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Possible 3rd order phase transition at T � 0 in 4D gluodynamics
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We revisit the question of the convergence of lattice perturbation theory for a pure SU�3� lattice gauge
theory in four dimensions. Using a series for the average plaquette up to order 10 in the weak coupling
parameter ��1, we show that the analysis of the extrapolated ratio and the extrapolated slope suggests the
possibility of a nonanalytical power behavior of the form �1=�� 1=5:7�1��1:0�1�, in agreement with
another analysis based on the same assumption. This would imply that the third derivative of the free
energy density diverges near � � 5:7. We show that the peak in the third derivative of the free energy
present on 44 lattices disappears if the size of the lattice is increased isotropically up to a 104 lattice. On
the other hand, on 4� L3 lattices, a jump in the third derivative persists when L increases, and follows
closely the known values of �c for the first order finite temperature transition. We show that the apparent
contradiction at zero temperature can be resolved by moving the singularity in the complex 1=� plane. If
the imaginary part of the location of the singularity � is within the range 0:001< �< 0:01, it is possible
to limit the second derivative of P within an acceptable range without affecting drastically the behavior of
the perturbative coefficients. We discuss the possibility of checking the existence of these complex
singularities by using the strong coupling expansion or calculating the zeroes of the partition function.
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I. INTRODUCTION

It is widely accepted that the continuum limit of asymp-
totically free lattice gauge theories at zero temperature is
obtained in the limit of arbitrarily small coupling. In prac-
tice, however, the relevant information about the contin-
uum is obtained from a crossover region where both weak
and strong coupling expansions break down, but where one
can observe the onset of asymptotic scaling. In this region,
observables such as the average of the elementary pla-
quette are sensitive to the contributions of large field
configurations. Such contributions can be modified by add-
ing an adjoint term [1–4] or a monopole chemical potential
[5,6], or by removing configurations with an action larger
than some given value [7]. These studies illustrate the fact
that nonuniversal features or lattice artifacts seem generi-
cally present in the crossover region.

On the other hand, one may hope that the universal
features of the continuum limit may be obtained directly
from a weak coupling expansion. However, convergence
issues need to be considered. The discontinuity in the
plaquette average [8] in the limits g2 ! 0� precludes the
existence of a regular perturbative series, and the decom-
pactification of the gauge variables in lattice perturbation
[9] should lead to an asymptotic series [10]. Despite these
considerations, an analysis of the first ten coefficients for
the average plaquette P for the standard Wilson action in
the fundamental representation [9,11–13] suggests [14] a
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finite radius of convergence and a nonanalytic behavior of
the form

P ’ A0�1=�c � 1=��1��: (1)

In the present context, � ’ 0. If �> 0, the first derivative
of P diverges at �c and we say that the transition is second
order since P is obtained by taking the derivative of the free
energy with respect to �. If �1<�< 0, the first deriva-
tive is bounded but the second derivative of P diverges and
we call the transition third order. This type of singularity is
not expected for the model considered here (no adjoint
term in the action). The divergence at �c requires long
range correlations and consequently a massless state. No
such state has been observed in glueball spectrum studies
[15–17]. Consequently, a natural strategy would be to try
to falsify Eq. (1).

In this article, we test the validity of Eq. (1) by directly
calculating the first and second derivative of P near the
hypothetical �c. We consider the minimal, unimproved,
lattice gauge model originally proposed by K. G. Wilson
[18]. With standard notations, the lattice functional integral
or partition function is

Z �
Y
l

Z
dUle

��
P
p

�1��1=N�Re Tr�Up��

(2)

with � � 2N=g2. Our study focuses on P and its deriva-
tives which are defined more precisely in Sec. IV. All
numerical calculations are done with the fundamental rep-
resentation of SU�3�.
-1 © 2006 The American Physical Society
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FIG. 1. rm versus m for the three data sets given in the text.
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In Sec. II, we discuss various ways to estimate the
unknown parameters in Eq. (1) using the perturbative
series. All the methods give results which are reasonably
consistent and show the robustness of the analysis of
Ref. [14]. In all cases, � is very close to 0. If we use the
scaling relation � � 2�D�withD � 4, � � 0 goes with
the mean field result � � 1=2. Note that � � 0 is border-
line between second and third order transitions. In the
mean field theory of spin models, the specific heat has a
discontinuity. It is common to associate a discontinuity or a
logarithmic divergence of the specific heat with a second
order phase transition. At the other end, a discontinuity in
the derivative of the specific heat is often called a third
order phase transition. It has been observed in the context
of the large-N limit of gauge theories in two dimensions
[19], random surface models [20], and spin glasses [21]. In
3D O�N� models, � ’ 0:11 for N � 1 (second order) and
�0:12 for N � 3 (third order). In Sec. III, we discuss the
possibility of having an asymptotic series behaving tem-
porarily as a series with a finite radius of convergence and
we discuss the effect of the tadpole improvement [22]. In
Sec. IV, we calculate the first two derivatives of P on L4

lattices, and also on 4L3 lattices together with the average
of the Polyakov loop. In Sec. V, we show that the absence
of the peak increasing with the volume for the second
derivative of P can be accommodated by moving the
singularity in the complex 1=� plane. If the imaginary
part of the location of the singularity is kept reasonably
small but not too small, it is possible to limit the second
derivative of P within an acceptable range without affect-
ing drastically the behavior of the perturbative coefficients.
In Sec. VI, we discuss the possibility of checking the
existence of these complex singularities by using the strong
coupling expansion [23–25] or calculating the zeroes of
the partition function [26–28].
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FIG. 2. R̂m versus m for the three data sets described in the
text.
II. SERIES ANALYSIS

In this section we analyze the weak coupling series

P��� �
X10

m�1

bm�
�m: (3)

We define rm � bm=bm�1, the ratio of two successive
coefficients. The rm are displayed in Fig. 1. In this figure
and the following, we compare three data sets. The first set
[12] is the 1995, order 8 series (empty circles) and the two
other sets are the more recent[13] order 10 series calculated
on 84 (stars) and 244 (filled circles) lattices. It is difficult to
distinguish the ratios corresponding to the three data sets in
Fig. 1. The first three coefficients are in good agreement
with analytical results [9,11]. The apparent convergence of
the ratios suggests [14] that we consider a leading non-
analytical behavior of the form given in Eq. (1). This will
be our working hypothesis for the rest of the section.
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One can estimate the unknown parameters [29] with a fit
rm � �c�1� ��� 2�=m�. For instance, the range 3 to 10
for the ratios gives �c ’ 5:66 and � ’ 0:24, while the
range 4 to 10 gives �c ’ 5:69 and � ’ 0:18. The 1=m2

corrections were reduced with a modified form rm �
�c�1� ��� 2�=�m� s�� in Ref. [14] with a value s �
0:44. Using the range 4 to 10 again, one obtains �c ’ 5:78
and � ’ �0:01. The estimates quoted in Ref. [14] are �c ’
6� 0:961 ’ 5:77 and � ’ 0:01.

Another way to reduce the uncertainties of order 1=m in
the estimation of �c is to use [30] the extrapolated ratio
(R̂m) defined as

R̂ m � mrm � �m� 1�rm�1: (4)

The values of R̂m are shown in Fig. 2. As the calculation
involves differences of successive ratios multiplied by the
order, the result is sensitive to statistical errors. Figure 2
illustrates the fact that the 2000 series has much smaller
statistical errors than the 1995 series. Figure 2 also indi-
cates that as the volume increases from 84 to 244, R̂m
increases by approximately 0.03 which is slightly larger
than the changes in R̂m with m 	 8. Our best estimate of
�c is R̂10 � 5:74 for the 244 lattice. Given the other
-2
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FIG. 3. Sm versusm for the three data sets described in the text.
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estimates and the size of the volume effects, it is reasonable
to conclude that �c � 5:7�1�.

The corrections of order �1=m�2 in rm introduce an
uncertainty of order 1=m in the estimation of �. It is
possible to eliminate this effect by using [30] the extrapo-
lated slope (Ŝm). For this purpose, we first introduce the
normalized slope Sm defined as

Sm � �m�m� 1��rm � rm�1�=�mrm � �m� 1�rm�1�:

(5)

The values of Sm are shown in Fig. 3, again showing a
much better stability for the 2000 series. The volume
effects are smaller than for R̂m. They are typically of order
0.01 or smaller. It is known [30] that Sm ’ �� 2� K=m.
Using a fit of this form, we obtain � � �0:03 for the m �
4 to 10 values. One can then remove the 1=m corrections
by using [30] the extrapolated slope Ŝm defined as

Ŝ m � mSm � �m� 1�Sm�1: (6)

It provides an estimator with corrections of the form

Ŝ m � �� 2� Bm�� �O�m�2�; (7)

where � is an exponent corresponding to possible non-
analytical corrections to the leading term Eq. (1). In three
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FIG. 4. Ŝm versusm for the three data sets described in the text.

036006
dimensional scalar models � is related to irrelevant direc-
tions. The values of Ŝm are shown in Fig. 4. Again, the
fluctuations are larger than for the unextrapolated quantity
and the 2000 data is much more stable. For the 2000 data
on a 244 lattice, we have Ŝ9 � �1:91, Ŝ10 ’ �2:08. Based
on other estimates, we conclude that j�j< 0:1.

In summary, the analysis of ratios suggests that P has a
nonanalytic, powerlike singularity

Pn:�a: / �1=5:7�1� � 1=��1:0�1�: (8)
III. REMARKS

It is not difficult to find an asymptotic series (which has a
zero radius of convergence) for which the beginning co-
efficients suggest a power singularity. A simple example is

Q��� �
Z 1

0
dte�ttB
1� t�c=�B���

1��: (9)

The ratios of coefficients of ��1 can be calculated exactly:

rm � ��B�m�=B��c�1� ��� 2�=m�:

For B sufficiently large and m� B, we have

rm ’ �c�1� ��� 2�=m�;

which corresponds approximately to the situation observed
for the series discussed above. On the other hand, for m
B we have rm / m which shows that for sufficiently large
m, the coefficients grow factorially.

It is also well known that the convergence of the pertur-
bative series can be improved by using the tadpole im-
provement [22]. One defines a new series

P ’
XK
m�0

bm�
�m �

XK
m�0

em�
�m
R �O���K�1

R � (10)

with a new expansion parameter

��1
R � ��1 1

1�
P
m�0

bm��m
: (11)
TABLE I. bm: regular coefficients; em: tadpole improved co-
efficients.

m bm em

1 2 2
2 1.2208 �2:779
3 2.9621 3.637
4 9.417 �3:961
5 34.39 4.766
6 136.8 �3:881
7 577.4 6.822
8 2545 �1:771
9 11 590 17.50
10 54 160 48.08
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FIG. 6. First and second derivative of P versus �.
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FIG. 5. First derivative of P versus �.
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The new coefficients are shown in Table I. If we exclude
the last coefficient which may not be very reliable, we find
that the series is alternate and has much smaller coeffi-
cients. The first six ratios are of order�1, which suggests a
singularity at negative �R. A discontinuity in P at � ’
�22 was observed in [8], however we have no interpreta-
tion for �R < 0.

IV. DIRECT SEARCH FOR A SINGULARITY

If we take Eq. (8) at face value, it implies that the third
derivative of the free energy density should have a singu-
larity with an exponent close to �1. More precisely, we
would expect

@2P=@�2 / �1=5:7�1� � 1=���1:0�1�: (12)

For symmetric finite lattices with LD sites and periodic
boundary conditions, the number of plaquettes is

N p � LDD�D� 1�=2: (13)

Using the free energy density

f � ��1=N p� lnZ; (14)

we define the average plaquette

P � @f=@� � �1=N p�h�i (15)

with

� �
X
p

�1� �1=N�Re Tr�Up��: (16)

We also define the higher moments

�@P=@� � �1=N p�
h�
2i � h�i2� (17)

and

@2P=@�2 � �1=N p�
h�
3i � 3h�ih�2i � h�i3�: (18)

It should be noted that there is some loss of precision in
the calculation of the higher moments. For instance, in
�@P@�, the two terms are of order N p but their differ-
ence is of order 1. For @2P=@�2, the three terms are of
order N 2

p while their combination is of order 1. For a
symmetric lattice with 104 sites, for instance, the second
derivative of the plaquette will appear in the ninth signifi-
cant digit and the use of double precision is crucial.

We have calculated the plaquette and its first two de-
rivatives on L4 lattices, with L � 4, 6, 8, and 10. The first
derivative is shown in Fig. 5. When going from L � 4 to
L � 6, the peak moves right and its height diminishes. This
situation is very close to Fig. 1 of Ref. [31] in the case of
SU�2�. When increasing L to 8, the value around 5.7
slightly drops and then stabilizes for L � 10.

The second derivative of the plaquette is shown in Fig. 6.
Four-hundred thousand reasonably uncorrelated configura-
tions were necessary in order to get a signal significantly
larger than the statistical fluctuations for the four points on
036006
a 104 lattice in Fig. 6. For �> 5:7, the second derivative
seems to be of the same order or smaller than the fluctua-
tions for the same volume. For comparison, we have also
reproduced the first derivative over the same range and
with the same scale. In general, we found a reasonable
agreement between the values obtained by subtracted aver-
ages or by taking the numerical derivative as found in [31].
The figure makes clear that the peak seems to disappear to
a level close to our statistical fluctuations when the volume
increases.

We have also calculated the same quantities on 4L3

lattices with L � 4, 6, and 8. The results are shown in
-4



POSSIBLE 3RD ORDER PHASE TRANSITION AT T � 0 . . . PHYSICAL REVIEW D 73, 036006 (2006)
Figs. 7–9. The sudden jump in the second derivative of P
persists when L increases. The location of the jump co-
incides with the onset of the average of the Polyakov loop.
The critical values of � corresponding to a first order finite
temperature transition are well known for 4L3 lattices
[27,32,33]. For L sufficiently large, it occurs very close
to � � 5:69. The locations of the jumps seen in the second
derivative in Figs. 7–9 follow very closely the quantity �0

x,
the real part of the leading zero of the partition function, of
Table 9 of Ref. [27] (5.552 for L � 4, 5.650 for L � 6, and
5.674 for L � 8).
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FIG. 7. The Polyakov loop, P, and the first and second deriva-
tives of P versus � for a 44 lattice.

036006
The fact that, for a 4L3 lattice, �c ’ 5:69 is very close to
�c ’ 5:74 obtained with the extrapolated ratio from the
perturbative series seems to be a coincidence. Had we
taken Nt to be 12, we would have obtained [33] �c ’
6:33. Note that on L4 lattices, the onset of the Polyakov
loop occurs at larger values of �. For instance, on a 84

lattice, it is 0.1 near � � 6:6. However, we found nothing
but a smooth decrease for the first derivative of P in this
range.
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FIG. 8. The Polyakov loop, P, and the first and second deriva-
tives of P versus � for a 4� 63 lattice.
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FIG. 9. The Polyakov loop, P, and the first and second deriva-
tives of P versus � for a 4� 83 lattice.
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V. RESOLUTION OF THE PARADOX

It is possible to regularize the singularity that, according
to Eq. (1), would appear in @2P=@�2 by replacing the
singularity at 1=�c by a pair of complex conjugated sin-
gularities in the 1=� complex plane. If we denote the
imaginary part of the location of the singularity by �,
then some apparently difficult compromise needs to be
achieved. On one hand, if � is too large, it produces
periodic modulations of the ratios. Figure 1 gives no hint
036006
of such an effect. On the other hand, if � is too small, it
does not fulfill its purpose. The question thus is if we can
find a window of acceptable values for �.

A simple alternative to Eq. (1) can be designed by
assuming that the critical point in the fundamental-adjoint
plane has mean field exponents [2] and, in particular, � �
0. We will further assume an approximate logarithmic
behavior,

�@P=@� / ln��1=�m � 1=��2 � �2�; (19)

on the axis where the adjoint term of the action is zero (the
range of parameters considered here). 1=�m denotes the
value where the argument of the logarithm is maximal on
this axis. This implies the approximate form

@2P=@�2 ’ �C
�1=�m � 1=��

�3��1=�m � 1=��2 � �2�
: (20)

The �3 at the denominator ensures that the series starts at
��3. The three unknown parameters can be approximately
fixed by minimizing some linear combination (with posi-
tive ‘‘weights’’) of the square of the differences between
the coefficients of the series Eq. (20) and the actual ones.
We expect the coefficients of larger order to carry more
information about the nonanalytic behavior; consequently,
more weight should be given to the large order coefficients.
For instance, if we minimize a �2 which is the sum of
the square of the relative errors for the last four coeffi-
cients, we obtain �m ’ 5:78, � ’ 0:0058, and C ’ 0:15.
Integrating twice, we obtain the approximate series with
coefficients which can be compared with the bm given in
Table I:

P ’ 0:44��1 � 0:85��2 � 2:44��3 � 8:42��4

� 32:27��5 � 132:3��6 � 568:9��7 � 2533��8

� 11590��9 � 54160��10: (21)

The agreement increases with the order. The relative error
on the fifth coefficient is about 6% and keeps decreasing to
a level smaller than the numerical errors as the order
increases. We have tried with many other weights involv-
ing the last six coefficients and found very little variations
in the estimation of C (typically j�Cj � 0:01) and �m
(typically j��mj � 0:02). On the other hand, � varies
more rapidly under changes of the weights in the �2

function. We found values of � between 0.003 and 0.007.
The stability of C and �m can be used to set a lower

bound on �, given that the approximate form of @2P=@�2

in Eq. (20) has extrema at1=� � 1=�m � i�. As we do not
observe values larger than 0.3 near � � 5:75 (see Fig. 6)
we get the approximate bound

C

2�3
m�

< 0:3: (22)

This implies the lower bound � > 0:001. On the other
hand, large values of � are also excluded. As we never
-6
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found an estimate close to 0.01, we conclude that

0:001< � < 0:01: (23)

We also performed calculations with an assumption
similar to Eq. (20) but with ��1=�m � 1=��2 � �2�1���=2�

at the denominator, for small positive and negative values
of �. We found very similar ranges of values for the
unknown parameters and we were able to draw very similar
conclusions as for � � 0.

A puzzling aspect of Fig. 6 is that the maxima of the first
and second derivatives are not located near 5.78, but near
lower values (5.55 and 5.63, respectively). Using the pa-
rameters obtained with the procedure described above, we
found that a typical value for the maximum of the second
derivative of P is 0.1 or below. This is clearly below our
numerical resolution and below the maximum value 0.6 in
Fig. 6. This can be explained from the fact that the pertur-
bative series becomes a poor estimate of P when � be-
comes too small. Using the parametrization of this
difference (the ‘‘nonperturbative part of the plaquette’’)
of Ref. [14] and taking two derivatives, we estimate that
the nonperturbative contribution to @2P=@�2 can be ap-
proximately written as 2:84� 1011 � exp�� 16�2�

33 � for
5:6<�< 5:8. This function takes the values 0.25 at � �
5:8 and dominates the perturbative part. It also takes the
value 0.65 at � � 5:6 which is consistent with our numeri-
cal calculation. As the parametric form of the nonpertur-
bative contribution is still being debated, this is not the last
word on the question; however, it seems clear that the
nonperturbative part plays a major role in explaining Fig. 6.
VI. CONSISTENCY CHECKS

It would be interesting to check if the complex singu-
larities suggested by the present analysis could be seen
using independent methods. In this section, we discuss the
possibility of using the strong coupling expansion and the
zeroes of the partition function for this purpose. The strong
coupling expansion of the free energy has been calculated
up to order 16 in Ref. [23] for SU�2� and SU�3�. With a
suitable rescaling of�, these series can be used to calculate
P and its derivatives in powers of � [with the normaliza-
tion of Eq. (2)]. In the case of SU�2�, the complex singu-
larities of the specific heat were discussed in various sets of
complex variables that have a simple interpretation for
small values of � [24,25] and compared with zeroes of
the partition function on a 44 lattice [26]. These zeroes
were calculated using a reweighting of Monte Carlo data at
real �.

In order to provide a comparison, we will start with the
case of SU�2� which is better understood. We constructed
the expansion in powers of � of P using Ref. [23]. This
series is 1 plus an odd series in �. This can be seen as a
consequence of the identity P��� � P���� � 2 derived in
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Ref. [8]. The sign of the nonzero coefficients alternates.
The ratio of successive odd coefficients seems to converge
toward a value close to�0:4. This indicates a singularity at
�2 ’ �2:5 or, in other words, a pair of purely imaginary
singularities at � ’ �i1:6. We found 36 Padé approxim-
ants of P with their singularity closest to the origin located
nearby (within 0.1 in both coordinates) this estimate. More
sophisticated estimators such as the ones of Sec. II do not
improve the accuracy of the estimation. In [24], the single
loop variable J was used instead of �. Using a ratio
analysis of the series in J, these authors concluded that
there is a singularity near J2 ’ �1=6. This corresponds to
� ’ �i1:5, in good agreement with the estimate we gave
above.

We have inspected the poles of the Padé approximants
for P and its first two derivatives in a horizontal strip
defined by the conditions Re�> 1:5 and jIm�j< 1. We
found single poles on the real axis and pairs of conjugated
poles rather far from the real axis. To fix the ideas, for the
second derivative of P, the pair closest to the real axis in
this strip is 1:79� i0:43 for a [3/9] approximant. Also, the
poles on the real axis tend to cluster. For instance, for the
first derivative of P there are 24 approximants with a pole
between 2.1 and 2.5, and for the second derivative, 13
approximants with a pole between 1.7 and 1.8.

In Ref. [24], an attempt was made to find evidence for
complex singularities in a new variable z � 6J2=�6J2 �
1�. It was concluded that the existing series was too short to
see a clear departure from a singularity on the real axis
(near � � 2:2). On the other hand, complex zeroes of the
partition function were found [26] on a 44 lattice near � �
2:2��i0:15. It is plausible that the imaginary part in-
creases with the volume and possibly reaches the estimate
� ’ 2:2��i0:3 based on a more sophisticated treatment
of the high-temperature expansion [25]. We are not aware
of any numerical check of this statement on larger lattices.
However, the fact that the two independent estimates are
close and that one expects the specific heat peak to broaden
with the volume makes the existence of a singularity at
� � 2:2�1� � i0:2�1� quite plausible. Consequently, it
seems that the Padé approximants often provide a good
estimation for the location of the singularities close to the
origin but not for the expected singularities close to the real
axis that are farther from the origin.

For SU�3�, we analyzed the � expansion of P following
a similar procedure. With the exception of the third coef-
ficient, the coefficients are nonzero. The signs do not show
any obvious periodic pattern. If we plot the logarithm of
the absolute value of the coefficients, we see that they
approximately fall on a line; however, there are exceptions.
We already mentioned the vanishing third coefficient; in
addition, the 11th (15th) coefficient falls significantly be-
low (above) the linear fit. The slope of the linear fit is
�1:49 if the coefficients 4 to 15 are used. This indicates a
radius of convergence of approximately 4.5. Because of the
-7
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significant discrepancies from the linear behavior, the ratio
analysis does not reveal any obvious information.

The poles of the Padé approximants are quite irregular.
However, many approximants have a pair of complex
conjugated poles near 5e�i�=3. We have found 12 Padé
approximants of P for which the poles closest to the origin
were located close to these two points (within 0.3 in each
coordinate). An inspection of the poles of the Padé approx-
imants for P and its first two derivatives in a horizontal
strip defined by the conditions Re�> 4 and jIm�j< 2
shows single poles on the real axis and pairs of conjugated
poles far from the real axis. For instance, for the second
derivative of P, the pair closest to the real axis in this strip
is 4:74� i1:72 for a [5/5] approximant. Considering that in
the case of SU�2� we were unable to find the expected
singularity near � ’ 2:2��i0:2, it seems plausible that a
similar phenomenon occurs for SU�3�. It would be inter-
esting to repeat the above analysis using changes of vari-
ables as in the SU�2� case.

In Sec. IV, we have already mentioned the fact that the
leading zeroes of the partition function for SU�3� on a 4L3

lattice had been calculated [27]. On a 44 lattice, they are
located near � � 5:55� i0:12. On larger symmetric L4

lattices, we expect that the imaginary part will increase
with L. We are not aware of numerical calculations for L>
4. With the parametrization of Sec. V, we predict complex
singularities at � � �m � i�2

m�. For �m � 5:75 and
0:001< �< 0:01, we predict an imaginary part between
0.03 and 0.3. It seems feasible to check this prediction for
84 or larger lattices, using the method documented in
Ref. [27].

It should also be noted that new methods have been
developed to determine the order of a phase transition
using the distribution of zeroes of the partition function
and their impact angle in the reduced variables complex
plane [28]. It would be quite interesting to apply these
methods to interpret the variations of zero distribution
when an adjoint term is added to the action.
036006
VII. CONCLUSIONS

We have shown that the apparent conflict between a
hypothetical singularity in the second derivative of P sug-
gested by the perturbative series and the absence of evi-
dence for a peak with height increasing with the volume on
isotropic lattices can be resolved by moving the singularity
in the complex 1=� plane. If the imaginary part of the
location of the singularity � is within the range 0:001<
�< 0:01, it is possible to limit the second derivative of P
within an acceptable range without affecting drastically the
behavior of the perturbative coefficients. This picture
seems consistent with a small value of � but our numerical
analysis does not single out the mean field value � � 0.

It would be interesting to calculate the zeroes of the
partition function for SU�3� on 84 or larger symmetric
lattices using the reweighting [26,27] method. We expect
that, as the volume increases, the locations of the leading
zeroes should stabilize at values 5:7�1� � i0:2�1�. Changes
of variables analog to those used in SU�2� [24,25] should
be used in order to see if there is agreement with the other
methods. It would also be interesting to follow the distri-
bution of zeroes and their impact angle when an adjoint
term is added using the results of Ref. [28].
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