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Signatures of anomalous VVH interactions at a linear collider
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We examine, in a model independent way, the sensitivity of a linear collider to the couplings of a light
Higgs boson to gauge bosons. Including the possibility of CP violation, we construct several observables
that probe the different anomalous couplings possible. For an intermediate mass Higgs, a collider
operating at a center-of-mass energy of 500 GeV and with an integrated luminosity of 500 fb�1 is shown
to be able to constrain the ZZH vertex at the few per cent level, and with even higher sensitivity in certain
directions. However, the lack of sufficient number of observables as well as contamination from the ZZH
vertex limits the precision with which the WWH coupling can be measured.
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I. INTRODUCTION

Although the standard model (SM) has withstood all
possible experimental challenges and has been tested to
an unprecedented degree of accuracy, so far there has been
no direct experimental verification of the phenomenon of
spontaneous symmetry breaking. With the latter being
considered a central pillar of this theory and its various
extensions, the search for a Higgs boson is one of the main
aims for many current and future colliders [1]. Within the
SM, the only fundamental spin-0 object is the (CP-even)
Higgs boson and remains the only particle in the SM
spectrum to be found yet. Rather, a lower bound on the
mass of the SM Higgs boson, (about 114.5 GeV) is pro-
vided by the direct searches at the LEP Collider [2].
Electroweak precision measurements, on the other hand,
provide an upper bound on its mass of about 204 GeV at
95% C.L. [3]. It should be realized that both these limits
are model dependent and may be relaxed in extensions of
the SM. For example, the lower limit can be relaxed in
generic 2-Higgs doublet models [4] or in models with CP
violation [5]. In the latter case, direct searches at LEP and
elsewhere still allow the lightest Higgs boson to be as light
as 10 GeV [6]. Similarly, the upper bound on the mass of
the (lightest) Higgs in some extensions may be substan-
tially higher [7]. The Large Hadron Collider (LHC) is
expected to be capable [8] of searching for the Higgs boson
in the entire mass range allowed.

It is then quite obvious that just the discovery of the
Higgs boson at the LHC will not be sufficient to validate
the minimal SM. For one, the only neutral scalar in the SM
is a JCP � 0�� state arising from a SU�2�L doublet with
hypercharge 1, while its various extensions can have sev-
eral Higgs bosons with different CP properties and U(1)
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quantum numbers. The minimal supersymmetric standard
model (MSSM), for example, has twoCP-even states and a
single CP-odd one [9]. Thus, should a neutral spin-0 state
be observed at the LHC, a study of its CP-property would
be essential to establish it as the SM Higgs boson [10].

Since, at an e�e� collider, the dominant production
modes of a neutral Higgs boson proceed via its coupling
with a pair of gauge bosons (VV; V � W;Z), any change in
the VVH couplings from their SM values can be probed via
such production processes. Within the SM/MSSM, the
only (renormalizable) interaction term involving the
Higgs boson and a pair of gauge bosons is the one arising
from the Higgs kinetic term. However, once we accept the
SM to be only an effective low-energy description, higher-
dimensional (and hence nonrenormalizable) terms are al-
lowed. If we only demand Lorentz invariance and gauge
invariance, the most general coupling structure may be
expressed as

��� � gV

�
aVg�� �

bV
m2
V

�k1�k2� � g��k1 � k2�

�
~bV
m2
V

�����k�1 k
�
2

�
; (1)

where ki denote the momenta of the two W’s (Z’s), gSM
W �

e cot�WMZ and gSM
Z � 2eMZ= sin2�W . In the context of

the SM, at the tree level, aSM
W � aSM

Z � 1 while the other
couplings vanish identically. At the one-loop level or in a
different theory, effective or otherwise, these may assume
significantly different values. We study this most general
set of anomalous couplings of the Higgs boson to a pair of
W’s and Z’s at a linear collider (LC) in the processes
e�e� ! f �fH, with f being a light fermion.

The various kinematical distributions for the process
e�e� ! f �fH, proceeding via vector boson fusion and
Higgsstrahlung, with unpolarized beams has been studied
in the context of the SM [11]. The effect of beam
polarization has also been investigated for the SM [12].
The anomalous ZZH couplings have been studied in
-1 © 2006 The American Physical Society
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FIG. 1 (color online). Feynman diagrams for the process
e�e� ! f �fH; (a) is t-channel or fusion diagram, while (b) is
s-channel or Bjorken diagram. For f � e; �e both (a) & (b)
contribute while for the all other fermions only (b) contributes.
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Refs. [13–17] for the LC and in Refs. [18,19] for the LHC
in terms of higher-dimensional operators. Ref. [20] inves-
tigates the possibility to probe the anomalous VZH cou-
plings, V � �; Z, using the optimal observable technique
[21] for both polarized and unpolarized beams. Ref. [22],
on the other hand, probes the CP-violating coupling ~bZ by
means of asymmetries in kinematical distributions and
beam polarization. In Ref. [23], the VVH vertex is studied
in the process of ��! H ! W�W�=ZZ using angular
distributions of the decay products.

The rest of the paper is organized as follows. In Sec. II
we discuss the possible sources and symmetries of the
anomalous VVH couplings and the rates of various pro-
cesses involving these couplings. In section III we con-
struct several observables with appropriate CP and ~T
property to probe various ZZH anomalous couplings. In
Sec. IV we construct similar observables to probe anoma-
lous WWH couplings, which we then use along with the
ones constructed for the ZZH case. Section V contains a
discussion and summary of our findings.

II. THE VVH COUPLINGS

The anomalous VVH couplings in Eq. (1) can appear
from various sources such as via higher-order corrections
to the vertex in a renormalizable theory [24] or from
higher-dimensional operators in an effective theory [25].
For example, in the MSSM, the nonzero phases of the
trilinear SUSY breaking parameter A and the gaugino/
higgsino mass parameters can induce CP-violating terms
in the scalar potential at one-loop level even though the tree
level potential is CP conserving. As a consequence, the
Higgs-boson mass eigenstates can turn out to be linear
combinations of CP-even and -odd states. This modifies
the effective coupling of the Higgs boson to the known
particles from what is predicted in the SM (or even from
that within a version of MSSM with no CP-violation
accruing from the scalar sector).

In a generic multidoublet model, whether supersymmet-
ric [26] or otherwise [27], the couplings of the neutral
Higgs bosons to a pair of gauge bosons satisfy the sum ruleX

i

a2
VVHi

� 1:

Thus, while aVVHi
for a given Higgs boson can be signifi-

cantly smaller than the SM value, any violation of the
above sum rule would indicate either the presence of
higher SU�2�L multiplets or more complicated symmetry
breaking structures (such as those within higher-
dimensional theories) [27]. The couplings bV or ~bV can
arise only at a higher order in a renormalizable theory [24].
Furthermore, within models such as the SM/MSSM where
the tree level scalar potential is CP conserving, ~bV may be
generated only at an order of perturbation theory higher
than that in which the Higgs sector acquires CP-violating
terms. However, in an effective theory, which satisfies
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SU�2� � U�1� symmetry, the couplings bV and ~bV can
arise, at the lowest order, from terms such as
F��F���y� or F�� ~F���y� [25] where � is the usual
Higgs doublet, F�� is a field strength tensor and ~F�� its
dual. It can be easily ascertained that the effects of the
higher-dimensional terms in the trilinear vertices of inter-
est can be absorbed into bV (~bV) by ascribing them with
nontrivial momentum-dependences (form factor behavior).
Clearly, if the cutoff scale � of this theory is much larger
than the typical energy at which a scattering experiment is
to be performed, the said dependence would be weak. In all
processes that we shall be considering, this turns out to be
the case. In particular, the Bjorken process [Fig. 1(b)]
essentially proceeds at a fixed center-of-mass energy,
hence both bZ and ~bZ are constant for this process. Even
for the other processes of interest, namely, gauge boson
fusion [Fig. 1(a)], the momentum dependence of the form-
factors have a rather minor role to play, especially for � *

1 TeV. This suggests that we can treat aV; bV; ~bV as phe-
nomenological and energy-independent parameters.

A. Symmetries of anomalous couplings

A consequence of imposing an SU�2� � U�1� symmetry
would be to relate the anomalous couplings, bW and ~bW ,
for the WWH vertex with those for the ZZH vertex.
However, rather than attempting to calculate these cou-
plings within a given model, we shall treat them as purely
phenomenological inputs, whose effect on the kinematics
of various final states in collider processes can be analyzed.
In general, each of these couplings can be complex, reflect-
ing possible absorptive parts of the loops, either from the
SM or from some new high scale physics beyond the SM. It
is easy to see that a nonvanishing value for either =�bV� or
<�~bV� destroys the Hermiticity of the effective theory.
Such couplings can be envisaged when one goes beyond
the Born approximation, whence they arise from final state
interactions, or, in other words, out of the absorptive part(s)
of higher-order diagrams, presumably mediated by new
physics. A fallout of non-Hermitian transition matrices is
nonzero expectation values of observables which are odd
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under CP~T, where ~T stands for the pseudotime reversal
transformation, one which reverses particle momenta and
spins but does not interchange initial and final states. Of
course, such nonzero expectation values will be indicative
of final state interaction only when kinematic cuts are such
that the phase space integration respects CP~T. Note that aV
too can be complex in general and can give an additional
~T-odd contribution. However, for the processes that we
will consider, the phase of at least one of aW and aZ can
always be rotated away, and we make this choice for aZ.
Henceforth, we shall assume that aW and aZ are close to
their SM value, i.e. ai � 1� �ai, the rationale being that
any departure from aSM

W and aSM
Z respectively would be the

easiest to measure
Unfortunately, this still leaves us with many free pa-

rameters making an analysis cumbersome. One might
argue that SU�2� � U�1� gauge invariance would predict
�aW � �aZ. However, once symmetry breaking effects
are considered, this does not necessarily follow [24].
Nevertheless, we will make this simplifying assumption
that �aW is real and equal to �aZ, i.e. aW � aZ, since the
equality is found to hold true in some specific cases [28]
(and would be dictated if SU�2� � U�1� were to be an exact
symmetry of the effective theory). With this assumption,
we list, in Table I, the CP and ~T properties of such
operators.

Finally, keeping in view the higher-dimensional nature
of all of these couplings, we retain only contributions up to
the lowest nontrivial order, arising from terms linear in the
additional couplings.

B. Cross sections

The dominant channels of Higgs production at an
electron-positron colliders are
(1) th
TABLE
couplin

Trans.

CP
~T
e 2-body Bjorken process (e�e� ! ZH);

(2) in
 association with a pair of neutrinos (e�e� !

�e ��eH), i.e. W-fusion;

(3) in
 association with an e�e� pair (e�e� ! e�e�H),

i.e. Z-fusion.

Note that the Bjorken process also contributes to the other
two final states through the subsequent decay of the Z. Of
these three, the e�e�H channel is considerably suppressed
(by almost a factor of 10) with respect to the �e ��eH
channel over a very wide range of center-of-mass energies
(
���
s
p

) and Higgs masses. As can be expected, at large
���
s
p

,
the Bjorken process suffers the usual s-channel suppres-
sion and has a smaller cross section compared to that for
I. Transformation properties of various anomalous
gs under discrete transformations.

aV <�bV� =�bV� <�~bV� =�~bV�

� � � � �

� � � � �

035001
W=Z-fusion. In fact, even for
���
s
p
� 500 GeV and unpo-

larized beams, the Bjorken process dominates over
W-fusion only for relatively large Higgs masses [29–31].

In view of this, it might seem useful to concentrate first
on the dominant channel, viz. e�e� ! � ��H and thereby
constrain bW and ~bW . However, it is immediately obvious
that the Bjorken process too contributes to this final state
and hence the couplings �aZ, bZ, and ~bZ have a role to
play. Since the total rate is a CP-even (as well as ~T even)
observable, it can receive contribution only from <�bV�.
[Note that a nonzero �aV would only rescale the SM rates.]
The other nonstandard couplings, odd under CP and/or ~T,
are responsible for various polar and azimuthal asymme-
tries and contribute nothing to the total rate on integration
over a symmetric phase space1. This can be understood
best by considering the square of the invariant amplitude
pertaining to on-shell Z-production, namely e�e� ! ZH:

jMj2 / jaZj
2 ‘

2
e � r2

e

4

�
1�

E2
Z � p

2cos2�

m2
Z

�
�
<�aZb�Z�

m2
Z

�‘2
e � r

2
e�

���
s
p
EZ

�
=�aZ ~b�Z�

m2
Z

�‘2
e � r

2
e�

���
s
p
p cos� (2)

with ‘e�re� denoting the electron’s couplings to the Z, and
EZ; p; � the energy, momentum and scattering angle of the
Z in the c.m.-frame. The proportionality constant includes,
along with the couplings etc., a factor s=	�s�m2

Z�
2 �

�2
Zm

2
Z
. This suggests that the anomalous contribution

vanishes for large s, in spite of the higher-dimensional
nature of the coupling. Furthermore, Eq. (2) also demon-
strates that neither =�bZ� nor <�~bZ� may make their pres-
ence felt if the polarization of the Z could simply be
summed over. It also shows that the contribution due to
=�~bZ� would disappear when integrated over a symmetric
part of the phase space as has been mentioned before.
Thus, if we want to probe these couplings, we would
need to look at rates integrated only over partial (non-
symmetric) phase space. As an example, let us consider
the forward-backward asymmetry for the Z-boson. As can
be seen from Eq. (2), it is proportional to =�~bZ� alone. This
can be understood by realizing that this observable is
proportional to the expectation value of � ~pe � ~pZ� and
hence is a CP-odd and ~T-even quantity just as =�~bZ� is.
For =�bZ� and <�~bZ�, which are ~T odd, one has to look at
the azimuthal correlations of the final state fermions.
Equivalently one can look for partial cross section, restrict-
ing the azimuthal angles over a given range. A discussion
of how partial cross section can be used to probe anoma-
1Remember that we work only to the linear order in the
anomalous couplings. Thus they contribute only through the
interference terms with the SM amplitude.
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lous couplings is given in Appendix A. Further, Eq. (2) also
indicates that the angular distribution of the Higgs (or,
equivalently, that of the Z) is different for the SM piece
than that for the piece proportional to<�bZ�; the difference
getting accentuated at higher

���
s
p

. This, in principle, could
be exploited to increase the sensitivity to <�bZ�.

In this paper we restrict ourselves to the case of a first
generation linear collider. For such

���
s
p

, the interference
between the W-fusion diagram with the s-channel one is
enhanced for nonzero bZ and ~bZ. At a first glance, it may
seem that the kinematic difference between the two set of
diagrams could be exploited and the two contributions
separated from each other with some simple cuts.
However, in actuality, such a simple approach does not
suffice to adequately decouple them. It is thus contingent
upon us to first constrain the nonstandard ZZH couplings
from processes that involve just these and only then to
attempt to use WW-fusion process to probe the WWH
vertex.
III. THE ZZH COUPLINGS

The anomalous ZZH couplings have been studied ear-
lier in the process e�e� ! f �fH in the presence of an
anomalous ��H coupling [20] making use of optimal
observables [21]. The CP-violating anomalous ZZH cou-
plings alone have also been studied in Ref. [22], which
constructs asymmetries for both polarized and unpolarized
beams. We, however, choose to be conservative and restrict
ourselves to unpolarized beams. And, rather than advocat-
ing the use of complicated statistical methods, we construct
various simple observables that essentially require only
counting experiments. Furthermore, we include the decay
of the Higgs boson, account for b-tagging efficiencies and
kinematical cuts to obtain more realistic sensitivity limits.
Since we are primarily interested in the intermediate mass
Higgs boson (2mb � mH � 140 GeV), H ! b �b is the
dominant decay mode with a branching fraction * 0:9.

A. Kinematical cuts

For a realistic study of the process e�e� ! f �fH�b �b�,
we choose to work with a Higgs boson of mass 120 GeV
and a collider center-of-mass energy of 500 GeV. To ensure
detectability of the b-jets, we require, for each, a minimum
energy and a minimum angular deviation from the beam
pipe. Furthermore, the two jets should be well separated so
as to be recognizable as different ones. To be quantitative,
we require that

Eb; E �b � 10 GeV; 5 � �b; � �b � 175;

Rb �b � �0:7;
(3)

where ��R�2 � ����2 � ��	�2 with �� and �	 denot-
ing the separation between the two b-jets in azimuthal
angle and rapidity, respectively.
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For events with the Z decaying into a pair of leptons or
light quarks, we have similar demands on the latter, namely

Ef; E �f � 10 GeV; 5 � �f; � �f � 175: (4)

For leptons, i.e. f � ‘, we require a lepton-lepton separa-
tion:

�R‘�‘� � 0:2 (5)

along with a b–jet-lepton isolation:

�Rb‘ � 0:4 (6)

for each of the four jet-lepton pairings. For f � q, i.e. light
quarks, we impose, instead,

�Rq1q2
� 0:7 (7)

for each of the six pairings. On the other hand, if the Zwere
to decay into neutrinos, the requirements of Eqs. (4)–(7)
are no longer applicable and instead we demand that the
events contain only the two b-jets along with a minimum
missing transverse momentum, viz.

pmiss
T � 15 GeV: (8)

The above set of cuts select the events corresponding to the
process of interest, rejecting most of the QED-driven back-
grounds. To further distinguish between the role of the
Bjorken diagram and that due to the ZZ (WW) fusion in
the case of e�e�H (� ��H) final state we need to select/
deselect the events corresponding to the Z-mass pole. This
is done via an additional cut on the invariant mass of f �f,
viz.

R1 � jmf �f �MZj � 5�Z select Z-pole;

R2 � jmf �f �MZj � 5�Z de-select Z� pole:
(9)

Since an exercise such as the current one would be under-
taken only after the Higgs has been discovered and its mass
measured to a reasonable accuracy, one may alternatively
demand that the energy of the Higgs (reconstructed �bb
pair) is close to �s�m2

H �m
2
Z�=�2

���
s
p
�, namely

R10 � E�H � EH � E�H;

R20 � EH < E�H or EH > E�H;
(10)

where E�H � �s�m
2
H � �mZ � 5�Z�

2�=�2
���
s
p
�. This has

the advantage of being applicable to the � ��H final state
as well. The b-jet tagging efficiency is taken to be 0.7. We
add the statistical error and a presumed 1% systematic
error (accruing from luminosity measurements etc.) in
quadrature. In other words, the fluctuation in the measure-
ment of cross sections is assumed to be

�
 �
������������������������������������

SM=L� �2
2

SM

q
; (11)

while that for an asymmetry is
-4
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FIG. 2 (color online). The region in the �aZ �<�bZ� plane
consistent with 3
 variations in the rates of Eqs. (17) and (18)
for an integrated luminosity of 500 fb�1.
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��A�2 �
1� A2

SM


SML
�
�2

2
�1� A2

SM�
2: (12)

Here 
SM is the SM value of cross section, L is the
integrated luminosity of the e�e� collider, and � is the
fractional systematic error. Since we work in the linear
approximation for the anomalous couplings, any observ-
able, rate or asymmetry, can be written as

O �fBig� �
X
OiBi:

Then we define the blind region as the region in the
parameter space for which

jO�fBig� �O�f0g�j � f�O; (13)

where f is the degree of statistical significance, O�f0g� is
the SM value of O and �O is the statistical fluctuation in
O. All the limits and blind regions quoted in this paper are
obtained using the above relation. Note that in all the cases
that we will consider, the asymmetries vanish identically
within the SM.

B. Cross sections

The simplest observable, of course, is the total rate. Note
that =�bZ�, inspite of being ~T odd, does result in a nonzero,
though small, contribution to the total cross section. This is
but a consequence of the absorptive part in the propagator
and would have been identically zero in the limit of van-
ishing widths. Since we retain contributions to the cross
section that are at best linear in the couplings, the major
nontrivial anomalous contribution, on imposition of the R1
cut, emanates from <�bZ� with only subsidiary contribu-
tions from =�bZ�. For our default choice (a 120 GeV Higgs
at a machine operating at

���
s
p
� 500 GeV), on selecting the

Z-pole (R1 cut) the rates, in femtobarns, are

0
�e�e�� � 1:28� 12:0<�bZ� � 0:189=�bZ�;


������ � 1:25� 11:9<�bZ�;


�u �u=c �c� � 2	4:25� 40:2<�bZ�
;


�d �d=s�s� � 2	5:45� 51:6<�bZ�
:

(14)

On deselecting the Z-pole (R2 cut) we obtain, instead


�e�e�� � 	4:76� 0:147<�bZ�
 fb: (15)

The total rates, by themselves, may be used to put stringent
constraints on<�bZ�. For Z decaying into light quarks and
�’s (with the R1 cut) and for an integrated luminosity of
500 fb�1, the lack of any deviation from the SM expecta-
tions would give

j<�bZ�j � 0:44� 10�2 (16)

at the 3
 level. We do not use the e�e�H final state in
deriving the above constraint as it receives a contribution
proportional to =�bZ� too. This arises from the interference
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of the Bjorken diagram with the ZZ-fusion diagram due to
the presence of the absorptive part in the near-on-shell
Z-propagator.

The cross sections shown in Eqs. (14) and (15) and the
constraint of Eq. (16) have been derived assuming the SM
value for aZ. Clearly, any variation in aZ would affect the
total rates and thus it is interesting to investigate possible
correlations between aZ and <�bZ�. Parameterizing small
variations in aZ as aZ � �1��aZ�, the cross sections can
be reexpressed as


�R1;�; q� � 	20:7�1� 2�aZ� � 196<�bZ�
 fb (17)

and


�R2; e� � 	4:76�1� 2�aZ� � 0:147<�bZ�
 fb; (18)

where 
�R1;�; q� stands for the cross section with R1 cut
with � and light quarks q in the final state, i.e., the
combination used to obtain Eq. (16), and, as before, terms
quadratic in small parameters have been neglected. Using
these two rates we can obtain simultaneous constraints in
the �aZ �<�bZ� plane, as exhibited in Fig. 2. The oblique
lines are obtained using Eq. (17) whereas the almost ver-
tical lines are obtained using Eq. (18). Thus,
�R2; e� alone
can constrain aZ to within a few percent of the SM value. It
is amusing to consider, at this stage, the possibility that
�aZ could have been large, as, for example, happens in the
MSSM. Clearly, the very form of Eqs. (17) and (18) tells us
that this would have amounted to just a twofold ambiguity
with a second and symmetric allowed region lying around
aZ � �1. Since we are interested in the SM like Higgs
boson, we constrain ourselves to region near aZ � 1 as
shown in Fig. 2.

From Eq. (14) and (17) it is clear that the total rates, for
the R1 cut, depend on only one combination of aZ and
<�bZ�, i.e. on
-5
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	1 � 2�aZ � 9:46<�bZ�: (19)

With this combination we can write all the cross sections
given in Eqs. (14) and (17) as
 � 
SM�1� 	1�, where the
limit from Fig. 2 translates to

j	1j � 0:042; (20)

i.e., �4:2% (3
) variation of the rates. This variation can
also be parameterized with j<�bZ�j � 0:0044 keeping
�aZ � 0 or with j�aZj � 0:021 keeping <�bZ� � 0,
(i.e., the intercepts of the solid lines in Fig. 2 on the y
and x axes, respectively). In other words, the individual
limit, i.e. the limit obtained keeping only one anomalous
coupling nonzero, on <�bZ� is 0.0044 and that on �aZ is
0.021. On the other hand, if the R2 cut were to be operative,
we obtain the constraint j�aZj � 0:034 almost indepen-
dent of <�bZ�, see Fig. 2. This constraint translates to a
�6:8% (3
) variation in the rate 
�R2; e�.

Note that the contributions proportional to the absorptive
part of the Z-propagator are proportional to �Z away from
the resonance, i.e. for the R2 cut. Hence in this case it is a
higher-order effect and thus ignored in Eqs. (15) and (18).
On the other hand, near the Z-resonance these terms are
proportional to 1=�Z and hence of the same order in the
perturbation theory. Thus, in order to be consistent at a
given order in the coupling �em we retain these contribu-
tion only with the R1 cut.

C. Forward-backward asymmetry

The final state constitutes of two pairs of identifiable
particles: b �b coming from the decay of Higgs boson and
f �f, where f � b. One can define forward-backward asym-
metry with respect to all the four fermions. But we choose,
among them, the asymmetries with definite transformation
properties under CP and ~T. In the present case we have
only one such forward-backward asymmetry, i.e. the ex-
pectation value of � ~pe� � ~pe�� � � ~pf � ~p �f�. In other words,
it is the forward-backward asymmetry with respect to the
polar angle of the Higgs boson (up to an overall sign) and
given as

AFB�cos�H� �

�cos�H > 0� � 
�cos�H < 0�


�cos�H > 0� � 
�cos�H < 0�
: (21)

This observable is CP odd and ~T even, and hence a probe
purely of of =�~bZ� (see Table I). Note that this asymmetry
is proportional to �r2

e � l
2
e�, where re�le� are the right-(left-)

handed couplings of the electron to the Z-boson. With the
R1 cut—see Eq. (9)—operative, a semianalytical expres-
sion for this asymmetry, keeping only terms linear in the
anomalous couplings, is given by

AFB�cH� �

8>>><>>>:
0:059<�~bZ��1:22=�~bZ�

1:28 �e�e��
�1:2=�~bZ�

1:25 ������
�18:5=�~bZ�

19:4 �q �q�

: (22)
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In the above, ‘‘q’’ stands for all four flavors of light quarks
summed over and cH � cos�H. Note here, that the contri-
bution to the denominator of Eq. (21) from the anomalous
terms have been dropped as the formalism allows us to
retain terms only upto the first order in these couplings. In
any case, their presence would have had only a miniscule
effect on the ensuing bounds. The asymmetry correspond-
ing to the R2 cut is very small and is not considered.
Omitting the (e�e�) final state on account of the presence
of <�~bZ�, we use only the light quarks and �’s. For an
integrated luminosity of 500 fb�1, the corresponding 3

limit is

j=�~bZ�j � 0:038: (23)

It is interesting to speculate as to the sensitivity of the a
forward-backward asymmetry constructed with respect to
the angle subtended by, say, the b-jet, rather than that for
the reconstructed H. Since the b-quarks are spherically
distributed in the rest frame of Higgs, their angular distri-
butions track that of the Higgs boson, modulo some smear-
ing (see Fig. 3). This is as true for the anomalous
contribution as for the SM. The smearing only serves to
decrease the sensitivity as is evinced by the forward-
backward asymmetries constructed with respect to �b,
the polar angle of the b-quark. For events corresponding
to the R1 cut, this amounts to

AFB�cb� �

8>>><>>>:
0:0489<�~bZ��0:909=�~bZ�

1:28 �e�e��
�0:892=�~bZ�

1:25 ������
�13:8=�~bZ�

19:4 �q �q�

:

Using final states with �’s or light quarks, one may then
use AFB�cb� to probe down to

j=�~bZ�j � 0:051
-6
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at 3
 level, for an integrated luminosity of 500 fb�1, and
assuming all the other anomalous couplings to be zero. It is
not surprising that the sensitivity is lower as compared to
that of AFB�cH�—see Eq. (23)—for �b carries only sub-
sidiary information leading to a reduction in the size of the
asymmetry. Put differently, the distribution for the b is
identical to that for the �b (thereby eliminating the need
for charge measurement) and each is driven primarily by
�H.

Note that we have desisted from using the nonzero
forward-backward asymmetry in the polar angle distribu-
tion of f� �f�. Such observables do not have the requisite
CP-properties and are, in fact, nonzero even within the
SM. The presence of nonzero =�~bZ� provides only an
additional source for the same and the limits extractable
would be weaker than those we have obtained.

D. Up-down asymmetry

The Higgs being a spin-0 object, its decay products are
isotropically distributed in its rest frame. This, however, is
not true of the Z. Still, CP conservation ensures that the
leptons from Z decay are symmetrically distributed about
the plane of production. Thus, an up-down asymmetry
defined as

AUD��� �

�sin�> 0� � 
�sin�< 0�


�sin�> 0� � 
�sin�< 0�
(24)

can be nonzero for the anomalous couplings. In other
words, a nonzero expectation value for 	� ~pe� � ~pe�� �
~pH
 � � ~pf � ~p �f� is a CP odd (and ~T odd) observable. In
our notation, it is driven by the nonzero real part of ~bZ, and,
for our choice of parameters, amounts to

AUD��e�� �
�0:354<�~bZ� � 0:226=�~bZ�

1:28
;

AUD����� �
�0:430<�~bZ�

1:25
;

AUD��u� �
�4:62<�~bZ�

4:25
;

AUD��d� �
�7:98<�~bZ�

5:45

(25)

up to linear order in the anomalous couplings. In obtaining
Eq. (25), the R1 cut has been imposed on the f �f invariant
mass. Note that, except for the e�e�H final state, AUD is a
probe purely of <�~bZ�. The cross section for the e�e�H
final state receives additional contribution from =�~bZ� due
to the absorptive part of the Z-propagator in the Bjorken
diagram. Although AUD��u� and AUD��d� offer much
larger sensitivity to <�~bZ� than do either of AUD��e��
and AUD�����, the former can not be used as the measure-
ment of such asymmetries requires charge determination
for light quark jets. However, one can determine the charge
of b-quarks [32] and using AUD��b�, for the b’s resulting
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from the Z decay, we may obtain, for an integrated lumi-
nosity of 500 fb�1, a 3
 bound of

j<�~bZ�j � 0:042

with 100% charge determination efficiency and only

j<�~bZ�j � 0:089

if the efficiency were 20%. Note though that the Z! b �b
final state is beset with additional experimental complica-
tions (such as final state combinatorics) than the semilep-
tonic channels and hence we would not consider this in
deriving our final limits. Note that we do not account for
any combinatorics in obtaining the above said limits.
However, we argue that the invariant masses of the b �b
pair coming from Z and H are nonoverlapping hence the
change in the above limits due to combinatorics are ex-
pected to be small.

Another obvious observable is AUD�����. Using this, an
integrated luminosity of 500 fb�1, would lead to a 3

constraint of

<�~bZ�j � 0:35: (26)

The reduced sensitivity of the Z! ���� channel as
compared to the Z! b �b channel is easy to understand.
As Eq. (B5) demonstrates, AUD��f� / �r

2
e � ‘

2
e��r

2
f � ‘

2
f�.

Since jr�j � j‘�j, this naturally leads to an additional
suppression for AUD�����.

For the e�e�H case, on the other hand, the ZZ-fusion
diagram leads to a contribution that is proportional to �r2

e �
‘2
e�

2 and is, thus, unsuppressed. Accentuating this contri-
bution by employing the R2 cut on mee, we have

AR2
UD��e�� �

5:48<�~bZ�
4:76

(27)

and this, for an integrated luminosity of 500 fb�1, leads to
a 3
 constraint of

j<�~bZ�j � 0:057: (28)

Here we note that the limit on<�~bZ�, obtained using the R2
cut given above, is much better than the one obtained using
R1 cut in Eq. (26), or even the one derived from the 4b final
state assuming a 20% charge detection efficiency.

E. Combined polar and azimuthal asymmetries

Rather than considering individual asymmetries involv-
ing the (partially integrated) distributions in either of the
polar or the azimuthal angle, one may attempt to combine
the information in order to potentially enhance the sensi-
tivity. To this end, we define a momentum correlation of
the form

C1 � 	� ~pe� � ~pe�� � ~p��
		� ~pe� � ~pe�� � ~pH


� � ~p�� � ~p���
; (29)
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FIG. 4 (color online). Region in <�~bZ� � =�bZ� plane corre-
sponding to the 3
 variation of asymmetries. Slant lines are for
A���;��� and the vertical lines are for AUD with an integrated
luminosity of 500 fb�1. The horizontal limit shown are due to
Acom for e� and �� in the final state.
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where the sign of the term in the first square bracket
decides if the�� is in forward (F) hemisphere with respect
to the direction of e� or backward (B). Similarly, the sign
of the term in second square bracket defines if �� is above
(U) or below (D) the Higgs production plane. Thus the
expectation value of the sign of this correlation is same as
the combined polar-azimuthal asymmetry given by,

A���;��� �
�FU� � �BD� � �FD� � �BU�
�FU� � �BD� � �FD� � �BU�

�
0:659=�bZ� � 0:762<�~bZ�

1:25
(30)

with the second equality being applicable for the R1 cut. In
the above, �FU� is the partial cross sections for �� in the
forward-up direction and so on for others. Note that C1 is ~T
odd but does not have a definite CP and hence depends on
both the ~T-odd couplings as seen in Eq. (30). We do not
consider the analogous asymmetry for q �qH final state as it
demands charge determination for light quarks (although
Z! b �b may be considered profitably). Similarly, for the
e�e�H final state, A��e;�e� receives contributions from
~T-even couplings as well and hence not considered for the
analysis.

Using this ~T-odd asymmetry along with AUD,<�~bZ� and
=�bZ� can be constrained simultaneously. Figure 4 shows
the limit on =�bZ� as a function of <�~bZ�.

F. Another asymmetry

Similar to the previous subsection, we can define a
CP-even and ~T-odd correlation as

C2 � 	� ~pe� � ~pe�� � ~pZ
		� ~pe� � ~pe�� � ~pH


� � ~pf � ~p �f�
; (31)
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which is a probe of the CP-even and ~T-odd coupling
=�bZ�. Here, the sign of the term in the first square bracket
decides whether the Higgs boson is in the forward (F0) or
backward (B0) hemisphere, while the sign of the term in the
second square bracket indicates if f is above (U) or below
(D) the Higgs production plane. The expectation value of
the sign of C2 can thus be expressed as an asymmetry of the
form

Acom �
�F0U� � �B0D� � �F0D� � �B0U�
�F0U� � �B0D� � �F0D� � �B0U�

: (32)

The semianalytical expression for this asymmetry for R1
cut is given by

Acom
� �

0:766=�bZ�
1:25

;

Acom
e �

0:757=�bZ� � 0:048<�bZ�
1:28

;

Acom
b �

14:2=�bZ�
5:45

:

(33)

Using final states with either electrons or muons, we would
obtain a 3
 limit of

j=�bZ�j � 0:14; (34)

for 500 fb�1 of integrated luminosity and maintaining all
the other form-factors to be zero. This limit is better than
the one obtained in the preceding subsection.

Once again, inclusion of the Z! b �b channel, i.e. a
measurement of Acom

b , would improve the situation dra-
matically even for a nominal charge detection efficiency.
For example, an efficiency as low as just 20%, is enough to
obtain

j=�bZ�j � 0:050:

We reemphasize though that our final results do not exploit
this possibility.

We also note that the sensitivity to the ~T-odd couplings
is large for f � q as compare to f � ‘. As the expressions
in the Appendix B demonstrate, AUD, with the R1 cut
operational, is proportional to �l2e � r2

e��l2f � r
2
f� and Acom

is proportional to �l2e � r2
e��l2f � r

2
f�. Thus, for f � ‘, the

asymmetries are proportional to at least one power of �l2e �
r2
e� where jrej � jlej and hence are smaller compared to

those for the f � q case.

G. Summary of limits on the ZZH couplings

In the preceding five subsections we discussed observ-
ables which will be able to probe each of the five anoma-
lous ZZH couplings. The ensuing limits are summarized in
Table II.

Several points are in order here

(a) R
-8
ecall that, of the five anomalous terms, only two
viz. �aZ and <�bZ�, have identical transformations
under both CP and ~T. Consequently, the contribu-



TABLE II. Limits on anomalous ZZH couplings from various
observables at 3
 level at an integrated luminosity of 500 fb�1.

Coupling 3
 Bound Observable used

j�aZj 0.034 
 with R2 cut; f � e�

j<�bZ�j

8>>><>>>:
0:0044
��aZ � 0�

0:012
�j�aZj � 0:034�


 with R1 cut; f � �; q

j=�bZ�j 0.14 Acom with R1 cut; f � ��; e�

j<�~bZ�j 0.057 AUD��e�� with R2 cut
j=�~bZ�j 0.038 AFB�cH� with R1 cut;

f � �; q
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tions proportional to the two are intertwined and can
only be partially separated. In fact, the most general
limits on these two are to be obtained from Fig. 2.
(b) A
s for the other three couplings, we have been able
to construct observables that are sensitive to only a
single coupling, thereby disengaging each of the
corresponding bounds in Table II from contamina-
tions from any of the other couplings.
(c) T
he polar-azimuthal asymmetry, A��;��, is sensi-
tive to ~T-odd couplings. However, the limits ob-
tained using � final state alone are weaker than
the ones obtained by combining AR2

UD and Acom (see
Fig. 4). Inclusion of electrons in the final state will
improve the sensitivity of A��;��, but only at the
cost of contamination by the ~T-even ZZH cou-
plings. Thus, in our present analysis, the role of
A��;�� is only a confirmatory one.
(d) N
ote, however, that many of these asymmetries are
proportional to �l2e � r2

e� � �1� 4sin2�W�. Since
this parameter is known to receive large radiative
corrections, the importance of calculating higher-
order effects cannot but be under-emphasized.
(e) O
bservables constraining ~T-odd couplings required
charge determination of fermion f in the f �fH�b �b�
final state thereby eliminating (the dominant) f � q
final states from the analysis. This explains a rela-
tively poor limit on =�bZ�. For f � �, the process
involves WWH couplings as well. This is discussed
in the next section.
IV. THE WWH COUPLINGS

As discussed at the beginning of the last section, the
contribution from nonstandard ZZH couplings to the
� ��H�b �b� final state is not negligible even if on-shell Z
production is disallowed by imposing the aforementioned
R2 cut. With the neutrinos being invisible, we are left with
only two observables: the total cross section and the
forward-backward asymmetry with respect to the polar
angle of the Higgs boson. The deviation from the SM
expectations for the cross section depends mainly on
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�aV and <�bV�. Similarly, the forward-backward asym-
metry can be parameterized, in the large, by just =�~bV�.
The contribution of the other couplings, viz. =�bV� and
<�~bV�, to either of these observables are proportional to
the absorptive part of Z-propagator and are understandably
suppressed, especially for the R2 cut.

Now, irrespective of the CP properties of the Higgs, its
decay products are always symmetrically distributed in its
rest frame. In addition, the momentum of the individual
neutrino is not available for the construction of any ~T-odd
asymmetry. Consequently, we do not have a direct probe of
=�bV� and <� ~bV�, i.e. the ~T-odd couplings.

The event selection criteria we use are the same as in
previous section except that the cuts of Eqs. (4) and (6) are
replaced by that of Eq. (8). Imposing �aW � �aZ � �a
as argued for earlier, the resultant cross section, for the R10

cut, can be parameterized as


1 � 	7:69�1� 	1� � 1:89=�bZ� � 0:458<�bW�

� 0:786=�bW�
 fb; (35)

while the R20 cut would lead to


2 � 	52:1�1� 2�a� � 6:99<�bZ� � 0:162=�bZ�

� 19:5<�bW�
 fb: (36)

Note here that the same 	1 � 2�a� 9:46<�bZ� as de-
fined in Eq. (19) appears above owing to the assumption
�aW � �aZ � �a. As the contributions proportional to
=�bV� appear due to interference of the WW-fusion dia-
gram with the absorptive part of the Z-propagator in
Bjorken diagram, formally, these terms are at one order
of perturbation higher than the rest. Note that the bounds in
Table II imply that

j6:99<�bZ� � 0:162=�bZ�j � 0:0839

and hence the corresponding contribution to 
2 is at the
per-mille level. Since we are not sensitive to such small
contributions, we may safely ignore this combination for
all further analysis. Looking at fluctuations in 
2, the 3

bound would, then, be

j2�a� �19:5=52:1�<�bW�j � 0:035: (37)

The limits on <�bW� and �a are thus strongly correlated
and displayed in Fig. 5. Note that a complementary bound
on �a had already been obtained in Section III B. If we
assume that, of these two couplings, only one is nonzero,
the corresponding individual limits would be j<�bW�j �
0:097 (if �a � 0) and, similarly, j�aj � 0:017 (if
<�bW� � 0). Interestingly, the last mentioned bound is
twice as strong as that obtained in Sec. III B. Of course,
had we not made the assumption of �aW � �aZ, or made
a different assumption, the bounds derived above (and
Fig. 5) would have looked very different.
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TABLE III. Individual limits on anomalous WWH couplings
from various observables at 3
 level at an integrated luminosity
of 500 fb�1.

Coupling Limit Observable used

j�aj � 0:017 
2

j<�bW�j � 0:094 
2

j=�bW�j � 0:56 
1

j<�~bW�j � 1:4 A1
FB�cH�

j=�~bW�j � 0:37 A2
FB�cH�
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FIG. 5 (color online). Region of �a�<�bW� plane corre-
sponding to 3
 variation of 
2 for L � 500 fb�1. The vertical
line shows the limit on �aZ from Fig. 2.
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Having constrained <�bW�, we may now use 
1 to
investigate possible bounds on =�bW�. To this end, it is
useful to define a further subsidiary variable �1 as

�1 � 7:69	1 � 1:89=�bZ�; j�1j � 0:604 (38)

with the inequality having been derived using Table II. The
corresponding constraint in the <�bW�–=�bW� plane is
shown in Fig. 6 for various representative values of �1.
Clearly, the contamination from the ZZH couplings is very
large and inescapable. Any precise measurement of=�bW�,
in the present case, requires very accurate determination of
the ZZH vertex. The individual limit on =�bW�, for �1 �
<�bW� � 0 is given in Table III.
-1.5
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0
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1
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b(
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W
)

Re(bW)

κ1 = -0.6

κ1 = 0.6

κ1 = 0.0

FIG. 6 (color online). Region of =�bW� � <�bW� plane corre-
sponding to 3
 variation of 
1 for �1 � 0:0 (big-dashed line),
0.6 (solid line) and �0:6 (small-dashed line). Vertical lines show
limit on <�bW� obtained from Fig. 5 for �a � 0.
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Next, we look at the forward-backward asymmetry with
respect to cH which, for our cuts, we find to be

A1
FB�cH� � 	�1:20<�~bZ� � 7:11=�~bZ� � 0:294<�~bW�

� 0:242=�~bW�
=7:69 (39)

for the R10 cut, while for the R20 cut it is

A2
FB�cH� � 	3:55=�~bZ� � 4:00=�~bW�
=52:1: (40)

Clearly A2
FB is the one that is more sensitive to =�~bW�.

Once again, there is a strong correlation with =�~bZ�, which
of course has already been constrained (in Sec. III C) from
a consideration of similar forward-backward asymmetries
in the b �bq �q and b �b���� channels. The resultant con-
straint in the =�~bW�–=�~bZ� plane is displayed in Fig. 7.
And assuming a vanishing =�~bZ�, the individual limit on
=�~bW� is 0.37.

The only coupling that remains to be constrained at this
stage is <�~bW�. While A1

FB does depend on this parameter,
it, unfortunately, also depends on the other three CP-odd
anomalous coupling as well. However, since the lack of
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FIG. 7 (color online). Regions of =�~bZ� � =�~bW� plane corre-
sponding to 3
 variation of A2

FB�cH�. The vertical line denote
limits on =�~bZ� from Table II.
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TABLE IV. Simultaneous limits on anomalous WWH cou-
plings from various observables at 3
 level at an integrated
luminosity of 500 fb�1.

Coupling �a � 0 �a � 0

j�aj � – 0.034
j<�bW�j � 0.097 0.28
j=�bW�j � 1.4 1.4
j<�~bW�j � 2.8 2.8
j=�~bW�j � 0.40 0.40
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FIG. 8 (color online). Regions of <�~bW� � =�~bW� plane cor-
responding to 3
 variation of A1

FB�cH� for �3 � 0(solid lines),
0.353 (big-dashed lines) and �0:353 (small-dashed lines). The
vertical line is the limit on =�~bW� from Fig. 7.
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sufficient kinematic variables prevent us from constructing
another CP-odd observables, we are forced to use A1

FB

alone, despite its low sensitivity to <�~bW�. Collecting all
the relevant ZZH vertex dependence into one variable by
defining

�3 � 1:20<�~bZ� � 7:11=�~bZ�; (41)

we have

A1
FB�cH� � 	��3 � 0:294<�~bW� � 0:242=�~bW�
=7:69;

j�3j � 0:353:

The inequality is a consequence of the bounds derived in
the previous section (see Table II). In Fig. 8, we show the
limit on <�~bW� as a function of =�~bW� for three represen-
tative values of �3, namely �3 � 0:00;�0:353. The most
general limit on <�~bW� can then be gleaned from this
figure.

Note that, unlike in the case of the ZZH couplings, we
have largely been unable to construct observables that are
primarily dependent only on a given anomalous coupling.
In other words, the constraints are correlated. Thus, it is of
interest to obtain the maximal size that these couplings
may assume with the aid of such correlations. Such an
analysis may be performed by examining the 9-
dimensional parameter space (i.e., both ZZH and WWH
couplings) and delineating the part that would be consis-
tent with all the observables to a given level of confidence.
Clearly, the lack of correlations for the ZZH couplings
renders the blind region to be trivial in five of the nine
dimensions and the extent of these remain the same as in
Table II. The most general simultaneous limits on the
anomalous WWH couplings obtained using this method
are presented in Table IV for both �a � 0 and �a � 0.
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For the ~T-even couplings, such limits are comparable to the
corresponding individual limits (Table III) with only a
small dilution due to contamination from ZZH vertex.
For the ~T-odd couplings, however, the lack of any ~T-odd
observable results in a possibly large contamination from
ZZH vertex. Consequently, the limits on=�bW� and<�~bW�
are only ‘‘indirect’’ and hence poor. Finally, the effect of a
nonzero �a is seen only in <�bW� due to the large corre-
lation between them (see Fig. 5).
V. DISCUSSIONS

We have constructed observables which, due to their CP
and ~T transformation properties, receive contributions only
from specific anomalous couplings with matching CP and
~T properties. Thus, most of the observables we construct
are sensitive only to a single anomalous coupling. This
one-to-one correspondence between the observable and the
anomalous coupling allows us to obtain a robust constraint
on the latter, independent of the values of all the other
anomalous couplings. Thus we see from Tables II, III, and
IV that the individual and simultaneous limits are the same
(or very similar) in most cases. The observables we con-
struct are also very simple from the point of view of
experimental measurements. In other words, they are
both very physical and easily implementable in actual
experiments.

It should also be noted that the limits that we quote on
the anomalous couplings, other than those on <�bV�, are
obtained using only asymmetries. In general, asymmetries
are more robust with respect to the effects of radiative
corrections, except in situations where the tree level con-
tributions are accidentally small. This also means that we
have a clear indication as to which observables bear a
tighter scrutiny while assessing the effect of radiative
corrections. Available calculations of higher-order correc-
tions, in the SM [33], to the processes under consideration
show that the total rates receive a correction less than 3%
for a Higgs with mass about 120 GeV, thus validating our
choice of aV � 1��aV . Since radiative corrections to the
processes we consider have been computed not only in the
SM [33] but also for the MSSM [34], assessing the effects
of these on the rates and asymmetries and hence on the
sensitivity for the anomalous couplings will be the next
-11
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logical step of this analysis which has shown efficacy of
these variables to probe these couplings.

Furthermore, in our analysis, we have imposed simple
cuts on the kinematic variables which virtually eliminate
the non-Higgs backgrounds to the particular final states
under consideration. Since the latter involve b jets, we fold
our results with realistic b-tagging efficiencies. In addition,
certain cuts also serve to enhance/suppress particular con-
tributions to the signal. For example, the additional cuts R1
and R2 were introduced to enhance the contribution from
s-channel and t-channel diagrams, respectively. If we look
at the observables pertaining to the ZZH vertex, then all the
couplings, except for <�~bZ�, are best constrained with R1
cut, i.e, via the Bjorken diagram when Z boson is produced
on shell. The contributions from =�bZ� and =�~bZ� are
proportional to �r2

e � l2e�, and hence are small away from
the Z-pole. For <�~bZ�, however, the contribution from the
t-channel is roughly proportional to �r4

e � l4e� hence an
analysis with the R2 cut provides a better limit.

The situation is more complicated for the WWH cou-
plings. While the relevant final state, namely � ��H, receives
large contributions from ~T-odd coupling, the impractical-
ity of measuring the momentum of an individual neutrino
prevents us from isolating such contributions. Con-
sequently, we are left with just two observables, which,
coupled with R10 and R20 cuts, provide probes of the
~T-even couplings. The bounds on the ~T-odd couplings
are indirect and hence suffer from reduced sensitivity.
Furthermore, the contributions from nonzero anomalous
ZZH couplings cannot be eliminated in their entirety and
are treated as contaminations in the determination of the
WWH couplings. Together, these two factors result in the
bounds on the two ~T-oddWWH couplings to be as weak as
order unity. Note though that our entire formalism presup-
poses that the anomalous couplings are small and thus
these limits on <�~bW� and =�bW� are of little value.

It is instructive to compare the results of our analysis
with those of earlier investigations. Ref. [22] had analyzed
the case of ZZH couplings with (out) initial beam polar-
ization. We find that the effect of realistic cuts on kinematic
variables required to isolate the signal with the dominant
final state with b �b as well as the finite b-tagging efficiency,
reduces the possible limits on ~bZ by about a factor of 2,
compared to the ones quoted in Ref. [22] with unpolarized
beams. Needless to say, if the reduction in rates implied by
these cuts is neglected, our analysis does reproduce the
results of Ref. [22].

In Ref. [20], an optimal observable analysis [21] is
performed, including along with an additional anomalous
Z�H coupling. While such optimal variable analyses gen-
erally indicate the maximum achievable sensitivity, the
observables constructed very often remain a little opaque
with respect to the physics they probe. The parameteriza-
tion of Ref. [20] is quite different from ours. Still, making
use of the correlation matrices given by them, and putting
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the Z�H coupling to zero, one may extract the limits their
analysis will imply for our parameterization. Doing this,
we find that, for the ~T-even couplings, our limits compare
quite well with those obtained in the analysis of Ref. [22],
implying thereby that our simple ~T observables indeed
catch the physics content of their optimal observables in
this case. For the ~T-odd couplings, our use of simple
observable like the expectation value of sign of C1;2 rather
than the expectation value of the momentum correlator,
hC1;2i causes a loss in sensitivity only by a factor 4. Given
the fact that some of this is attributable to our use of
realistic kinematic cuts, b-tagging efficiencies etc, this is
a very modest price to pay for the simplicity of the ob-
servable. The optimal observable analysis shows that the
use of Z! b �b and Z! �� final states and polarization
of the beams can improve the sensitivity significantly. This
is a very good motivation for constructing analogous sim-
ple observables similar to the ones constructed here.

To summarize, we have looked at the Higgs production
processes at an e�e� collider involving VVH coupling.
We constructed several observables with appropriate CP
and ~T properties to probe various anomalous couplings
incorporating realistic cuts and detection efficiencies.

Using these observables in the context of ZZ fusion and
Higgstrahlung processes, we obtain stringent but realistic
bounds on the various anomalous ZZH couplings, even
while allowing for maximal cancellations between the
various individual contributions. As for the WWH cou-
plings, their effects cannot be fully isolated from those of
the ZZH couplings. Nonetheless, we are able to derive
quite stringent bounds for the ~T-even subset even while
accounting for maximal contamination from theZZH sec-
tor. On the other hand, the lack of suitable ~T-odd observ-
ables render the limits on the ~T-odd WWH couplings to be
only indirect and thus poor. We reemphasize that all our
asymmetries are simple to construct, have specific CP and
~T properties to probe specific anomalous coupling, and are
robust against both the radiative correction to the rates as
well as systematic errors.
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APPENDIX A: PARTIAL CROSS SECTIONS AND
ANOMALOUS COUPLINGS

As mentioned in Sec. II B, the total cross section for
e�e� ! f �fH receives contributions only from CP-even
and ~T-even couplings �aV and <�bV�, while the other
couplings contribute to partial cross section in such a
way that their net contribution to the total rate is zero. In
our analysis so far, we considered appropriately chosen
partial cross sections and combined them to construct
asymmetries. In its stead, we could, in principle, have
considered just the partial cross sections themselves and
investigated their resolving power. This, we attempt now.

To start with, we look at e�e� ! ����H and con-
strain the Higgs boson to be in the forward direction
( cos�e�H > 0) and �� to be above the Higgs production
plane ( sin�� > 0). This partial cross section, called ‘‘-
forward-up’’ and denoted by �F0U� in Sec. III F, is plotted
as a function of Ecm in Fig. 9 for the SM. Also shown are
the corresponding cross sections when only one anomalous
coupling is nonzero. The large values of the anomalous
couplings have been chosen to highlight the differences.

We see that all four anomalous couplings contribute to
the �F0U� partial cross section, which can now be parame-
trized as


F0U � 
0 �<�bZ�
1 �=�bZ�
2 �<�~bZ�
3

�=�~bZ�
4: (A1)

If only one anomalous coupling Bi were to be nonzero,
then the measurement of this partial cross section would be
sensitive to
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FIG. 9 (color online). Partial cross sections as a function of
c.m. energy for the process e�e� ! ����H with Higgs boson
in the forward direction and the final state �� above the Higgs
boson’s production plane. A Higgs boson of mass 120 GeV is
assumed.

035001
jBij �
d

j
ij

����������������������������

0

L
� �2�
0�2

s
: (A2)
Here d is the degree of statistical significance, L is the
integrated luminosity of the e�e� collider and � is the
fractional systematic error. In Fig. 10, we show a simple
(d � 1; � � 0:01) limit on anomalous couplings, obtained
using Fig. 9, for an integrated luminosity of 500 fb�1. A
measurement of 
F0U will thus be sensitive to values of Bi
lying above the corresponding curve.

A similar exercise can be done for e�e� ! e�e�H, and
in Fig. 11(a) we display the �F0U� partial cross section for
the same as a function of the center-of-mass energy. The
presence of an additional t-channel diagram changes the
Ecm behavior of the partial cross section and hence that of
the limits that could be inferred in a fashion analogous to
Fig. 9.

For <�~bZ� and =�~bZ�, the 3
 bounds of Table II are
much better than the 1
 limits shown in Fig. 10. This
indicates that asymmetries with appropriate symmetry
properties and combinations of various final states can be
used efficiently to obtain stringent constraints on anoma-
lous couplings.

For =�~bZ�, on the other hand, the limit obtained using
Acom
� is only comparable to the one obtained using just the

partial rate 
�F0U� after accounting for degrees of signifi-
cance. However, the limit from 
�F0U� is subject to the
assumption that all other anomalous couplings are zero,
while the one obtained using Acom

� is independent of any
other anomalous coupling. Once again this underscores the
importance of specific observables, such as Acom, which
receive a contribution from only one of the anomalous
coupling, thus allowing us to obtain a robust constraint.
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FIG. 10 (color online). Limits on various nonstandard coupling
obtained using Eq. (A2) with d � 1 and � � 0:01 for an inte-
grated luminosity of 500 fb�1 and using cross sections shown in
Fig. 9.
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And finally, we look at the e�e� ! �e ��eH channel,
where both WWH and ZZH vertices contribute thus dou-
bling the number of anomalous couplings involved. Since
the final state fermions, the neutrinos, are not detectable, it
is meaningless to construct the partial cross section �F0U�.
Instead we add �F0U� and �F0D� to form the ‘‘forward’’
cross section, i.e. the Higgs boson is constrained to be in
the forward direction, and the Ecm dependence is displayed
in Fig. 11(b). The size of the anomalous contribution in
these figures gives an idea about the sensitivity to that
particular coupling.

APPENDIX B: EXPRESSIONS FOR jM2j

In this appendix, we list the square of invariant matrix
element for the various processes considered in the text. To
begin with, we define the fermion-Z vertices by

ig���
2
p ���‘ePL � rePR�:
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In considering a process such as e��p1�e��p2� !
f�p3� �f�p4�h�p5�, it is further convenient to devise a nota-
tion for scalar products such as

sij � pi � pj; A � ���
�p
�
1 p

�
2p



3 p

�
4 (B1)

and similarly for the multitude of propagators that one
encounters, namely

S ij � ��pi � pj�
2 �m2

Z � i�ZmZ�
�1; (B2)

Z ij � ��pi � pj�2 �m2
Z � i�ZmZ�

�1; (B3)

W ij � ��pi � pj�
2 �m2

W � i�WmW�
�1; (B4)

we have, for where f�� e; �e� is any massless fermion,
jMj2 � g4jS12S34j
2	jaZj

2f�‘2
e‘

2
f � r

2
er

2
f�s14s23 � �‘

2
er

2
f � r

2
e‘

2
f�s13s24g �

<�aZb�Z�

m2
Z

��‘2
e‘

2
f � r

2
er

2
f��s14 � s23�

� fs13s24 � s12s34 � s14s23g � �‘
2
er

2
f � r

2
e‘

2
f��s13 � s24�fs14s23 � s12s34 � s13s24g�

�
=�aZb�Z�

m2
Z

A��‘2
e‘

2
f � r

2
er

2
f��s14 � s23� � �r

2
e‘

2
f � ‘

2
er

2
f��s13 � s24��

�
<�aZ eb�Z�
m2
Z

A��‘2
e‘2
f � r

2
er2
f��s14 � s23� � �‘2

er2
f � r

2
e‘2
f��s13 � s24��

�
=�aZ eb�Z�
m2
Z

��‘2
e‘

2
f � r

2
er

2
f��s23 � s14�fs12s34 � s13s24 � s14s23g � �r

2
e‘

2
f � ‘

2
er

2
f��s13 � s24�

� fs12s34 � s14s23 � s13s24g�
: (B5)
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For f � e, the expressions are a bit more complicated, and

jMj2 � g4	RSjS12S34j
2 �RTjZ13Z24j

2 � 2 Re�RIS
�
12S

�
34Z13Z24�
; (B6)

where

RS � jaZj
2	2‘2

er
2
es13s24 � �‘

4
e � r

4
e�s14s23
 �

=�aZb�Z�

m2
Z

�‘4
e � r

4
e�A�s14 � s23�

�
<�aZb�Z�

m2
Z

	�‘4
e � r

4
e��s14 � s23�fs12s34 � s13s24 � s14s23g � 2‘2

er
2
e�s13 � s24�fs12s34 � s13s24 � s14s23g


�
=�aZ eb�Z�
m2
Z

�‘4
e � r4

e��s14 � s23�fs12s34 � s13s24 � s14s23g
<�aZ eb�Z�
m2
Z

A	�‘4
e � r4

e��s14 � s23� � 2‘2
er2
e�s13 � s24�
;

(B7)

R T � jaZj2	�‘4
e � r4

e�s14s23 � 2‘2
er2
es12s34
 �

=�aZb
�
Z�

m2
Z

�r4
e � ‘4

e�A�s14 � s23� �
<�aZb

�
Z�

m2
Z

	�‘4
e � r4

e��s14 � s23�

� f�s12s34 � s13s24 � s14s23g � 2‘2
er2
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 �

=�aZ eb�Z�
m2
Z

�r4
e � ‘4

e��s23 � s14�
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<�aZ eb�Z�
m2
Z

A	�‘4
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er2
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RI � �jaZj
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e�s14s23 �
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m2
Z
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And finally, for f � �e,

jMj2 � g4	‘2
�RSjS12S34j

2 �RT jW 13W 24j
2 � ‘�‘e<�RIS

�
12S

�
34W 13W 24�
; (B9)

where

RS � jaZj
2	‘2
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2
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m2
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RI � �2aWa�Zs14s23 �
aWb

�
Z

m2
Z

	�s14 � s23�fs12s34 � s13s24 � s14s23g � iA�s14 � s23�


� i
aW eb�Z
m2
Z
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: (B12)

In the propagators, we ignore the contribution proportional to �V except for S34, which goes on shell, and cannot be
ignored, in general.
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