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We study the chiral symmetry restoration using the generalized hidden local symmetry which
incorporates the rtho and A; mesons as the gauge bosons of the generalized hidden local symmetry and
the pion as the Nambu-Goldstone boson consistently with the chiral symmetry of QCD. We show that a set
of parameter relations, which ensures the first and second Weinberg sum rules, is invariant under the
renormalization group evolution. Then, we found that the Weinberg sum rules together with the matching
of the vector and axial-vector current correlators inevitably lead to the dropping masses of both rho and A
mesons at the symmetry restoration point, and that the mass ratio as well as the mixing angle between the
pion and A; meson flows into one of three fixed points.
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I. INTRODUCTION

Changes of the hadron masses are indications of the
chiral symmetry restoration occurring in hot and/or dense
QCD [1]. Dropping masses of hadrons following the
Brown-Rho (BR) scaling [2] can be one of the most
prominent candidates of the strong signal of the melting
of the quark condensate (Gg) which is the order parameter
of the spontaneous chiral symmetry breaking. In particular,
the dropping of the p meson mass according to the BR
scaling satisfactorily explained [3] the enhancement of
dielectron mass spectra below the p/w resonance observed
at CERN SPS [4].

The vector manifestation (VM) [5] is the Wigner real-
ization in which the p meson becomes massless degenerate
with the pion at the chiral phase transition point. The VM is
formulated in the effective field theory (EFT) based on the
hidden local symmetry (HLS) [6,7]. In the HLS theory we
can perform the systematic chiral perturbation with the
dynamical p meson included [8—11]. Furthermore, the
matching to QCD a la Wilson combined with the renor-
malization group equations (RGEs) gives several physical
predictions in remarkable agreement with experiments
[9,12].

The formulation of the VM was done also in hot matter
[13] and in dense matter [14], and a compelling evidence of
dropping mass recently comes from the mass shift of the w
meson in nuclei measured by the KEK-PS E325
Experiment [15] and the CBELSA/TAPS Collaboration
[16] and also from that of the p meson observed in the
STAR experiment [17]. Since the VM formulated in the
HLS theory provides a theoretical description of the drop-
ping p mass, which is protected by the existence of the
fixed point (VM fixed point), we can study several other
phenomena associated with the dropping p by expanding
the HLS theory around the VM fixed point: Large violation
of the vector dominance of the pion electromagnetic form
factor should occur near the VM fixed point [18], which
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plays an important role [19] to explain the recent experi-
mental data provided by NA60 [20]; The pion velocity near
the restoration point is predicted as v,(T,.) = 0.83-0.99
[21], which seems to be consistent with values extracted
[22] from the recent data from the STAR collaboration at
RHIC [23].

In the VM, it was assumed that the axial-vector and
scalar mesons are decoupled from the theory near the phase
transition point. However, the masses of these mesons may
decrease following the BR scaling. Actually, recently in
Ref. [24], it was proposed to extend the VM to include
axial-vector mesons for explaining the anomalous p°/7~
ratio measured in peripheral collisions by STAR [25].
There were several analyses with models including axial-
vector mesons such as in Ref. [26]. These analyses are not
based on the fixed point structure and found no significant
reduction of the masses of axial-vector meson. Then, it is
desirable to construct an EFT which includes the axial-
vector meson as a dynamical degree of freedom, and study
whether a fixed point structure exists and it can realize the
light axial-vector meson.

There are several models that include the axial-vector
meson in addition to the pion and vector meson consis-
tently with the chiral symmetry of QCD such as the
“Massive Yang-Mills” field method [27], the antisymmet-
ric tensor field method [28], and the model based on the
generalized hidden local symmetry (GHLS) [7,29-31].
These models are equivalent [31,32] at least where tree-
level on-shell amplitude is concerned. However, there are
differences in the off-shell amplitude since the definitions
of the off-shell fields are different in the models (see, e.g.,
Ref. [9]). Here we pick up the model based on the GHLS
which is a natural extension of the HLS to include the
axial-vector meson.

In this paper, we first develop the chiral perturbation
theory (ChPT) with GHLS, in which a systematic low-
energy expansion is possible even including the axial-
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vector meson in addition to the pseudoscalar and vector
mesons as a dynamical degree of freedom. Then, we make
the matching of the vector and axial-vector current corre-
lators with those obtained by the operator product expan-
sion (OPE) in the energy region higher than the axial-
vector meson mass to find that the resultant set of the
parameter relations satisfies the pole-saturated forms of
the first and second Weinberg sum rules. Based on the
RGE:s in the Wilsonian sense obtained in the ChPT with
GHLS, the set of the parameter relations is shown to be
stable against the renormalization group evolution.

We further study the fate of the axial-vector meson near
the chiral restoration point, and find that the Weinberg sum
rules together with the matching necessarily lead to the
dropping masses of both vector and axial-vector mesons.
Interestingly, the ratio of masses of vector and axial-vector
mesons as well as the mixing between the pseudoscalar and
axial-vector mesons flows into one of three fixed points:
They exhibit the VM-like, Ginzburg-Landau-like and
Hybrid—like patterns of the chiral symmetry restoration.

This paper is organized as follows: In Sec. II, we give a
brief review on the GHLS. Construction of the ChPT with
GHLS is done in Sec. III. In Sec. IV, we make the matching
to derive a set of parameter relations satisfying the pole
saturated forms of the first and second Weinberg sum rules.
This is shown to be stable against the renormalization
group evolution. Section V is devoted to study of the phase
structure of the GHLS with the Weinberg sum rules kept
satisfied. We show that both p and A; necessarily become
massless at the phase transition point, and that the mass
ratio flows into one of three fixed points. In Sec. VI, we
discuss the relation of three classes of the fixed point to the
chiral representation mixing. Finally, in Sec. VII we give a
brief summary and discussions. We show the quantization
of the GHLS theory based on the background field gauge in
Appendix A and several quantum corrections and RGEs in
Appendix B.

II. GENERALIZED HIDDEN LOCAL SYMMETRY

The GHLS is an extention of the hidden local symmetry
(HLS), in which the axial-vector mesons as well as the
vector mesons are introduced as the gauge bosons of the
GHLS, in addition to the pseudoscalar mesons as the
Nambu-Goldstone bosons associated with the spontaneous
chiral symmetry breaking. In this section, we briefly re-
view the GHLS following Refs. [7,29,30].

A. Lagrangian

The GHLS Lagrangian is based on the Ggjghar X Giocal
symmetry, where Ggiobat = [SU(N); X SUN ) latobar i
the chiral symmetry and Gy = [SUN,), X
SU(N ) liocal is the GHLS. The whole symmetry Gy X
Giocal 18 spontaneously broken down to a flavor diagonal
SU(Ny)y. The basic quantities are the GHLS gauge bosons
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L, and R, and three matrix valued variables &;, £ and
&y which are introduced as

U= ¢l énér,

where Ny X N special-unitary matrix U is a basic ingre-
dient of the chiral perturbation theory (ChPT) [33,34]. The
transformation property of U under the chiral symmetry is
given by

(2.1

U— g Ugh (2.2)

where g; and gy are the elements of the chiral symmetry,
gr.r € [SUN{)L gltobar- The variables &s transform as

fL,R - hL,RfL,RgI,R, Ev— hy th}Lg, (2.3)

with A, g € [SUN/)1 glioca- The GHLS gauge fields L,
and R " transform as

L, — ih oh} + hL,hi, R, — ihgohl + hgR,h}.

2.4)
The covariant derivatives of & g 3, are given by
D,u,fL = ay,fL - iLy,fL + i§L£,u,:
D,u,gR = a,u,fR - iR/J,gR + igRR;p (2.5)

D&y = 0,6y — ilyéy + iéuRy,

where £, and R , are the external gauge fields introduced
by gauging Gjopa Symmetry.
The fundamental objects are the Maurer-Cartan 1-forms
defined by
Gfg=DFELg ELpli, &y = DrEy - EL/QD,
(2.6)

which transform as

&f g — h Al ghf g, ay — hpafhl.  (2.7)
There are four independent terms, with the lowest deriva-
tives, invariant under Gopa X Giocal:

.£ v = thr[&”ﬂ&ﬁl'], ‘£A = thr[&l,udi],

Ly = Fuléy,,ak) 2.8)

£7T = F2tr[(d_]_,u, + dM;L)(dl_jl: + &M)]’

where F is the parameter carrying the mass dimension 1'
and &) | are defined as

aff| = (Enagél, + al)/2. (2.9)

'In Refs. [7,29,30], each term has the pion decay constant F 37
as the coefficient by taking the proper normalization. In this
paper, however, we introduce F just as a parameter which carries
mass dimension 1. In the latter section, we will define F, as the
coupling strength to the broken current by dissolving the 7 — A,
mixing.
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Other building blocks are the gauge field strengths of the
GHLS defined by

L,,=d,L,—d,L, —iL,L,]

. (2.10)
R,,=0,R,—9,R, —i[R,,R,]

From these field strengths, the kinetic term of the gauge
bosons are given by
1

Lyiw(L,, R,) = — @tr[LWU“’ +R,,R*],  (2.11)
with g being the gauge coupling constant of the GHLS.
Note that the parity invariance requires that there is only
one gauge coupling.

By combining the four terms in Eq. (2.8) together with
the kinetic term of the gauge fields in Eq. (2.11), the GHLS
Lagrangian is given by

L=aly+bLy+cLy+dL,+ L(Ly Ry),
(2.12)

where a, b, ¢, and d are dimensionless parameters to be
determined by the underlying QCD.

B. Particle identification

The symmetry-breaking pattern of the GHLS is given as

[SUNN;)L X SUNf)gJioca

X [SUNy), X SUNf)glatobas = SU(Ny)y,  (2.13)

which generates 3 X (Nj% — 1) massless Nambu-Goldstone
(NG) bosons. 2 X (Nj% — 1) of the NG bosons are absorbed
into the gauge bosons of the GHLS to give masses through
the Higgs mechanism. (N]% — 1) NG bosons remain as the
massless particles, which we identify with the pseudoscalar
mesons 7 (pion and its flavor partners). On the other hand,
we identify the gauge bosons V,, = (R, + L,,) /2 with the
vector mesons denoted by p (p meson and its flavor
partners) and A, = (R, — L,)/2 with the axial-vector
mesons denoted as A; (a; meson and its flavor partners).
In the following, we specify the 7 and would-be NG
bosons absorbed into p and A; by parametrizing &; g as

fp = @GotoD), &) = eilda—0u), £y = b,
(2.14)
Three 1-forms are expanded into
Al = g, — VB VE
@l = ot —AF+ AF + -+, (2.15)
Q= 0%, + A + -

where the vector and axial-vector external gauge fields V M
and A, are defined as
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The a Ly term in the Lagrangian is expressed as

[

— L,). (2.16)

aly = F2ul{ot¢p, — VA + VERT+ -+ (2.17)

where
F2 = aF?. (2.18)

Then, the would-be NG boson absorbed into the longitu-

dinal component of the V, is identified as
o=F,¢,. (2.19)

The remaining three terms, bL4 + c Ly, + d L, are ex-
pressed as

bLy+cLy+dL, = b+ dFul(0,6,)"]
+ (¢ + )F*ul(0,¢,)*]
+ (b + )F?u{(A,)%]
—2bF?ulA, 9%}, ]
+2cF?u{A, 0 ]
+2dF?uld, ¢ 0%, ] + -
(2.20)

This can be further reduced into

(bLy+ cLy +dL )i, = b+ )FPul(A, +3¢,)*]

+ <d + %)thr[(a b )

(2.21)
where we define ¢, and ¢, as
br=¢1L+ &) b= b+ )[C¢p b, ]
(2.22)
The properly normalized fields are given by
=F.¢, q=F,b, (2.23)

where F, is the 7 decay constant and F, is the decay
constant of the would-be NG boson ¢g. They are defined as

= (d + c{)F? = (b + c)F? (2.24)

where

b
b+c

[ = (2.25)

Let us introduce the p (p meson and its flavor partners)
and A (a; meson and its flavor partners) as

VE =gpk,  AM = gA¥ (2.26)
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Then, expanding the Lagrangian (2.12) in terms of the
mV, and A, fields taking the unitary gauge
b, = ¢, = 0,2 we find the following expressions for the
masses of vector and axial-vector mesons M, 4 , the p — y
mixing strength g p3 and strength of the coupling of the A,
meson to the axial-vector current g, :

MngFU'r MA =gF

1

¢ (2.27)

g, = gF%, ga, = gbF?.

I11. CHIRAL PERTURBATION THEORY WITH
THE GHLS

In this section, we construct the chiral perturbation
theory (ChPT) based on the generalized hidden local sym-
metry (GHLS).

A. General concept

In the HLS theory, thanks to the gauge invariance, it is
possible to perform the derivative expansion systemati-
cally. In this ChPT with HLS (See, for a review,
Ref. [9]), the vector meson mass is considered as small
compared with the chiral symmetry breaking scale A, by
assigning O(p) to the HLS gauge coupling [10,11]:

g~ O(p).

We adopt the same order assignment for both p and A
mesons in the GHLS, i.e., m, ~ m,, ~ O(p). Using the
above counting rule, we can systematically incorporate the
quantum corrections to several physical quantities.

In the following, we examine the smallness of our
expansion parameter n, 4 /A, . Similarly to the smallness

3.1

ZWhen the gauge is fixed by taking &), = 1 and & = .fz =
¢/™/Fx the A,-7 mixing is dissolved afterwards, as shown in
Refs. [7,29,30]. In this paper, on the other hand, we introduced 7
field to eliminate the A;-7 mixing, and fixed the gauge to the
unitary gauge by taking

én = expl2ild ] ér = &L = expli(l — )]
As emphasized in Refs. [7,29] the above parametrization is
converted into &), = 1 and & = fz = ¢"/F= by the “gauge
transformation’’:

gr = &1 = explile,]
as

&y = gréugh =1, &L = grég = €',

§p=gLéL=e
*The photon field A » for Ny = 3 is embedded into V# as

2/3
V., =eA,0, Q—( -1/3 _1/3>,

with e being the electric charge.
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of m, /A y discussed in Ref. [9], the smallness of the
expansion parameters m, ,, /A, << 1 can be justified in a
large number of colors N, of QCD as follows: In the large
N, limit, the pion decay constant F, scales as /N, which
implies that A scales as A\ ~ 47F, ~ /N,. On the other
hand, the masses of vector and axial-vector mesons, m pA >
do not scale with N.. So the ratios m , /F7 scales as
1/N,, and becomes small in the large N, QCD:

2 2
m 1
pAL pAL < 1.

Ai _(47TF7,)2 N,

m

(3.2)

Thus we can perform the derivative expansion in the large
N, limit, and extrapolate the results to the real-life QCD
with N, = 3.

B. One-loop calculations

Let us calculate the quantum corrections from the 7, p,
and A; meson loops to five leading-order parameters of the
GHLS Lagrangian. We make the quantization using the
background field gauge in 't Hooft-Feynman gauge, which
is summarized in Appendix A.

We would like to stress that it is important to include the
quadratic divergences to obtain the RGEs in the Wilsonian
sense. In this paper, following Refs. [9,12,35], we adopt the
dimensional regularization and identify the quadratic di-
vergences with the presence of poles of ultraviolet origin at
n = 2 [36]. This can be done by the following replacement
in the Feynman integrals:

d"k 1 A2
f Q) —i2 Gm?
'k k,k, A2
f iCm [P 20@mRSm

(3.3)

On the other hand, the logarithmic divergence is identified
with the pole at n = 4:

+ 1 —1nA2, (3.4)

mi| —

where

2
I 2 m@m,
€ 4 —n

(3.5)

with g being the Euler constant.

In the following, we consider the two-point functions of
VHE-V? AK-A?, J_ZUI—AV, and AkK- A" (see Appendix A
for definitions of the background fields), which we express
as H(—j;, Hgg, H#ﬁ\VLA’ H/-;;,Mﬂl, respectively. We divide
each of these two-point functions into two parts as

#*(p) = MI5(p?)gh + IIET(p?)(p?gH* — p*p”).
(3.6)

At the bare level, the relevant parts are expressed as
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ng’;‘;e)s = abarer’ Hg)aVre)LT =Tt 2Zbare’
ba.re
1
bare)$§ bare)LT
H( are) (bbdre + dere)F2 H%gm) R 2Z€e§e’
bare
bare)S bare)S
MRS = b2, TG0 = dire P2, 3.7)

where zER is the coefficient of O(p*) terms which propor-
tional to tr[LM,,fMR“”fL].4

In Appendix B, we list the diagrams contributing to IT#”
at one-loop level and the quantum corrections from those
diagrams (see Figs. 4-7 and Egs. (B3)-(B6)). From
Eq. (3.7), we find that the divergences proportional to
g"” in the two-point functions are renormalized by
Apares Pbares Chare and  dpye and  those proportional to
(p?g"” — p*p") are renormalized by gp,. and zLR.
Thus we require the following renormalization conditions:

abaIeF2 + Hévldiv = (finite),
_bbareF2 + HS‘ 'ldiv = (finite),
CbaIer |d1V + Hﬂ Aldlv (finite): 3.8)
dbareF + Hi‘qMﬂlldiv = (finite),
1 . .
5t 2[HLT laiv + TT5% gy ] = (finite).
bare

From the above renormalization conditions, we obtain the
RGE:s for the parameters a, b, ¢, d and the GHLS gauge
coupling g, which are listed in Eqgs. (B7)-(B11).

IV. WEINBERG’S SUM RULES

Let us start with the axial-vector and vector current
correlators defined by

GA(Q*)(g"q" — ¢°8"")dup
[ d*xe (0| T (x)J2,(0)]0),
Gv(0)(g"q” — 478"")b 4

_ [ d*xe' (0| T.J¥ (x)J2(0)|0),

4.1

where Q% = —¢? is the spacelike momentum, J% and J¥
are the axial-vector and vector currents and (a, b) =
1,-- -,N]% — 1 denotes the flavor index. At the leading
order of the GHLS the current correlators G4y are ex-
pressed as

“Some of the possible O(p*) terms contributing to three- and
four-point functions are listed in Refs. [7,37]. A complete list of
the anomalous terms at O(p*) is given in Ref. [31].

PHYSICAL REVIEW D 73, 036001 (2006)
2 2 2

FZ F
GA(Q ) - @ MZ A] QZ) V(Q ) - —QZ)
4.2)

where the A; and p decay constants are defined by

PR 7T L T
! MAI b+c P

M,

The same correlators are evaluated by the OPE as [38]
1 2 2 ay G G,uV
[, @ 7 (56

8 m) wp® 3 0
13 1408 a (gq)*
3 27 0° }
1 o 0?
(OPE) _ s
12 (+G,,G"") 896 alqq)’
3 o* 327 Q° }

(4.3)

G0 =

(4.4)

where w is the renormalization scale of QCD. An impor-
tant result obtained from the above forms is that the
difference between two correlators scales as 1/Q°:

327 aldq)’
9  Q°

Since the above forms of the correlators in the OPE are
valid in the high energy region, we consider the difference
of the correlators in the GHLS in the energy region higher
than the A; meson mass, i.e., 0? > M3. In the high energy
region, two correlators in the GHLS given in Eq. (4.2) are
expanded as

G0 = GY™(0Y) = “.5)

2 2 2 2 2 4
G (QZ) = ot FAI _ FAIMAI + FAIMAI
A 0’ o 0°
P2 BM> Mt (4-0)
G (QZ) —__p_" PP PP
A 2 4 6
0 0 0

From the above expressions, the difference of two corre-
lators is given by

F2+F; —F3 FiM; —F:M

GA(Q%) — Gy(Q) = Q2| e IQ4 Lt
F2 M4 _ F2M4

+ A A‘Q6 rr 4.7

We require that the high energy behavior of the differ-
ence between two correlators in the GHLS agrees with that
in the OPE: G,(Q%) — G(Q?) in the GHLS scales as
1/Q8. This requirement can be satisfied only if the follow-
ing relations are satisfied:
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2 2 _ 2 2 42 — 2 A2
F2+F, =F,  FiM; =FM, (4.8)
which are nothing but the pole saturated forms of the
Weinberg first and second sum rules [39]. In terms of the
parameters of the GHLS Lagrangian, the above relations

can be satisfied if we take

a=b, d=0. 4.9)

Now, let us study whether the above relations in Eq. (4.9)
are stable against the quantum corrections. Taking a = b
and d = 0 in the RGE:s for a, b, and d shown in Eqs. (B8)—
(B10), we obtain

d(aF?) N
-G 7:)2 [u? + 3ag?F?], (4.10)
d(bF?) N,
@ 7-77)2 [u? + 3ag?F?], 4.11)
d(dF?)
=0 (4.12)
du
The first two RGEs lead to
MM —0. 4.13)
dup

The RGE:s in Egs. (4.12) and (4.13) imply that the parame-
ter relations a = b and d = 0 are stable against the renor-
malization group evolution, i.e., the nonrenormalization of
the Weinberg sum rules expressed in terms of the leading-
order parameters in the GHLS.

At the end of this section, we look into a set of the
parameter relations in Eq. (4.9) to the symmetry structure
of the GHLS theory. When we take a = b and d = 0, the
GHLS Lagrangian given in Eq. (2.8) is rewritten as

aﬁv + bﬁA + CﬁM + dﬁﬂ. = _8aF2tr[(DM§R)2

+ (D, €1)%]
—4cF*ul(D, én)*]
(4.14)

When we further switch off the gauge coupling, the sym-
metry of the Lagrangian becomes enhanced as Ggjopa X
[(;global]2 = |:(;global:|3 = [SU(Nf)L X SU(Nf)R:P‘ This
implies that three variables &;, &g, and &, couple to
each other only through the GHLS gauge bosons V,, and
A, when the gauge coupling is switched on. This structure
is generally refereed as the “theory space locality’ [40—
43]. From the above consideration, we see that, in the
GHLS, the requirement of the Weinberg sum rules auto-
matically leads to the “theory space locality” [44]. In
general cases, the ‘“theory space locality” is satisfied
only at tree level, since the enhanced symmetry is broken
when the gauge coupling is switched on. However, our
result of the stability of the relations a = b and d = 0
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implies that the ‘“‘theory space locality’’ in the leading
order Lagrangian is stable against the quantum correction
at least at one-loop level.

V. CHIRAL SYMMETRY RESTORATION

In this section, we study the chiral phase transition
keeping the first and second Weinberg sum rules in the
GHLS.

Equations (4.5) and (4.7) with the Weinberg sum rules
(4.8) give the following matching condition in the high-
energy region:

Nmay

2 4 _ 2A4 — 202 2 2\ —
FAlMAl FPMP - FPMP(MAl Mﬂ) o 9

(Gq)*,
5.1

which is a measure of the spontaneous chiral symmetry
breaking. In terms of the parameters of the GHLS
Lagrangian this is expressed as

@ ¢ gt = (Gg). (5.2)

When the chiral restoration point is approached, the quark
condensate approaches zero:

(Gq) — 0, (5.3)
This implies that the condition
a’>-c-g*—0 (5.4)

is satisfied when the chiral symmetry is restored. From this
condition we see that at least one parameter among a, c,
and g must go to zero at the chiral symmetry restoration
point.

Let us first consider the possibility that the parameter a
goes to zero at a high energy scale, say A: a(A) — 0. The
RGE for a given in Eq. (4.10) implies that a = 0 is not a
fixed point, and thus one cannot achieve the equality of the
axial-vector and vector current correlator in the energy
region below A which is required by the chiral symmetry
restoration. To make matters worse, the RGE for a leads to
a(u) <0 for w <A, and M3 <0, which is of course
unacceptable. From these, we cannot take a — 0.

We next consider the possibility of ¢(A) — 0. From
Eq. (B9), the RGE for c in the case of a = b and d =0
is obtained as

d(cF?) Ny
du  (4m)?

We can easily see that ¢ = 0 is not a fixed point, which
implies that the equality of two current correlators cannot
be satisfied in the energy region below A even if we equate
them at A. Furthermore, negative ¢ leads to M /M3 =
a/(a + ¢) > 1, which is also unacceptable. Thus ¢ — 0
cannot be achieved at the restoration point.

Finally, we study the possibility of g— 0. From
Eq. (B11), the RGE for g with a = b and d = 0 is reduced

[2u? + 6cg°F?].

(5.5)
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to

dg? N, 43
—_ _ f2 _g4’ (56)
du 4m)?* 3
which certainly has the fixed point at g = g* = 0. Then,
the symmetry restoration in the GHLS can be realized only
if the following condition is met:

g—g" =0 5.7

This condition implies the massless p and A; mesons, since
both masses are proportional to the gauge coupling g.°
Thus we conclude that, when we require the first and
second Weinberg sum rules to be satisfied, the chiral
symmetry restoration in the GHLS required through the
matching to QCD can be realized with masses of p and A,
mesons vanishing at the restoration point:

M,—0, M, —0. (5.8)

We next consider the fate of two parameters a ( = b)
and c. As we can see easily from Eq. (5.1) and (5.2),
matching of the GHLS to QCD does not provide any
conditions for a and ¢ other than g — 0 at the restoration
point. For a = b and d = 0 the definitions of the parameter
{ and the pion decay constant given in Egs. (2.24) and
(2.25) are rewritten as

ac
a M?
[ = =_r (5.10)
a+tc Mil

From this, we see that the parameter { plays an important
role, which controls the fate of the ratio of p and A; meson
masses at the symmetry restoration. Below, we shall in-
vestigate the phase structure of the GHLS to see how the
mass ratio ¢ is determined at the symmetry restoration
point and characterizes the possible patterns of chiral
symmetry restoration governed by several fixed points.

To study the phase structure of the GHLS through the
RGE:s for a, ¢, and g, it is convenient to introduce the
following dimensionless parameters associated with a, c,
and g:

B Nf MZ . Nf /.L2
X(M)—WW’ Y('“)_WW’
N
Glu) = 2(471;)2 (). (5.11)

This symmetry restoration is similar to the vector manifesta-
tion (VM) [5,9], in which the massless p becomes the chiral
partner of the pion. As is stressed for the VM in Ref. [9], the
symmetry restoration here should also be considered only as a
limit with bare parameters approaching the fixed point: An
enhancement of the global symmetry occurs when we take g =
0 from the beginning. However, for nonzero gauge coupling,
even if it is very tiny, the global symmetry in the GHLS is only
the chiral symmetry consistently with QCD.
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In terms of X and Y, the order parameter F, and the mass
ratio { are expressed as

_ Ny
W) = Srs oy — XW Y, G12)
o Y(w)
() = X(o) + Y(a)" (5.13)

The RGEs shown in Egs. (4.10), (5.5), and (5.6) are rewrit-
ten as

dX
n—=2X(1 - X — 3G),
dp
dy dG 86
— =2Y(1 — 2Y — 6G), — =—-—G"~
M ( ) S 3
(5.14)

From these RGEs we find that three nontrivial fixed points
and one trivial fixed point. The trivial fixed point is given
by

(X, Y, G*) =(0,0,0), (5.15)
while nontrivial ones are
A:(X* Y5, G¥) = (1,0,0),
B:(X*, Y*,G*) = (0,1/2,0), (5.16)

C:(X*, Y*, G*) = (1,1/2,0).

As we concluded above, the symmetry restoration can
be realized only if we have G — 0 at the restoration point.
Since G = 0 is the only fixed point of the RGE for G, we
concentrate on the case with G = 0. In such a case, the RG
flows are confined on the X-Y plane. Furthermore, since
both p and A; mesons are massless, we can use the RGEs
for X and Y all the way down to the low-energy limit, u =
0. Then, the phase of the GHLS is determined by the on-
shell pion decay constant F_(u = 0), or equivalently W
defined in Eq. (5.12), as

W(w =0) =0 broken phase

(5.17)
W =0)+#0

symmetric phase.

We show the flow diagram in X-Y plane in Fig. 1. The
phase boundary is specified by F;(0) = 0 which is realized
at each fixed point listed in Eq. (5.16). The fixed point A
implies a(0) = 0 and c(0) # 0, B entails a(0) # 0 and
¢(0) = 0, and C gives us a(0) = ¢(0) = 0. We note that
a(0) = 0 and/or ¢(0) = 0 are realized due to the quadratic
running of the RGEs although the bare parameters ay,
and cy,. are nonzero even at the restoration point.

In order to clarify the implication of each fixed point, we
map the phase diagram in the X-Y plane onto the {-W
plane, which is shown in Fig. 2. Three fixed points (5.16)
are turned into
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02 04 06 03

FIG. 1 (color online). Phase diagram on G = 0 plane. Arrows
on the flows are written from the ultraviolet to the infrared. Gray
lines divide the broken phase (inside) and the symmetric phase
(outside; cross-hatched area). Points denoted by A, e, and 4
express the fixed points (X, Y) = (0,1/2), (1,0), and (1, 1/2),
respectively.

AL W) = (1,1/2),

B:({", W) = (0. 1),
C:(¢", W*) = (1/3,3/2).

(5.18)

From this we can distinguish three patterns of the chiral
symmetry restoration characterized by three fixed points
by the values of the ratio of p and A; meson masses
expressed by { as in Eq. (5.10) as follows: At the fixed
point A,  goes to 1, which implies that the p meson mass
degenerates into the A; meson mass. We shall call this
restoration pattern the Ginzburg-Landau (GL) type. At the
fixed point B, on the other hand, the p meson becomes
massless faster than the A; meson since { goes to zero.

0.75

0.25

0.2 0.4 0.6 0.8 1 S

FIG. 2 (color online). Phase diagram on the ¢-W plane.
Arrows on the flows are written from the ultraviolet to the
infrared. Gray lines divide the broken phase (lower side) and
the symmetric phase (upper side; cross-hatched area). Points
denoted by A, e, and @ express the fixed points (£, W) =
(1,1/2), (0, 1), and (1/3, 3/2), respectively.
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This can be called the vector manifestation (VM) type. The
fixed point C is the ultraviolet fixed point in any direction,
so that it is not so stable as to A and B. Nevertheless, if it is
chosen, the mass ratio approaches to 1/3 which we shall
call the hybrid type.

To summarize, we find that the chiral symmetry resto-
ration in the GHLS required through the matching to QCD
can be realized only if the masses of p and A; mesons
vanish at the restoration point:

M,—0, My —0, (5.19)

and that the ratio of these masses flows into one of the
following three fixed points:
GL — type:M; /M3 — 1,
VM — type:M,/M; — 0, (5.20)

Hybrid — type:M, /M3 — 1/3.

VI. CHIRAL REPRESENTATION MIXING

In this section, we discuss the relation of three classes of
the fixed point studied in the previous section to the chiral
representation mixing.

In the broken phase of the chiral symmetry, the eigen-
states of the chiral representation under SU(Ny), X
SU(N)g do not generally agree with the mass eigenstates
due to the existence of the Nambu-Goldstone bosons, i.€.,
there exists a representation mixing. By extending the
analysis done in Refs. [45,46] for two-flavor QCD, the
scalar, pseudoscalar, longitudinal-vector, and axial-vector
mesons belong to the following representations:

ls) = |(Ny, N7) @ (N7, Np)),
|m) = |(Ny, N}) ® (N, Ny)) singy
+1(1, N7 = 1) @ (N7 — 1, 1)) cosp,
lp) =1(LN; = 1) & (N} — 1, 1)),
|A;) = [(Np, N7) ® (N}, Ny)) cosy
—|(L,N2 = 1) ® (V2 = 1, 1)) sing,

6.1)

where ¢ denotes the mixing angle. The value of ¢ for
Ny = 2 is estimated as about ¢ =~ 45°.

It can be expected that the above representation mixing
is dissolved when the chiral symmetry is restored. From
Eq. (6.1), one can easily see that there are two possibilities
for the pattern of chiral symmetry restoration. One possible
pattern is the case where cosyy — 0 when we approach the
critical point. In this case, the pion belongs to |(Ny, N}) ®
(N;Z, Ny)) and becomes the chiral partner of the scalar
meson. The longitudinal-vector and axial-vector mesons
are in the same multiplet |(1, N7 — 1) @ (N7 — 1, 1)). This
is the standard Ginzburg-Landau (GL) scenario of the
chiral symmetry restoration. Another possibility is the
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case where singy — 0 when we approach the critical point.
In this case, the pion belongs to pure |(1, N7 — 1) & (N7 —
1, 1)) and its chiral partner is now the (longitudinal) vector
meson. The scalar meson joins with the longitudinal part of
the axial-vector meson in the same representation
(v, N;Z) ® (N;, Ny)). This is the vector manifestation
(VM) of chiral symmetry [5,9].

Now we consider how the chiral representation mixing
is expressed in the GHLS theory. When we take d = 0 in
the Lagrangian, there are no ¢ -¢, mixing terms [see
Eq. (221)]. Then we take the normalizations of ¢ and ¢,
fields as follows:

¢y =m NbF?, ¢, = p/JcF2

Since 7 is included in &; and &; and p is in &, we
identify 7| with the field belonging to the chiral repre-
sentation (1, N7 — 1) @ (N7 — 1, 1) and p with (Ny, N7) @
(N;Z, Ny) according to the transformation properties of £;,

&g, and &,,. Using Egs. (2.22) and (2.24), we rewrite 77 and
q in terms of 77| and p as

m=\ip+1-{m, q=\J1-{p—f{m,.

We compare the above expression to Eq. (6.1) and obtain
that the chiral representation mixing angle is related to the
mass ratio { as

cosyp = /1 — ¢, singr = /. (6.4)

Then, from three fixed points (5.18) of the GHLS at the
symmetry restoration point, the fate of the chiral represen-
tation mixing is determined as follows:

GL-type : cos¢y — 0, VM-type: singy — 0,

1 2
Hybrid-type: singy — \g cosyy — \g

VII. SUMMARY AND DISCUSSIONS

(6.2)

(6.3)

(6.5)

In this paper, we developed the chiral perturbation the-
ory with the GHLS as an effective field theory of QCD for
pions, vector and axial-vector mesons. We showed that the
first and second Weinberg sum rules expressed in terms of
the leading-order parameters, which are required by the
equality of the high-energy behaviors of the current corre-
lators of the GHLS to the ones in QCD, can be satisfied by
a special parameter choice, a = b and d = 0, correspond-
ing to the theory space locality. Our analysis using the one-
loop RGEs provides that this parameter choice is stable
against the RG evolution, i.e., the nonrenormalization of
the Weinberg sum rules in the GHLS: The completion of
the sum rules at the bare level is kept even at quantum
level.

With the set of parameters corresponding to the
Weinberg sum rules, we investigated the phase structure
of the GHLS theory. We found that both p and A; meson
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become massless at the chiral phase transition point, which
is protected by the fact that the GHLS gauge coupling
constant g goes to zero as the only fixed point of the
RGE for g:

M,—0, M, —0, (7.1)

At the critical point, there exist three fixed points of the
RGE:s for a and ¢ and each of them is associated with one
of the following patterns of the chiral symmetry restora-
tion: the Ginzburg-Landau (GL), the vector manifestation
(VM), and the hybrid type. Those classes of the chiral
symmetry restoration are characterized by the mass ratio,
or equivalently the chiral representation mixing angle, as
M3 /th — 1,
cosyy — 0,
2 /g2

M2/M3 — 0,
singy — 0,

M3 /Mf,] —1/3,

Hybrid-type:
sing — \g

Here we study the fate of the vector dominance (VD) of
the electromagnetic form factor of the pion [47] at the
chiral symmetry restoration. The direct photon-7-7 cou-

pling g, is given by

GL-type: {

VM-type:{ (7.2)

1 F2
Eymrm = 1 - E F_zr(l - 52) (73)
When a = b and d = 0 are taken, this becomes
Eymrm = (1 - g)/z (7.4)

We show the leading contributions to the pion form factor
in Fig. 3. The VD is characterized by the direct y7 7 being
zero. Three classes of the chiral symmetry restoration give
us the following results on the VD:

GL-type:gyrr — 0, VM-type:gyrr — %

(7.5)
Hybrid-type:g, - — %

In the GL-type { goes to 1, then the direct yma goes to
zero, which implies that the VD is sufficient. On the other
hand, in the VM-type the direct ymrar approaches 1/2, i.e.,
the VD is violated by 50%, similarly to the case of the VM
[9,18]. The hybrid type also gives about 33% violation of
the VD since the direct ywar comes to be 1/3. This
strongly affects to the understanding of the experimental
data on dilepton productions based on the dropping p as

(a) (b)

FIG. 3. Leading contributions to the electromagnetic form
factor of the pion. (a) direct yzr7r and (b) ym7 mediated by
p-meson exchange.
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recently pointed out in Ref. [19]. An analysis of the spec-
tral functions taking into account of the large violation of
the VD is much interesting.

Several comments are in order.

In this paper, we studied the chiral phase transition with
the first and second Weinberg sum rules kept satisfied.
Near the chiral restoration point in QCD with a large
number of massless flavors (the large Ny QCD [43,49]),
the anomalous dimension vy,, of (gg) becomes close to 1,
vm ~ 1. (See, e.g., Refs. [49,50].) This results that the term
proportional to {Gg)> in the current correlators behaves as
~1/Q* [51], and hence the second Weinberg sum rule is
not satisfied. Thus, the condition in Eq. (5.1) is not appro-
priate for studying the chiral symmetry restoration in the
large N; QCD.

For studying the chiral phase transition at finite tem-
perature using the GHLS, which is relevant to the RHIC
experiment, we have to work explicitly under the existence
of hot matter as done for the HLS/VM in Refs. [13,18,21].
Since a typical energy scale characterizing the chiral sym-
metry restoration, 7 ~ 180 MeV, is much smaller than the
momentum scale Q in the OPE, we expect that the first and
second Weinberg sum rules hold near the chiral phase
transition point at finite temperature, and that the matching
condition in Eq. (5.1) is applicable. Then, when the analy-
sis in this paper is applicable to the chiral phase transition
at finite temperature, we expect that the matching will
produce the temperature dependence of the GHLS gauge
coupling similar to the one of the HLS gauge coupling
(intrinsic temperature dependence), which was essential to
describe the dropping p occurring in the VM, and that the
dropping p and A; masses are suitably described within the
GHLS.

In the GHLS sector, the theory space locality is broken
due to O(p*) terms and we do not have the nonrenormal-
ization of the second Weinberg sum rule at one loop. The
relation between the higher order terms which generate a
violation of the sum rule and the chiral symmetry restora-
tion will be elucidated by forthcoming analysis.

In the case of the HLS, the extrapolation of the ChPT
from large N. QCD to the real-life QCD together with the
Wilsonian matching reproduces several physical quantities
in remarkable agreement with experiments [9,12]. The
GHLS at the leading order with a suitable parameter choice
was shown [7,29] to explain several phenomenological

facts such as the successful current algebra relations mi] =

2m% and g4, = g, [38,52]. Furthermore, inclusion of ap-
propriate higher order terms gives predictions on the
widths of A; — pm and A; — y7 in good agreement
with experiments [7,30]. Then, we believe that the ChPT
with GHLS incorporated by a suitable matching procedure
will describe the low-energy phenomenology of real-life
QCD. In the present analysis, we focused on the phase
structure of the GHLS theory. It is interesting to study the
physical quantities such as the p-r-7 coupling and p-y
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mixing through the matching procedure based on the ChPT
with GHLS developed in this paper. We leave the analysis
in the future publications.

One might think that the scalar mesons should be in-
cluded, since several analyses [53] show that they are
lighter than the vector mesons in real-life QCD. For ex-
ample, the analysis in Ref. [54] shows that the mass of
sigma meson is about 560 MeV, which is definitely lighter
than the p meson, m, = 770 MeV. In this paper, we did
not include scalar meson as a dynamical degree of free-
dom, assuming that the light o meson is made of two
quarks and two antiquarks [55,56] and irrelevant to the
present analysis. It is possible that another scalar meson
made of gg will appear quite near the chiral restoration
point and we may have to take the effects into account.
Inclusion of the light scalar meson quite near the critical
point may generate the quadratic divergence and change
the present RGEs.
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APPENDIX A: BACKGROUND FIELD GAUGE

In this appendix, we perform the quantization of the
GHLS theory in the background field gauge.

In order that the combinations (¢; = ¢;)/2 belong to
the parity eigenstates, we insert a local symmetry H' =
[SU(N#)y liocal by dividing &, into two parts as

Ew = €l " Eune (A1)
Two variables &,,; and &, transform as
Evr — W €y}, Emr — W Eyghl, (A2)

where i/ € [SU(N)y lioca- Accordingly, we introduce the
background fields £ and the quantum fields ¢ as

&L = g;LELEpLELs &r = E;RERE])RER’
Eu = g;LéMEpR-

The transformation properties of & and 5 are given by

(A3)
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‘f_L - hLELgZ» ER - hRéRg;rQr épL - h/gpLhT’
Er— WEphl, & — WENT, (A4)
ER - h/th/T’ EM - h'éMh/Jr,

Then all the quantum fields transform homogeneously

under the background gauge transformation:
(7, &, §) — h'(F, &, . (A5)

The background and quantum fields of the GHLS gauge
bosons are introduced as follows:

L,=L,+ gg;LEMgPL’ R,=R,+ gé;RﬁuépR’ (A6)

which transform as

L,—h,L,h}+ih o,h],
L,—NWL,h'",

R, — hgR,h} +ihgd  ht,

R,—HR, . (A7)

The covariant derivatives acting on £ and ¢ are expressed
as

D,é = 0,& —iL, & +i& L

D_/_LER=8,U,E — iR éT:R+i§?R

D,é, = 0,6, — iV, Ey + lprLw (A8)
D,u,‘pr d pr lvupr + lprRW

D,ugL,R,M = aMfL,R,M — iV, éLrml

where V’M is the background gauge field corresponding to
the H' symmetry.

It is convenient to define the back ground fields associ-
ated with the external gauge fields as follows:

1 - _ . _ _ I
= Z[pra'ufR : f}:’f;R + &prdtér fo;L]
1 - - I _ -
+ oL rERRIERE Ly + £ EL LHELE ]

A9)

1 - - oi = - - i
= 5 lEpdrEr - EpELp — EproEL - E]E]]

+ %[ngERRMEIJE’g;R - gpLéLﬁﬂng;L]‘
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Furthermore, we use

VM - %[EPRRME;R + EPLEME;L]’

A (A10)
Al’« = E[prR,u,ng - prL,u,gpL]:
and

i/ 2[6 pr pr"‘aprL pr]
1 (A1D)

b= [0 & & — &, - E],)

We fix the background field gauge as
1

Lo = ——ulF} + F] (A12)

where « is the gauge fixing parameter, and Fy and F, are
defined as

Fy = DAV, + agF2, + i[V'* — Ve — Vi V,]
— i[A* + Al A,

Fy= D_“AM - agngv)q Ve — e =) ,"L,I,AM]
—i[A* + A4, V,] (A13)

with D* denoting the covariant derivative in terms of the
background fields:

(Al4)

The FP ghost Lagrangian associated with Lgg is given
by

LG =2it[C D, (D*Cy + ag?F2Cy — i[V't — Vi — Vi C,]— i[A* + A%, CA D]
+2itr[Co{D ,(D*Cy + ag?F2C, — i[V/E — Vi — Vi, Cy]1— i[A* + AL, Cy )]

—2u[{[ Ve —VH =)
—2u[{[ V' —VH =)

b Cyl+[A+F + A%, CAIHD,Cy — i[V/H — VE — i/;;, Cyl—i[A* + A% C. T}
b Cal+[Ar+ Ak CyIHD, Cy— i[V'H — V=)

b Cal— i[A* + AR, Cy T+,
(A15)

where ellipses stand for the terms including at least three quantum fields. .
Finally, we should eliminate the redundant A’ symmetry. This can be done by relating V/, to other background fields. In

this paper we take
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Ve ="V 4 7m (A16)

and set & oL =_E R = £ »- We should note that the back-
ground field V), appears only in Lgr + Lgp given in
Egs. (A12) and (Al15), and is not included in the
Lagrangian in Eq. (2.12).

APPENDIX B: QUANTUM CORRECTIONS

In this appendix, we list the quantum corrections to the
two-point functions and the RGEs at one-loop. In the
present analysis, we adopt the ’t Hooft-Feynman gauge
by taking @ = 1 in Egs. (A12) and (A15).

For expressing the quantum corrections in simple forms
it is convenient to define the following Feynman integrals:

dk 1
AM)= [ —
oM) i M2 — i
A"k 1 (BI)
By(p; My, M;) =

iQm)* M} — k*]IM5 — (k— p)*T
d"k 2k — p)*(2k— p)?
iQm)* [M} — IP]IM3 — (k— p)*]
We take into account the quadratic as well as the logarith-
mic divergences following Egs. (3.3) and (3.4), which

preserve the chiral symmetry. Here we summarize the
divergent parts of the above Feynman integrals:

B*"(p;M,M,) =

A2 M?
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@ & b © g @ A
\2 \2 v i
o b q q

© & " x ® g h v
\Y A X \%

® X M Ty ® G, O v
A Cy Ca

(m) é (n) \v] (o) X (p) Cy

(@ Ca

FIG. 4. Diagrams for contributions to I3 at one loop. The
circle (o) denotes the momentum-independent vertex and the dot

() denotes the momentum-dependent vertex.

1

AfM)lgy = —+—— — InA?, Bo(p; My, M))|gv = InA?,
0( )lle (477_)2 (477_)2 n 0(p 1 2)|d (477_)2 n
1
B*(p; My, My)|gy = —g* 2A% — (M? + M3)InA%] — (p?gH” — pHp” InAZ, B2
The quantum corrections to H"ﬁ"; generated by the loop diagrams shown in Fig. 4 are given by
, N , Ney F\¢
NPy = BH (piM, M), TPy = —f<F—w) (1 = D1 + §)*B**(p;0,0),
our  NpfF\4 ., Npg F? \2
5y = () T = 20+ OPB (b M), T = T () ad = 7B (i M, 0
v v F\2 v
MO = N M2gh7By(pi M, M), TID% —Nf(F—) G2 F2(al — byg"Bo(p; My, 0),
v F\2
Hi}g)\# = _Nf<F_> g2a*F2g ' By(p; My, M),
q
(B3)

N
h)uv v o v .
04 = L [nBrr(p; M, M,) + 8(p2g™” — p*p”)By(p; M, M,)],

vv 2

: N
e = Tf[an)(p;MAl’ My) + 8(p*gH” — p*p”)Bo(p: My, My)],

I = —NgBA (p; My, My,),  TIY)

A%

H(\%W = —NyB*"(p; My, M),

F

¢ = N[ dlad ~ Do)

Fa

F
H(‘;n\)?W = Nf(F_)4(a — b —c)ghrA(My), Hi%w = Nngh?Ag(M,),
q

sy — Nngh*Ay(M,,), sy — —2N,g""Ag(M,,),

Vv Vv

TIJE = ~2N,g# Ag(My,),
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where n denotes the dimension of the spacetime. We show the one-loop diagrams to contribute to I1 2—'“ fx in Fig. 5. We obtain
the quantum corrections as

Ny F? N2 N F2 \2
@uv _ VS _ 2 V(- ®uv _ Vf 2 V(-
Y T(FJ) (ad = DrB oM, 0, T3E = e <FUFL,> B My May)
F
MK = —NM2gh Bo(p; My, M), TIPH" = —Nf<—F ) g2 F?*a — b — c)*g*"By(p; M,,, 0),
T

F,

@ur _ _n (F
i = Nf( )

2
) 50 = 206 + O PerBup: M, M)
B4
MO8 = N [nBR (p; M, My,) + 8(p%gR" — plp")Bo(ps My, M)} TIE = —Noger(pim, M), PV

v Duv F\2 v
U = =B (M, M), T = Ny ) (@ = b = 2740 0),

: F\2 v k v 1 v
o — Nf<F—q> (a—b— g AgMy), T = Nongrragm,), TV = Nngrrag(M,),

H‘%mA)MV = _2NngVAO(Mp)’ HI(;‘%MV = _2Nng'VA0(MAl).

From the diagrams shown in Fig. 6, we obtain

‘ Ney F? \2 Ny F? \2
(t})l“f —_ _f _ _ MV (e (lf)l“_/ — _f MV (.
U3 = =3 (5, (@~ p0Nad = i, 00 TG =T (Fqu> B My May)
©urv _ FN2 50 w . (Dur _ N2 50 w .
HﬂlA_Nf I g F abg""By(p; M, M), HﬂlA—Nf 7 g’F*{(a — b{)(a— b — c)g""By(p; M, 0),
g o
©uv _ F\2 500 WVR (e ur _ Ne(FN2, L, (B3)
Hle = _Nf F—q 8 F b[a - Z(b + C)]g Bo(p,Mp, MAI)’ Hﬂlz& = 7 F—o_ bg AO(Mp)’
F\2 1 wuy NefF\2
s =N [ e o150 @) eracon =B () peagion,).
Finally, we list the quantum corrections contributing to H’;{' 2 shown in Fig. 7:
ML
(a) o (b) P (© p (d T
T d A \4
(a) s (b) 5 (© o (d T
Yoo ° 2 & © 3 ® ® v oy
L] . L] . o T q
T q A v v
_ _ \Y
© 4 ® v @ Ca m G
VY TR TR FIG. 6. Diagrams for contributions to 1'[‘:17\"l ; at one loop.
v A Cy Ca
. . (@ s (b) s (© o (@ T
@ y ()} g (k) v () X . . . i
n q A v
(m) Cy () Ca © q ® M (€3] % (h) g
v
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The quadratic and logarithmic divergences generated by those diagrams are renormalized following Eq. (3.8).
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where u denotes a renormalization scale.
When we take the parameter choice satisfying @ = b and d = 0, the RGEs are reduced to
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