance. Moreover, if  #�k?i; xi; �i� �
 "�~k?i; xi;��i� then Eq. (28) follows as well and F3�q2�
vanishes. Thus to realize a nonzero value of F3�q

2�, we
must have light-front wave functions which satisfy
 #�k?i; xi; �i� �  "�~k?i; xi;��i�.

B. Time-reversal

In order to implement the light-cone time-reversal op-
eration T ? we let the spatial components of any momen-
tum vector transform as qR ! �qL; qL ! �qR, so that
q� ! �q�; q�;�q1; q2�. This implies, ultimately, that the
position vector under T ? transforms as x� !
��x�;�x�; x1;�x2�, or x� ! ��x�;�x�; xR; xL�. We
term the transformation time-reversal, since x0 does flip
its sign, even though other coordinates flip sign as well.
Our construction of T ? is tied to that of P?, so that we
can conserve CP?T ?, where C is the charge-conjugation
operator in the light-front formalism. Moreover, our choice
of T ? yields a nonorthochronous operator; the T ? trans-
formation should not be connected by a continuous
Lorentz transformation to the identity. Considering the
commutator �xi; pj � i	ij and L � r� p, we find that
T ? is antiunitary as expected but that it does not flip the
spin. We thus realize the time-reversal transformation at
the operator level via

T ?a
�
pL;pRT

y
? � ~�aa

�
�pR;�pL ; (31)

T ?b
�
pL;pRT

y
? � ~�bb

�
�pR;�pL ; (32)

so that the fermion field operator  �x� transforms as

T ? �x�T
y
? �

Z d~k�d2 ~k?��������������������
2~k��2��3

q ~�a
X
�

fa�~kL;~kR�
12u�~k; ��

� exp��i~k 	 ��x�;�x�; xR; xL��

� by�~kL;~kR
�12v�~k; ��

� exp�i~k 	 ��x�;�x�; xR; xL��g

� ~�a�
12 ��x�;�x�; xR; xL�; (33)

where we note that ~k � �k�; k�;�kR;�kL�, u�k; �� �
�12u�~k; ��, v�k; �� � �12v�~k; ��, and ~��b � �~�a. With
-5
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T ? 
y�x�T y

? � ~��a�
12 y��x�;�x�; xR; xL� (34)

and j~�aj
2 � 1, we thus conclude that

T ?  �x�T
y
? �   ��x�;�x�; xR; xL�; (35)

T ?i �5 �x�T
y
? � �i �5 ��x

�;�x�; xR; xL�; (36)

T ? �
� �x�T y

? � �� �� ��x�;�x�; xR; xL�; (37)

T ? �
��5 �x�T

y
? � �� ���5 ��x

�;�x�; xR; xL�;

(38)

where �� � �1 for � � 1 and �� � �1 for � � 1.
Repeated indices in � are not summed. The transforma-
tions found parallel that of the equal-time case. Moreover,

T ? �
�� �x�T y

? � ��
�� ��� ��x�;�x�; xR; xL�;

(39)

T ? ����5 �x�T
y
?

� ���� ����5 ��x�;�x�; xR; xL�; (40)

where ��� � ���� and, once again, we do not sum re-
peated indices in � and �. These transformations also
parallel those of the equal-time formalism. Since q� and
iq� yield a �� and ��� under T ?, respectively, we thus
see upon applying T ? to Eq. (4) that ReF2 is even and
ReF3 is odd, whereas ImF2 is odd and ImF3 is even.
Applying these transformation properties to the explicit
forms in Eqs. (7) and (8) for F2�q2� and F3�q2�, as such
are shared by the matrix elements of Dirac spinors, we see,
since �! �, qR ! �qR, and qL ! �qL under T ?, and
T ? is antiunitary, that if

hP� q; " jJ��0�jP; #i!
T ?
�hP� ~q; " jJ��0�jP; #i��

� �hP� q; " jJ��0�jP; #i; (41)

hP� q; # jJ��0�jP; "i!
T ?
�hP� ~q; # jJ��0�jP; "i��

� �hP� q; # jJ��0�jP; "i; (42)

with ~q � �q�; q�; ~q?� and ~q? � ��q1; q2�, then Re�F2�
and Im�F3� are even and Re�F3� and Im�F2� are odd under
T ?, precisely as desired. As we shall see, the equalities
emerge naturally if a unit of orbital angular momentum
distinguishes the spin-up and spin-down light-front wave
functions for fixed �i, that is, for fixed bachelor quark
helicity in a spin-1=2 q�qq�0 wave function—if the light-
front wave functions are assumed to be otherwise real.
With this, we see that both Im�F2� and Re�F3� vanish. In
order to realize nonzero T ?-odd observables, we will have
to allow the light-front wave functions to have additional
complex contributions.
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Now let us consider the transformation properties of the
light-front wave functions under T ? in detail. At the level
of the light-front wave functions themselves, we have

 #a�k?i; xi; �i�!
T ? #�a �~k?i; xi; �i�; (43)

 "a�k?i; xi; �i�!
T ? "�a �~k?i; xi; �i�; (44)

with ~k?i � ��k1
i ; k

2
i �. We suppress the introduction of an

overall phase factor as it is without physical impact. Under
the assumptions which lead to Eqs. (41) and (42), Eqs. (43)
and (44) yield

 "�a �k0?i; xi; �i� 
#
a�k?i; xi; �i�!

T ?

�  "�a �k0?i; xi; �i� 
#
a�k?i; xi; �i�; (45)

 #�a �k0?i; xi; �i� 
"
a�k?i; xi; �i�!

T ?

�  #�a �k0?i; xi; �i� 
"
a�k?i; xi; �i�; (46)

for any �i, and are thus consistent with the transformations
of Eqs. (41) and (42). Allowing the light-front wave func-
tions to have additional complex contributions will enable
a nonzero value of F3�q2�, as we shall discuss in Sec. V.

C. Charge conjugation

We realize the light-front, charge-conjugation transfor-
mation at the operator level via

C a�pL;pRC
y � �ab�pL;pR ; (47)

C b�pL;pRC
y � �ba

�
pL;pR ; (48)

precisely as in the equal-time formalism [31]. Indeed, we
conclude in this case, as well, that

C �x�Cy � �i�2 ��x�: (49)

Note that the action of C carries  !  �, though C is a
unitary operator. Nevertheless, with C, T ?, and P? as we
have defined them, all scalar fermion bilinears are invariant
under CP?T ?, as they ought be. We note, e.g., that
 �� ,  ��� , and  ����5 all yield �1 under C, so
that these operators yield �1, �1 , and �1, respectively,
under the combined action of CP?T ?. If we employ the
derivative operator @�, which transforms with a �1 under
CP?T ?, to generate a scalar bilinear from these opera-
tors, we do indeed find that the only nonvanishing operator
transforms with a �1 under CP?T ?.

Let us now turn to the transformation properties of
Eq. (4). We note

C u�k0; �0���u�k; ��Cy � v�k; ����v�k0; �0�; (50)

C u�k0; �0����u�k; ��Cy � v�k; �����v�k0; �0�; (51)
-6
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C u�k0;�0�����5u�k;��Cy�v�k;������5v�k0;�0�: (52)

Since v�k; ����v�k0; �0� � u�k0; �0���u�k; �� and q�

transforms with a �1 under CP?T ?, we see that the
scalar bilinear formed by contracting Eq. (4) with q�

does transform with a �1 under CP?T ?, as needed.
Writing the analogue of Eq. (4) for an antifermion f,
replacing Fi�q2� with ~Fi�q2�, and evaluating the spinor
matrix elements, we find

~F1�q
2� �

�
P� q; "

��������J
��0�

2P�

��������P; "
�
f

�

�
P� q; #

��������J
��0�

2P�

��������P; #
�
f
; (53)

DISCRETE SYMMETRIES ON THE LIGHT FRONT AND . . .
~F2�q2�

2M
�

1

2

�
�

1

qL

�
P� q; "

��������J
��0�

2P�

��������P; #
�
f

�
1

qR

�
P� q; #

��������J
��0�

2P�

��������P; "
�
f

�
; (54)

and

~F3�q
2�

2M
�
i
2

�
�

1

qL

�
P� q; "

��������J
��0�

2P�

��������P; #
�
f

�
1

qR

�
P� q; #

��������J
��0�

2P�

��������P; "
�
f

�
; (55)

where

� � �
e

2M
� ~F1�0� � ~F2�0�; d � �

e
M

~F3�0�; (56)

and the electric charge of f is given by �e ~F1�0�.
Consequently, we infer the transformation properties

hP� q; " jJ��0�jP; "if!
C
hP� q; " jJ��0�jP; "if; (57)
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hP� q; # jJ��0�jP; #if!
C
hP� q; # jJ��0�jP; #if; (58)

and

hP� q; " jJ��0�jP; #if!
C
hP� q; " jJ��0�jP; #if; (59)
hP� q; # jJ��0�jP; "if!
C
hP� q; # jJ��0�jP; "if: (60)

The f and f subscripts signify that the matrix elements are
computed for a composite fermion (f) and antifermion (f),
respectively. At the level of the light-front wave functions
themselves, we thus have

 #f�k?; x; ��!
C
 #
f
�k?; x; ��; (61)
 "f�k?; x; ��!
C
 "
f
�k?; x; ��: (62)

We suppress the introduction of an overall phase factor as it
is without physical impact.

To conclude this section we consider how the products
of the light-front wave functions which yield the electro-
magnetic form factors, noting Eqs. (10)–(12), behave
under CP?T ?. Using the transformations we have dis-
cussed, we have

 "�f �k
0
?; x; �� 

"
f�k?; x; ��!

P? #�f �~k
0
?; x;��� 

#
f�

~k?; x;���

!
T ? #�f �k?; x;��� 

#
f�k

0
?; x;���

!
C
 #�
f
�k?; x;��� 

#

f
�k0?; x;���:

(63)

The last, upon integrating over phase space as per Eq. (13),
with the change of variable k? � k0?, yields ~F1�q2�,
Eq. (53). For F2�q

2� and F3�q
2� we consider
�
1

qL
 "�f �k

0
?; x; �� 

#
f�k?; x; ��!

P? 1

qR
 #�f �~k

0
?; x;��� 

"
f�

~k?; x;���

!
T ?
�

1

qR
 "�f �k?; x;��� 

#
f�k

0
?; x;���

!
C
�

1

qR
 "�
f
�k?; x;��� 

#

f
�k0?; x;���

�
1

qR
 "�
f
�k0?; x;��� 

#

f
�k?; x;��� (64)
and
-7
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1

qR
 #�f �k

0
?; x; �� 

"
f�k?; x; ��!

P?
�

1

qL
 "�f �~k

0
?; x;��� 

#
f�

~k?; x;���

!
T ? 1

qL
 #�f �k?; x;��� 

"
f�k

0
?; x;���

!
C 1

qL
 #�
f
�k?; x;��� 

"

f
�k0?; x;���

� �
1

qL
 #�
f
�k0?; x;��� 

"

f
�k?; x;���; (65)
where the equalities arise from making the change of
variable k? � k0? in the integration over phase space as
per Eq. (13). Starting with Eqs. (7) and (8) we find, under
CP?T ?, these last expressions will give rise to ~F2�q2�
and ~F3�q2�, Eqs. (54) and (55), so that we see explicitly
that F2�q2� and F3�q2�—as well as F1�q2�—yield �1
under CP?T ?, at the level of the light-front wave func-
tions, as consistent with the transformation properties of
the original fermion bilinears. This concludes our discus-
sion of discrete symmetry transformations on the light
front.

V. LIGHT-FRONT WAVE FUNCTIONS FOR
T ?-ODD AND P?-ODD OBSERVABLES

In this section we develop simple light-front wave func-
tions of the nucleon which are compatible with a nonzero
electric dipole moment. To begin, we consider a quark–-
scalar-diquark model of the nucleon, q�qq�0, patterned
after the interaction of a fermion and a neutral scalar in
Yukawa theory [32]. This model has proved useful in the
analysis of single-spin asymmetries in semi-inclusive,
deeply inelastic scattering [33]. In this model, the nucleon
light-front wave function has two particles: a quark and a
scalar diquark, so that the Jz � � 1

2 nucleon wave function
is taken to be of form

j�"q�qq�0
�P��1;P?�0?�i�

Z dxd2k?�����������������
x�1�x�

p
16�3

�

�
 "
�1=2�x;k?�

��������x;k?;�1

2

�

� "
�1=2�x;k?�

��������x;k?;�1

2

��
;

(66)

where we have labeled the free Fock states and associated
light-front wave functions with the relative momentum
coordinates, (x, k?), and spin projection along the
z-axis, �=2, of the bachelor, or unpaired, quark.
Computing the u�k0; �0�u�k; �� matrix element, we have8<

:
 "
�1=2�x;k?� � f�x�’�x; k2

?�;

 "
�1=2�x;k?� � ��k

1 � ik2�g�x�’�x; k2
?�;

(67)

where f�x�, g�x�, and ’�x; k2
?� are real, scalar functions
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yielding a nucleon wave function normalized to unit proba-
bility, namely,

h�"q�qq�0
�P��1;P?�0?�j�

"
q�qq�0
�P��1;P?�0?�i�1:

(68)

Similarly, the Jz � � 1
2 nucleon wave function is given by

j�#q�qq�0
�P��1;P?�0?�i�

Z dxd2k?�����������������
x�1�x�

p
16�3

�

�
 #
�1=2�x;k?�

��������x;k?;�1

2

�

� #
�1=2�x;k?�

��������x;k?;�1

2
i

�
;

(69)

where8<
:
 #
�1=2�x;k?� � �k

1 � ik2�g�x�’�x; k2
?�;

 #
�1=2�x;k?� � f�x�’�x; k2

?�:
(70)

The structure of Eqs. (67) and (70) is common to that of the
electron-photon Fock states of Ref. [15]. The light-front
wave functions of Eqs. (66), (67), (69), and (70) satisfy
Eq. (28), as well as Eqs. (41) and (42), so that in this model
we find F3�q2� � 0 and Im�F2�q2�� � 0.

We can generalize this model, however, so that T ?-odd
or P?-odd observables no longer vanish. Indeed, if we
now include phases, writing8<
:
 "
�1=2�x;k?� � f�x�’�x; k2

?�e
i
1e�i�1 ;

 "
�1=2�x;k?� � ��k

1 � ik2�g�x�’�x; k2
?�e

i
2e�i�2 ;

(71)

8<
:
 #
�1=2�x;k?���k

1� ik2�g�x�’�x;k2
?�e

i
2e�i�2 ;

 #
�1=2�x;k?��f�x�’�x;k

2
?�e

i
1e�i�1 ;
(72)

where 
1, 
2, �1, and �2 are real constants, F3�q2� and
Im�F2�q2�� can both be nonzero. We regard 
1,
2,�1, and
�2 as simple constants and not as functions of k2

? because
we implicitly assume that the scale at which CP is broken,
MCP, in the fundamental theory is much larger than any we
can access experimentally, so that q2 � M2

CP. For an ex-
plicit example of a mechanism realizing this, see Ref. [34].
-8
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In certain exceptional cases, it may be possible to have
effective, k2

?-dependent phases. Suppose, e.g., two distinct
mechanisms of CP violation operate in a single Fock state
a. In that event, assuming �1 and �2 are small, one could
write the nucleon light-front wave function, suppressing all
arguments, as  a �  1a exp�i�1� �  2a exp�i�2� �

� 1a �  2a� � i� 1a�1 �  2a�2� � � 1a �  2a� exp�i ~��,
where ~� � tan�1�� 1a�1 �  2a�2�=� 1a �  2a�. Here
we see explicitly that if  1a and  2a differ in their k2

?

dependence that ~� will be k2
? dependent even if �1 and �2

are not.
Let us consider the impact of the specific phases we have

introduced. First, we observe that if �1 � 0 or �2 � 0
Eq. (28) no longer holds, so that �1 and �2 generate
P?-odd effects. Second, if 
2 � �2 � 
1 � �1 � 0 or

2 � �2 � 
1 � �1 � 0, then the equalities of Eqs. (41)
and (42) will not follow, and we can recover nonzero
T ?-odd effects. We evaluate F2�q

2� and F3�q
2� with these

model wave functions in the next section and determine
that 
1 � 
2 � 0 gives rise to T ?-odd and P?-even
observables, whereas �1 � 0 or �2 � 0 gives rise to
T ?-odd and P?-odd observables. We remark in passing
that 
1 and 
2 can also be introduced to pattern the phases
that appear in final-state interactions and produce the
Sivers effect [33]. Such pseudo-time-reversal-odd effects
are not produced by fundamental sources of CP violation
which are our focus here.

VI. RELATING THE ANOMALOUS MAGNETIC
AND ELECTRIC DIPOLE MOMENTS

In this section we consider the relationship between
F2�q2� and F3�q2� predicated by the relations of Eq. (7)
and (8).

A. Quark–scalar-diquark model

We begin by computing F2�q
2� and F3�q

2� using the
light-front wave functions of the quark–scalar-diquark
model, Eqs. (71) and (72). In the following A is a function
given by

A �
Z dxd2k?

16�3 e’�x; k02?�’�x; k
2
?�f�x�g�x� (73)

and � � �1 � �2, where we recall that ’�x; k2
?�, f�x�, and

g�x� are real. The bachelor quark is given charge e. From
Eq. (11) we have

F2�q
2�

2M
�
e
2

Z dxd2k?
16�3

�
1

�q1� iq2 � 
"��x;k0?;1� 

#�x;k?;1�

� "��x;k0?;�1� #�x;k?;�1�

�
1

q1� iq2 � 
#��x;k0?;1� 

"�x;k?;1�

� #��x;k0?;�1� "�x;k?;�1�
�
: (74)
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Doing the d2k? integral, we note that the terms in k? will
vanish unless k? k q?, so that we have

F2�q
2�

2M
�A cos���1� x� exp�i�
1 � 
2��

� 2i sin�
1 � 
2�: (75)

From (12) we have

F3�q2�

2M
�
ie
2

Z dxd2k?
16�3

�
1

�q1� iq2 � 
"��x;k0?;1� 

#�x;k?;1�

� "��x;k0?;�1� #�x;k?;�1�

�
1

q1� iq2 � 
#��x;k0?;1� 

"�x;k?;1�

� #��x;k0?;�1� "�x;k?;�1�
�
: (76)

In doing the d2k? integral, we once again note that the
terms in k? will vanish unless k? k q?, so that we have

F3�q2�

2M
�A sin���1� x� exp�i�
1 � 
2��

� 2i sin�
1 � 
2�: (77)

Comparing Eqs. (75) and (77), we can elucidate the impact
of the phases we have introduced. For example, if 
1 � 
2

with �1 � �2 � 0, we can have Im�F2�q2�� � 0 but
F3�q

2� � 0. Alternatively, if 
1 � 
2 and �1; �2 � 0,
then Im�F2�q

2�� � 0 but F3�q
2� � 0. Finally, if 
1 � 
2

and �1; �2 � 0, then both Im�F2�q
2�� � 0 and F3�q

2� �

0. It is remarkable that F2�q
2� and F3�q

2� differ only in
their explicit dependence in �. We find, in specific, that

F3�q
2� � �tan��F2�q

2�: (78)

We proceed to examine how this relation emerges gener-
ally and its consequences for constraints on models of CP
violation.

B. General relation

We now consider the relationship between the F2�q
2�

and F3�q
2� form factors on general grounds. We will

realize this by writing the light-front wave function of
the nucleon in Fock component a as8<

: 
"
a�xi;k?i; �i� � "a�xi;k?i; �i�e�i�a=2;

 #a�xi;k?i; �i� � #a�xi;k?i; �i�e�i�a=2;
(79)

where we have explicitly pulled out the P?- and
T ?-violating parameter �a, which we have allowed to
depend on the Fock state a. The remaining function
"a�xi;k?i; �i� explicitly satisfies Eq. (28) and the equal-
ities of Eqs. (41) and (42) in itself. We emphasize that the
parametrization of Eq. (79) is a unique and general way of
introducing CP-violation, as realized from a local,
Lorentz-invariant quantum field theory with a Hermitian
Hamiltonian. It is not specific to the standard model. With
-9
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Eq. (79) we thus find

F2�q2�

2M
�
X
a

cos��a��a; (80)

F3�q
2�

2M
�
X
a

sin��a��a; (81)

where

�a �
Z �dx�d2k?

16�3

X
j

ej
1

�q1 � iq2

��"�a �xi;k0?i; �i�
#
a�xi;k?i; �i�: (82)

Thus for a particular Fock component we can write

�F3�q
2�a � tan�a�F2�q

2�a; (83)

where the notation �Fa denotes the contribution to the
form factor from Fock component a. At q2 � 0, this
becomes

da � 2�a tan�a; (84)

which is the central result of our paper. As �a is P?- and
T ?-violating, we can assume it to be small, to write

�F3�q2�a � �a�F2�q2�a; (85)

or

da � 2�a�a: (86)

We now proceed to consider how such connections can
constrain theoretical predictions of F3�q

2� and hence im-
pact bounds on CP-violating parameters.
VII. CONSEQUENCES FOR MODELS OF CP
VIOLATION

The relation we have written, namely, Eq. (83), must
hold irrespective of the possible sources of CP violation
we consider: it holds both in and beyond the standard
model. Moreover, it is appropriate to any spin-1=2 system,
be it nucleon or lepton. That such a relation exists for
charged leptons has been recognized by Feng, Matchev,
and Shadmi [20] in supersymmetric models; in fact, as we
have shown, the anomalous magnetic moment, g� 2, and
the electric dipole moment of the charged leptons are tied
in any model. We have extended this notion to neutral
leptons, such as the neutrino, and to composite spin-1=2
systems, such as the nucleon, as well.

In the case of the nucleon, the empirical values of the
anomalous magnetic moments are remarkably well known,
and we have seen that the essential hadronic matrix ele-
ments are also common to the calculation of the electric
dipole moment, d. Generally, a diagrammatic calculation
of an observable such as d can be interpreted in terms of the
contributions to d from states in a Fock expansion. We
need only to determine the contributions of the intermedi-
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ate states of the system, associated with all possible light-
cone-time-ordered graphs [23], to which the photon cou-
ples. The contribution of a particular Fock state can thus be
realized from the sum of many Feynman graphs. In prin-
ciple, one could compute the light-front wave functions
 Sza=N�xi;k?i; �i� [21] and evaluate the requisite matrix
elements directly, though the former has not yet been
realized in QCD. Fortunately, in certain models, the deter-
mination of the Fock-state contributions, as well as of their
sum, becomes greatly simplified. For example, if we were
to make a constituent quark model of the light-front wave
functions, such as the q�qq�0 model of Secs. V and VI A ,
we would be able to simplify our relation still further to
write, for small �,

F3�q
2� � �F2�q

2�: (87)

In such a model we can estimate d directly using the
empirical anomalous magnetic moment of the nucleon.
Noting �n � �1:91 and �p � 1:79 (in units of �N), we
thus estimate that

dn ��e�n�2 	 10�14cm�; dp ��e�p�2 	 10�14cm�;

(88)

where 2 	 10�14 cm is the proton mass in cm. The current
empirical bound on dn, jdnj< 6:3 	 10�26 e� cm [7], im-
plies, in our simple picture, that j�nj< 3 	 10�12. If �n �
�p, then we predict dp ��dn and thus that the isoscalar
electric dipole moment is small, namely, jdn � dpj �
jdn � dpj, just as the empirical isoscalar anomalous mag-
netic moment is small, j�n � �pj � 0:12� j�n � �pj �
3:70. For reference, we note the empirical bound on dp,
jdpj< 5:4 	 10�24 e� cm [35]. Although not apparent in
this simple model, it is possible to connect the T ?- and
P?-odd parameter � to fundamental sources of CP viola-
tion in a realistic way; we shall now explore this
possibility.

As an explicit example, we consider strong-interaction
CP violation via a QCD �-term and adopt the chiral
Lagrangian framework of Refs. [36–40] to estimate dn

and dp. In specific, we assume as in Ref. [37] that Fig. 1(b),
realized in terms of the meson and baryon degrees of
freedom operative in chiral effective theories at low ener-
gies, along with its counterpart containing a CP-violating
interaction at the other �NN vertex, drives the value of the
neutron’s electric dipole moment. As is standard in such
assays, we assume the magnitude of the external momen-
tum transfer jqj, quark masses, and meson masses all small
compared to the nucleon mass M. We wish to connect this
language to the Fock-state expansion of the light-front
formalism, realized in terms of the fundamental quark
and gluon degrees of freedom. The chiral Lagrangian
framework allows us to estimate the contribution of the
udduu Fock component of the neutron to its electric dipole
and anomalous magnetic moment. Comparing the
CP-conserving and CP-violating �� N loop graphs of
-10
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FIG. 1. (a) Feynman diagram for an one-loop contribution to
the anomalous magnetic moment of the neutron in heavy-baryon
chiral perturbation theory (HBCHPT). (b) Feynman diagram for
an one-loop contribution to the electric dipole moment of the
neutron from strong-interaction CP violation in HBCHPT, where
� denotes a CP-violating vertex. (c) Feynman diagram for an
one-loop contribution to the electric dipole moment of the
neutron from weak interaction CP violation in HBCHPT, as
per the CKM mechanism of the standard model.
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Fig. 1, we estimate

j�aj � 2
jg�NNj
jg�NNj

log�MN=M�� � 4
�
0:027

13:4

�
j�j; (89)

where g�NN is the CP-violating g�NN coupling constant.
We use the numerical estimate of Ref. [37] for g�NN=g�NN
and include the well-known logarithmic enhancement of
the CP-violating graphs in �, as such is absent in the
CP-conserving analog [41,42]. Employing Eq. (1) and
assuming the udduu Fock component dominates both the
anomalous magnetic and electric dipole moment, we find

dn � �e�2 	 10�16cm�; (90)

which is roughly a factor of 2 smaller than the estimate of
Crewther et al. [37] but just that computed by Ref. [43]
employing the QCD sum rule approach. The value of dn

can also be computed within the framework of lattice QCD
[44– 47]. Both estimates are compatible with a recent
computation of dn employing dynamical light quarks
[47]. It is worth noting that the assumptions underlying
the two estimates are slightly different. Our estimate also
follows if the fractional contributions of the �� N loop
graph to the electric dipole moment and to the anomalous
magnetic moment are the same; they need not be numeri-
cally dominant. Indeed, detailed analyses of the magnetic
moments show that the �� N loop graphs are not numeri-
cally dominant [42,48]. In comparison, the dn estimate of
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Crewther et al. follows from computing the ‘‘long-
distance’’ �� N loop graph and assuming it numerically
dominant. In the chiral, M� ! 0, limit, this is seemly, as
the dn estimate contains an explicit factor of log�M=M��.
The numerical dominance of this contribution is less clear
for physical values of the � mass, though our own esti-
mate, stemming from a different assumption, is compatible
with that of Crewther et al. With our assumptions we also
conclude that dp ��dn, so that we predict that the electric
dipole moment of the nucleon is predominately isovector.
Indeed, the isospin structure of the �� N loop diagrams
precludes any isoscalar contribution; we assume these
contributions drive that of the udduu Fock state. Turning
to the q2 dependence of the electric dipole and anomalous
magnetic form factors, the structure of our Eq. (83) shows
that the q2 dependence ofF3�q

2� ought track that ofF2�q
2�,

Fock state by Fock state, as we have argued on general
grounds that � should be independent of q2. Moreover, if
we model the contribution of the dduuu Fock state through
the�� N loop graph as per Fig. 1, as we have discussed in
the q2 � 0 limit, we observe, under our stated assump-
tions, that the isospin structure of F3�q2� is also isovector.
This, too, follows from the isospin structure of the �� N
loop graphs. Our analysis is at odds with one conclusion of
Ref. [40], as its authors find the q2 dependence of F3�q

2�
unlike that of the other electromagnetic form factors
[49,50]. As in the q2 � 0 limit, our prediction does not
require the�� N loop graphs to dominate the F3�q2� form
factor.

We can also estimate � through CP violation in the
weak interaction, as mediated through the CKM matrix.
The value of dn through this mechanism of CP violation is
much smaller, as it first appears in O�G2

F
s� [51,52]. Here,
following Ref. [53], we anticipate that the dominant con-
tribution to the electric dipole moment of the nucleon is
mediated by a hadronic loop graph with a �� intermediate
state, as illustrated in Fig. 1(c) for the neutron. Note that
two diagrams contribute, each with a single CP-violating
N�� vertex. Since the ddusu Fock state makes a negli-
gibly small contribution to the neutron’s magnetic mo-
ment, we proceed to estimate dn by summing Eq. (83)
over all Fock states for q2 � 0 and assuming that diagrams
akin to Fig. 1(c) do drive its numerical value. Using
Eq. (88) and writing

� � 2G2
F
s�1 GeV�JCPM

3
�; (91)

noting the Jarlskog invariant [54], JCP � 3 	 10�5, and

s�1 GeV� � 0:3, we find

dn � e3:6 	 10�32 cm; (92)

which is rather comparable to the estimate of Ref. [53],
namely,

dn � e2 	 10�32 cm; (93)

which follows from a direct estimate of the chirally en-
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hanced terms. This procedure also implies that dp ��dn,
yielding an isovector electric dipole moment. The electric
dipole moments have also been computed in chiral pertur-
bation theory in the context of the factorization hypothesis,
yielding [55]

dn � 
5:3� 10�32 e� cm;

dp � �3:6� 10�32 e� cm;
(94)

where the manifest sign of dn and dp is not determined.
These authors also discuss the connection to the anomalous
magnetic moments in the context of their approximations.
Note, too, that the dominantly isovector nature of the
electric dipole moments is manifest in their results.

VIII. CONCLUSIONS

We have derived exact formulas for the electromagnetic
form factors, F1�q

2�, F2�q
2�, and F3�q

2� of the nucleon,
and indeed for all spin-1=2 systems, in the light-front
formulation of quantum field theory, thus extending the
treatment of Ref. [15] to the analysis of the time-reversal-
and parity-odd observable F3�q2�. To realize this we have
developed the light-front representation of discrete sym-
metry transformations, T ?, P?, and C and have shown
how T ?-odd and P?-odd effects can be represented by
the phases of light-front wave functions. The explicit ex-
pressions which we have developed for F2�q2� and F3�q2�
have the desired transformation properties under T ?, P?,
and C. As a result, we find a universal relation between
F3�q2� and F2�q2�, Eq. (83), Fock state by Fock state,
which follows independently of the mechanism of CP
violation at the Lagrangian level.

We have employed our relation to estimate the electric
dipole moments of the nucleon through both strong and
weak interaction CP violation in the standard model and
find results comparable to existing estimates. We find that
the relation dn ��dp emerges on rather general grounds,
echoing the isospin structure of the empirical anomalous
magnetic moments, �n ���p.
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APPENDIX: CONVENTIONS

We employ the Dirac representation for ��:

�0 �
I 0
0 �I

� �
; �i �

0 �i

��i 0

� �
;

�5 �
0 I
I 0

� �
;

(95)

where �i are Pauli matrices, I is the 2� 2 unit matrix,
��� � i

2 ��
�; ��, �5 � i�0�1�2�3, and �
 � �0 
 �3.

For the light-cone spinors u�p; �� and v�p; ��, we use [23]

u�p;�1� �
1���������

2p�
p

p� �m
pR

p� �m
pR

0
BBB@

1
CCCA;

u�p;�1� �
1���������

2p�
p

�pL

p� �m
pL

�p� �m

0
BBB@

1
CCCA

(96)

and

v�p;�1� �
1���������

2p�
p

�pL

p� �m
pL

�p� �m

0
BBB@

1
CCCA;

v�p;�1� �
1���������

2p�
p

p� �m
pR

p� �m
pR

0
BBB@

1
CCCA;

(97)

where we define pR � p1 � ip2, pL � p1 � ip2, and
p
 � p0 
 p3. Moreover, we employ the notation k� �
�k�; k�; kL; kR� so that k 	 x � �1=2��k�x� � k�x� �
kLxR � kRxL� � �1=2��k�x� � k�x�� � k? 	 x?.
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