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Comprehensive search for the �� pentaquark on the lattice
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We study spin 1=2 isoscalar and isovector, even and odd parity candidates for the ���1540� pentaquark
particle using large scale lattice QCD simulations. Previous lattice works led to inconclusive results
because so far it has not been possible to unambiguously identify the known scattering spectrum and tell
whether additionally a genuine pentaquark state also exists. Here we carry out this analysis using several
possible wave functions (operators). Linear combinations of those have a good chance of spanning both
the scattering and pentaquark states. Our operator basis is the largest in the literature, and it also includes
spatially nontrivial ones with unit orbital angular momentum. The cross correlator we compute is 14� 14
with 60 nonvanishing elements. We can clearly distinguish the lowest scattering state(s) in both parity
channels up to above the expected location of the pentaquark, but we find no trace of the latter. Based on
that we conclude that there are most probably ( � 2�=6� levels in the negative/positive parity channels)
no pentaquark bound states at our quark masses, corresponding to m� � 400–630 MeV. However, we
cannot rule out the existence of a pentaquark state at the physical quark mass corresponding to m� �
135 MeV or pentaquarks with a more exotic wave function.
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I. INTRODUCTION

One of the mysteries of hadronic physics has been the
failure to observe baryon states with quantum numbers that
cannot be explained in terms of three quarks. However, for
a long time this was not considered to be a practical
problem due to the presumed large decay width of these
exotic baryons. The experimental signal of the ���1540�
particle [1–12] changed this situation dramatically. Indeed,
the experimental upper bound so far on the width of the ��

is around 10 MeV. This remarkably narrow width would
also explain why the �� has not been seen before. Since
the �� was observed to decay into a neutron and a K�, its
strangeness has to be�1, the third component of its isospin
is 0, and its minimal quark content is dduu �s. From the lack
of a signal in the I3 � 1 channel the SAPHIR collaboration
concluded that the �� is most probably an isospin singlet
state [3]. Its spin and parity cannot be pinned down based
on currently available experimental data.

Though the ���1540� is seen experimentally in low
energy exclusive processes, there are a number of (e�e�

or high-energy proton collision) experiments, where the
���1540� is not seen [13–20]. The different kinematical
and experimental conditions between the low energy ex-
clusive experiments (with experimental evidence for ��)
and the inclusive experiments (usually nonobservations) do
not allow a direct comparison so that the null results do not
prove that the positive experiments are wrong [21]. Never-
theless, it is fair to say that the experimental situation is not
perfectly clear at the moment. Since there are only single
experimental indications of other exotic pentaquarks (the
possible ����1860� state reported by the NA49 experi-
ment at CERN [22] and the charmed pentaquark identified
06=73(3)=034506(11)$23.00 034506
by the H1 experiment at DESY [23]) their existence is even
more debated than that of the ���1540�.

Originally, the experimental search for the ���1540�
was largely motivated by the chiral soliton model [24] that
predicted for the first time in 1997 a mass of 1530 MeVand
a width of less than 30 MeV for this exotic S � �1 baryon
(for an earlier estimate of the mass in the soliton approach
see [25]). The experimental evidence of the �� pentaquark
triggered a flurry of theoretical speculations about its pos-
sible structure, yet unmeasured quantum numbers and on
the possibility of the existence of other exotic hadrons. A
particularly popular and successful approach is based on
different types of quark models [26–28]. Attempts have
been made to understand the experimental findings by
means of baryon-meson bound states [29] as well as
QCD sum rules [30].

These models substantially differ in the properties they
predict for the pentaquark state. For example, several
models predict positive parity, while other approaches
insist on negative parity. Clearly, it is of utmost importance
to study the ���1540� without any model assumptions,
based on a first principles nonperturbative approach, i.e.
lattice QCD.

The difficulty of the lattice approach lies in the fact that
the ���1540� mass is very close to the N � K scattering
threshold. In lattice QCD one has to use a finite box,
implying that the continuum of N � K scattering states
turns into a stack of discrete energy levels with the
���1540� embedded somewhere among them. It is then
not an easy task to reliably distinguish the ���1540� from
these nearby scattering states since all the quantum num-
bers coincide.
-1 © 2006 The American Physical Society
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There are a few published works on the ���1540� in
lattice QCD. Considering the difficulties involved, it is not
surprising that the results are not in complete agreement.
Here we collected the main features of these studies; for a
more detailed discussion see [31]. Except for one, all the
lattice studies report a signal in the negative parity channel
close to the expected location of the pentaquark. Based on
the simple fact that the lowest state with opposite parity lies
much higher, Refs. [32,33] tentatively identify this state
with the ��. Others employ finite volume analysis [34]
and twisted boundary conditions [35] to distinguish be-
tween a two-particle and a one-particle state and they
conclude that what they see is a scattering state. Ref-
erence [36] on the other hand identifies the first excited
state with negative parity and from its dependence on
the volume concludes that it is the �� resonance. All these
works are largely consistent in the lowest masses they
find in both parity channels; they only differ in their
interpretations.

The only result, which is inconsistent with the rest is that
of [37], observing a state in the positive parity channel
compatible with the �� and the lowest scattering state in
the negative parity channel. We stress that none of the
lattice studies so far could identify the lowest expected
scattering state in both parity channels. This strongly sug-
gests that the wave functions, all based on rotationally
symmetric quark sources at the origin, do not have suffi-
cient overlap with all the low lying states. Another lattice
study, Ref. [38], finds some evidence that a pentaquark
potential based on the diquark-diquark-antiquark picture is
energetically more favorable than that of the N � K
picture. All these investigations use the quenched approxi-
mation, but with different fermion formulations and pen-
taquark wave functions (operators).

In our opinion, a reliable confirmation of the existence
of the ���1540� from lattice studies is achieved only if all
the states up to above the expected location of the
���1540� have been identified and the ���1540� can be
distinguished clearly from the neighboring scattering
states. It is thus clear that a further more comprehensive
study is required and this is our aim in the present paper.

Here we use several possible wave functions (operators)
that have a good chance of spanning both the scattering and
pentaquark states. Our operator basis is the largest in the
literature; the cross correlator we compute is 14� 14 with
60 nonvanishing elements. In particular we also include
displaced, rotationally nonsymmetric spatial quark con-
figurations to allow nonzero orbital angular momentum
as well as a better separation of the scattering states.

In the positive parity channel the lowest state we can
identify is compatible with the lowest expected two-
particle state and is already significantly above the ��.
In the negative parity channel we can distinguish the two
lowest states that both turn out to be compatible with the
expected scattering states. At the box volumes we use the
034506
�� is expected to be between the two lowest scattering
states, but we see no trace of it there. We also carried out
the analysis for a smaller volume and found that the
volume dependence of the energies is compatible with all
the identified states being two-particle states.

In conclusion, we identified all the states around the
expected location of the �� in both parity channels and
they all turned out to be significantly different from the
��. Since our u and d quarks were heavier than the
physical quarks (corresponding to m� � 400–630 MeV)
we cannot rule out the possible appearance of a pentaquark
state for lighter quarks. Although not very likely, it is also
possible that a pentaquark state exists with a wave function
having very small overlap with all our trial wave functions.

In the present study we chose to work in the quenched
approximation again, which is known to be quite success-
ful in reproducing mass ratios of stable hadrons [39– 42].
Compared to our previous analysis we improved by three
means. In addition to the cross correlator technique and the
finite volume analysis we increased our statistics by a
factor of 2–3.

II. CROSS CORRELATORS

In hadron spectroscopy one would like to identify states
with given quantum numbers by computing the vacuum
expectation value of the Euclidean correlation function
h0jO�t� �O�0�j0i of some composite hadronic operator O.
The operator O is built out of quark creation and annihi-
lation operators. In physical terms the correlator is the
amplitude of the ‘‘process’’ of creating a complicated
hadronic state described by O at time 0 and destroying it
at time t.

After inserting a complete set of eigenstates jii of the
full QCD Hamiltonian, the correlation function can be
written as

h0jO�t� �O�0�j0i �
X
i

jhij �O�0�j0ij2e��Ei�E0�t; (1)

where

O �t� � eHtO�0�e�Ht; (2)

and Ei are the energy eigenvalues of the Hamiltonian.
Note that since we work in Euclidean space-time (the

real time coordinate t is replaced with�it), the correlators
do not oscillate, they rather die out exponentially in imagi-
nary time. In particular, after long enough time only the
lowest state created by O gives contribution to the corre-
lator. The energy eigenvalue corresponding to that state can
be extracted from an exponential fit to the large t behavior
of the correlator.

In principle higher states also could be identified by
generalizing the procedure and fitting the correlator with
a sum of exponentials. In practice, however, that would
require extremely high precision data, usually not available
in lattice simulations. A much more realistic solution can
-2
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be based on the observation that if the operator O happened
to have negligible overlap with the ground state in the
given sector, a single exponential fit would yield the first
excited state. This, however, is very unlikely to happen by
sheer luck, as it would require fine-tuning.

It is exactly this fine-tuning that can be performed if
instead of one operator O one considers a linear combina-
tion of the form

R �t� �
Xn
i�1

viOi�t�: (3)

The correlator of R can be expressed easily in terms of the
n� n correlation matrix

Cij�t� � hOi�t� �Oj�0�i (4)

as

R�t� � hR�t� �R�0�i �
Xn
i;j�1

vi �vjCij�t�: (5)

Morningstar and Peardon used this cross correlator to
compute glueball masses on the lattice [43]. Their proce-
dure was based on the effective mass defined for a general
correlator as

meff � �
1

�t
ln
�
C�t��t�
C�t�

�
: (6)

Let us now consider the effective mass obtained from R�t�,

m�t� � �
1

�t
ln
�
R�t� �t�
R�t�

�

� �
1

�t
ln
�Pn

i;j�1 vi �vjCij�t��t�Pn
i;j�1 vi �vjCij�t�

�
: (7)

This can be exploited to construct linear combinations that
have optimal overlap with the ground state or higher
excited states. If the correlator contained only n different
states, the linear combination with the lowest effective
mass would yield exactly the ground state. In practice
this is a good approximation starting already from moder-
ate values of t, since higher states die out rapidly.

A simple computation shows that the stationary points of
the effective mass with respect to the variables fvigni�1 are
given by the solutions of the generalized eigenvalue equa-
tion

Xn
j�1

Cij�t��t�vj � �
Xn
j�1

Cij�t�vj: (8)

Initially we only asked for the lowest effective mass, but
this eigenvalue problem can have many solutions. It is not
hard to interpret them using the following geometric pic-
ture. Cij�t� and Cij�t� �t�, being both Hermitian, can be
considered to be the components of two quadratic forms on
034506
the n-dimensional space spanned by the vi’s. Let us inter-
pretCij�t� as an inner product on this vector space. It can be
seen from Eq. (7) that the effective mass does not depend
on the normalization of the vector fvig, so we can restrict it
to be of unit length (with respect to the inner product just
defined). It is now easy to see that the stationary points of
the effective mass correspond to the principal axes of the
second quadratic form, Cij�t� �t�. In the language of the
generalized eigenvalue problem this is equivalent to the
statement that two quadratic forms can always be simulta-
neously diagonalized in a vector space: there is a basis
orthonormal with respect to one quadratic form and point-
ing along the principal axes of the other one.

Assuming a generic case with no degeneracies, the sta-
tionary points will have 0; 1; 2; . . . unstable directions and
they yield the coefficients of the linear combinations cor-
responding to the ground state and the higher excited
states. Of course this statement again is exactly true only
if there are only n states in the correlator. The importance
of corrections coming from higher states can be estimated
by checking how stable the whole procedure is with respect
to varying t and �t.

This gives a general method to determine the optimal
linear combinations of n operators that have the best over-
lap with the lowest k �k � n� states. The only disadvantage
of this procedure is that being based on effective masses, it
always uses only two points of the correlators to extract the
optimal linear combinations. On the other hand, once the
optimal linear combinations have been found the corre-
sponding correlators can be fitted using any standard
technique.

III. DETAILS OF THE SIMULATION

A. Choice of operators

One of the most important parts of the whole analysis is
the proper choice of operators. We need a large number of
independent operators, which span a large enough sub-
space containing the scattering states and a possible pen-
taquark state.

In order to have really independent operators, we used
nontrivial wave functions for the quark fields. The typical
operators used in hadron spectroscopy contain quarks at
only one lattice point with some Gaussian smearing. These
operators have automatically zero orbital angular momen-
tum and a spin eigenstate can be guaranteed by correctly
choosing the Dirac-structure of the operator. This, how-
ever, gives a very limited set of operators. Moreover, some
operators, e.g. the one proposed by Jaffe and Wilczek [26]
cannot be implemented in this way.

Therefore we decided to use operators which contain
quark fields at different lattice sites. In general the five-
particle wave function could be any function of the loca-
tions of the five quarks. However, since the correlation
functions are built up from quark propagators, we have to
restrict ourselves to wave functions, which are products of
-3



TABLE I. The collected statistics for the various simulation
points.

Size Operators �u;d Confs

243 � 60 O1;O2;O3 0.1550 242
243 � 60 O1;O2;O3 0.1555 205
243 � 60 O1;O2;O3 0.1558 205
243 � 60 O1;O2;O3 0.1563 205

203 � 60 O1;O2;O3 0.1550 630

243 � 60 O4;O5 0.1550 250
243 � 60 O4;O5 0.1555 144
243 � 60 O4;O5 0.1558 144
243 � 60 O4;O5 0.1563 144

203 � 60 O4;O5 0.1550 234
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the individual quark wave functions:

O�x1; x2; x3; x4; x5� � q1�x1�q2�x2�q3�x3�q4�x4�q5�x5�:

(9)

Here, for simplicity we omitted the color and Dirac
structure. These are the elementary operators for which
the correlators can be computed by single Dirac-matrix
inversions. A general five-quark operator can be written as
a linear combination of such elementary operators.

For the individual quark wave functions we use a simple
Gaussian function centered at some lattice site:

qi�xi� � exp
�
�
�xi � xi0�2

r2
i

�
: (10)

It is easy to see that if not all xi0’s are the same then the
operator will not have a spherical symmetry and therefore
it will create a mixture of angular momentum eigenstates.
According to the Appendix we can project out angular
momentum 1=2 using the projector P�G1�.

We had two sets of operators, one with spatially com-
pletely symmetric and one with antisymmetric operators.
Since the cross correlator of a symmetric and antisymmet-
ric operator vanishes we could perform the runs separately
for the two sets. It turned out that the symmetric/antisym-
metric operators had a good overlap with negative/positive
parity states, respectively.

Let us simplify our notation further by allowing only
quark wave functions that are centered on points of the z
axis only. Operators based on such wave functions have
azimuthal symmetry and therefore the spin projection re-
quires a minimal number of extra operators. Let

qi�di; ri; xi� � exp
�
�
�xi � di 	 ẑ�

2

r2
i

�
; (11)

where ẑ is the unit vector along the z axis. We will usually
omit the xi argument.

We used the following set of isoscalar operators:

O1 � �
abc
uTa �0;4�C�5db�0;4��fuc�0;4� �se�0;4��5de�0;4�

� �u$ d�g;

O2 � �
abc�ade�bgh
uTd �0;4�C�5de�0;4��
u

T
g �0;4�Cdh�0;4��

�C�sTc �0;4�;

O3 � P�G1�
�abc
uTa �0;4�C�5db�0;4��fuc�0;4� �se�Ns=2;4�

��5de�Ns=2;4�� �u$ d�g�;

O4 � P�G1�
�abc�ade�bgh
uTd �1;2�C�5de�1;2��

� 
uTg ��1;2�C�5dh��1;2��C�sTc �0;4��;

O5 � P
�G1�
�abc
uTa �0;4�C�5db�0;4��

� fuc�0;4�
�se�Ns=4;4��5de�Ns=4;4�

� �se��Ns=4;4��5de��Ns=4;4��� �u$ d�g�: (12)
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Here C is the charge conjugation operator and the color
indices are shown explicitly.

The first operator is the one used in our previous work
[32] with color index contractions corresponding to a N �
K state. O2 was introduced in [33]. The third operator is a
shifted N � K scattering operator with spin projection.
The relative displacement of the nucleon and kaon is half
of the spatial lattice size Ns=2, so this operator is spatially
symmetric. The last two operators are the antisymmetric
ones. O4 is based on the proposal [26]. The two diquarks
are shifted to �1 from the origin. Finally, O5 is a shifted
N � K operator with distance Ns=4. It is first antisymme-
trized, then projected to a spin eigenstate. The projection of
the last three operators requires the computation of 3, 3,
and 6 operators, respectively. Therefore we have to com-
pute the correlation matrix of 14 elementary operators
(except for the elements connecting operators with oppo-
site spatial symmetry).

B. Simulation parameters and results

We used the standard Wilson gauge action at � � 6:0 to
generate our configurations. For the measurements we used
the Wilson fermion action with four different �u;d values
for the light quarks: 0.1550, 0.1555, 0.1558, and 0.1563.
This spans a pion mass range of 400–630 MeV. For the
strange quark we used a constant �s � 0:1544, which gives
the required kaon mass in the chiral limit. The lattice size
was 243 � 60 and for the largest quark mass we also
performed simulations on a 203 � 60 lattice to see the
volume dependence of the observed states.

Table I shows the statistics we collected in the various
points. After performing the spin and parity projections, we
used the diagonalization procedure described in the pre-
vious section to separate the possible states in both parity
channels. As mentioned earlier the symmetric operators
gave a good signal only in the negative parity channel
while the antisymmetric operators had reasonable overlap
only with positive parity states. This can be understood
-4



FIG. 1 (color online). The effective masses for the first two states in the negative (left panels) and positive (right panels) parity
channel for � � 0:1550 (top panels) and � � 0:1558 (bottom panels). The lines indicate the fits according to Eq. (13).
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since the parity transformation includes a spatial reflection
and the nucleon-kaon system has a negative inner parity.
Therefore we used only the operators O1–O3 to extract
negative parity states and operators O4–O5 for positive
parity.

We varied both t and �t required for the diagonalization
over a range of 2–5 and included the systematic uncertain-
ties coming from this variation in the final error bars. After
separating the states we had to extract the lowest masses
from the individual correlation functions. It turned out that
for the excited states neither a correlated nor an uncorre-
TABLE II. The measured pion, kaon, and nucle
quark states in both parity channels to the N � K

Size Parity �u;d am�

243 � 60 � 0.1550 0.296(1) 0
243 � 60 � 0.1555 0.259(1) 0
243 � 60 � 0.1558 0.234(1) 0
243 � 60 � 0.1563 0.185(1) 0

203 � 60 � 0.1550 0.295(1) 0

243 � 60 � 0.1550 0.295(1) 0
243 � 60 � 0.1555 0.258(2) 0
243 � 60 � 0.1558 0.233(2) 0
243 � 60 � 0.1563 0.184(3) 0

203 � 60 � 0.1550 0.295(1) 0

034506
lated fit with a single exponential (cosh) was satisfactory
since in the asymptotic region where a one exponential fit
could work the data were rather noisy. We used the follow-
ing technique instead.

If one plots the effective mass ln
C�t�=C�t� 1�� as a
function of t, it should show a plateau at asymptotically
large t values [44]. It is easy to show that the effective mass
approaches its plateau exponentially:

meff�t� � m� a 	 exp��bt�; t! 1; (13)

where m is the lowest mass in the given channel. One can
on masses and the ratio of the first two five-
threshold.

amK amN �0 �1

.317(1) 0.642(6) 1.01(1) 1.16(5)

.301(1) 0.613(5) 0.99(1) 1.16(5)

.290(1) 0.592(6) 0.99(1) 1.14(8)

.272(1) 0.545(7) 0.98(2) 1.28(13)

.316(1) 0.647(7) 1.00(1) 1.24(8)

.316(1) 0.636(6) 1.16(2) 1.45(16)

.299(2) 0.615(14) 1.13(3) 1.39(15)

.288(2) 0.595(12) 1.09(5) 1.39(17)

.270(2) 0.552(10) 1.14(8) 1.31(32)

.316(1) 0.647(6) 1.21(2) 1.48(12)
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FIG. 2 (color online). The volume dependence of the two lowest states in the two parity channels (left panel: negative parity; right
panel: positive parity). The dashed lines indicate the expected scattering states with 0 momentum and the first two nonvanishing
momenta. The dotted line shows the experimental value of the pentaquark state.

FIG. 3 (color online). The relative contribution of different operators to the lowest (left bar) and second lowest (right bar) eigenstate
in the negative (left panels) and positive (right panels) parity channel for � � 0:1550 (top panels) and � � 0:1558 (bottom panels).
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TABLE III. The relative contribution of different operators to
the lowest two eigenstate wave functions in the negative parity
channel.

Size �u;d State jvO1
j jvO2

j jvO3
j

243 � 60 0.1550 E0 0.341(4) 0.0086(72) 0.940(1)
E1 0.817(28) 0.19(12) 0.544(22)

243 � 60 0.1555 E0 0.301(5) 0.017(11) 0.953(2)
E1 0.829(12) 0.161(88) 0.536(8)

243 � 60 0.1558 E0 0.282(26) 0.023(17) 0.959(8)
E1 0.820(22) 0.23(16) 0.525(29)

243 � 60 0.1563 E0 0.266(13) 0.013(10) 0.964(4)
E1 0.837(12) 0.058(53) 0.544(8)

203 � 60 0.1550 E0 0.142(6) 0.0057(42) 0.990(1)
E1 0.807(5) 0.25(21) 0.590(3)

TABLE IV. The relative contribution of different operators to
the lowest two eigenstate wave functions in the positive parity
channel.

Size �u;d State jvO4
j jvO5

j

243 � 60 0.1550 E0 0.0094(83) 0.999 96(2)
E1 0.965(5) 0.262(18)

243 � 60 0.1555 E0 0.044(38) 0.9990(7)
E1 0.959(13) 0.285(45)

243 � 60 0.1558 E0 0.057(49) 0.9984(12)
E1 0.957(16) 0.291(54)

243 � 60 0.1563 E0 0.135(77) 0.991(3)
E1 0.947(22) 0.322(61)

203 � 60 0.1550 E0 0.047(40) 0.9989(7)
E1 0.965(11) 0.261(42)
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fit the effective masses with the above formula and use it to
extract the lowest masses. In this way one also uses the
information stored in the points before the plateau even if
the plateau itself is noisy. This technique turned out to be
very stable and we could start to fit the effective masses at
t � 2; 3. Figure 1 illustrates the method for the first two
states in both parity channels for heavy and light quarks.

In both parity channels we extracted the two lowest
masses (which we denote by m0 and m1). It is straightfor-
ward to define the ratio �i � mi=�mN �mK� which com-
pares the possible scattering and pentaquark states to the
nucleon-kaon threshold. The experimental value of � for
the �� particle is ��� � 1:07.

The summary of our results including also the pion,
kaon, and nucleon masses is given in Table II. The zero
momentum scattering state is just at the threshold. The first
scattering state with nonzero momentum is expected at

E1 �
��������������������������������������
m2
K � 4�2=�aNs�

2
q

�
��������������������������������������
m2
N � 4�2=�aNs�

2
q

: (14)

Its ratio to the threshold is 1.151, 1.166, 1.177, 1.202 for
� � 0:1550, 0.1555, 0.1558, and 0.1563, respectively, for
our larger volume. For the smaller volume (Ns � 20) at
� � 0:1550 this ratio is 1.211. We can see that in all cases
the measured mass ratios are consistent with the scattering
states. The expected and measured volume dependences of
the first excited state for negative parity and the ground
state for positive parity is shown in Fig. 2. As it was
discussed by Takahashi et al. [36], the physical values of
the N � K scattering lengths in all of the studied channels
are so small, that the influence of the interaction is negli-
gible compared to the statistical errors.

Besides the volume dependence of the energy of a state,
the volume dependence of its spectral weight in Eq. (1) is
also expected to be a good indicator of whether it is a one-
particle or two-particle state [34,36]. Our volumes differed
by less than a factor of 2, whereas those of [36] differed by
a factor of 8 (though starting with a box as small as
1.37 fm). Because of this relatively small range of volumes
our analysis of the spectral weights did not turn out to be
useful.

Another quantity of interest is how much the different
operators contribute to the approximate eigenstates result-
ing from the diagonalization. To quantify this we first
normalized the operators O1–O5 to make all the diagonal
matrix elements of the cross correlator at the diagonaliza-
tion point unity, i.e. Cii�t� � 1. For illustrative purposes, in
Fig. 3 we show the contribution of different operators at a
heavy and at a light quark in both parity channels. We note
that the relative weights are qualitatively similar at the two
quark masses. It is also interesting that in the positive
parity channel the diquark-diquark-antiquark operator con-
tributes very little to the ground state that in principle
would be a candidate for a pentaquark. This further con-
firms that the ground state in this channel is indeed a two-
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particle scattering state. For reference we collected these
weight factors for all quark masses in both parity channels
in Tables III and IV.

For the largest quark mass, the one with the highest
statistics, we also performed the whole analysis for the
isovector channel. The extracted masses and their volume
dependence turned out to be qualitatively similar to those
in the isoscalar channel.
IV. CONCLUSION

In this paper we studied spin 1=2 isoscalar and isovector,
even and odd parity candidates for the �� pentaquark
using large scale lattice QCD simulations. The analysis
needed approximately 0.5 Tflop-years of sustained 32 bit
operations.

Before we summarize the results of the different chan-
nels, one technical remark is in order. The �� pentaquark
is expected to be a few percent above the N � K threshold.
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Typical lattice sizes of a few fermis result in a discrete N �
K scattering spectrum, with order 10% energy difference
between the lowest lying states. Thus, we are faced with
two problems. First, of all we have to find the possible
pentaquark signal and the nearby scattering states. Second,
we have to tell the difference between them. Finding
several states could be done by multiparameter fitting
[45] or more effectively by spanning a multidimensional
wave function basis and using a cross correlator technique.
The most straightforward way to tell the difference be-
tween a narrow resonance and a scattering state is to use
the fact that the former has an energy with quite weak
volume dependence, whereas the latter has a definite vol-
ume dependence, defined by the momenta allowed in a
finite system.

In our opinion any statement on the existence/nonexis-
tence or on the quantum numbers of the �� pentaquark
depends crucially on this sort of separation. None of the
previous lattice investigations was able to identify all low-
est lying states up to above the �� state in both parity
channels. The most important goal of the present paper was
to do it.

The individual results in the odd and even parity chan-
nels can be summarized as follows (based on the statisti-
cally most significant, highest quark mass and assuming
that m��=�mN �mK� does not change significantly with
the quark mass).
(1) O
dd parity.—The two lowest lying states are sepa-
rated. The lower one is identified as the lowest
scattering state with appropriate volume dependence
(in this case the p � 0 scattering means no volume
dependence). This state is 6� below the �� state.
The volume dependence of the second lowest state
is consistent with that of a scattering state with
nonzero relative momentum. For our larger/smaller
volumes this state is 1:8=2:1� above the �� state.
None of these two states is very likely to be the ��

pentaquark [46]. Note that a firm conclusion is
hardly derived from these statistics.
(2) E
ven parity.—The two lowest lying states are iden-
tified. The volumes are chosen such that even the
lowest lying scattering state is above the expected
�� pentaquark state. The volume dependence of the
lowest state suggests that it is a scattering state. For
both volumes this state is 6� above the �� state.
Since the energy of the second lowest state is even
larger, none of them could be interpreted as the ��

pentaquark.

To summarize, in both parity channels we identified

all the nearby states both below and above the expected
�� state. Having done that no additional resonance
state was found. This is an indication that in our wave
function basis no �� pentaquark exists (though it might
appear in an even larger, more exotic basis, with smaller
dynamical quark masses or approaching the continuum
limit).
034506
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APPENDIX: PROJECTION TO A SPIN
EIGENSTATE

In this appendix we outline how a specific spin eigen-
state can be projected out from a given lattice hadron
operator. After summarizing the relevant group theoretical
principles we discuss how our spin 1=2 pentaquark opera-
tors were constructed.

When discussing spin on a hypercubic lattice the first
problem is that due to the absence of full SO�3� rotational
symmetry it is not straightforward to assign spin to a lattice
energy eigenstate. States on the lattice can be classified
into irreducible representations of the cubic group O or its
double cover 2O, not SO�3� and SU�2� as in the continuum.

With the exception of the lowest four representations,
when restricted to 2O, irreducible representations of SU�2�
do not remain irreducible. The spin 0, 1=2, 1 and 3=2
SU�2� representations are the exceptions; these restricted
to 2O are equivalent to the irreducible representations A1,
G1, T1, and H, respectively. Also any state belonging to an
irreducible representation of 2O has components belonging
to several different spin representations of SU�2�. For
instance a state in G1 has components in spin
1=2; 7=2; 9=2; . . . SU�2� representations and H has compo-
nents of spin 3=2; 5=2; 7=2; . . . .

This means e.g. that if on the lattice we find the lowest
energy state in theG1 representation of 2O, we can identify
that with a spin 1=2 state in the continuum, provided all the
higher spin states contributing to G1, i.e. s � 7=2; 9=2; . . .
can be assumed to have much higher energy. In this sense,
for practical purposes, the lowest few representations of
SU�2� and 2O can be identified as follows:

0$ A1; 1=2$ G1; 1$ T1; 3=2$ H:

(A1)

The task we have at hand is thus to construct states
belonging to specific representations of the cubic group
2O. This can be done most easily by using the technique of
projection operators that we summarize here for complete-
ness. The simple form of the method of projectors we
-8
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present here can be used only when each irreducible rep-
resentation occurs in the decomposition at most once.
Therefore it is essential to know ahead of time the irreduc-
ible representations occurring in a tensor product and their
multiplicities. This can be found most easily by using
group characters. See e.g. [47] for explicit formulas and
character tables of O and 2O.

LetG be a finite group,D�r�ij �g� be the matrix elements of
its irreducible representation r of dimension dr. Let the
transformations T�g� form an arbitrary (not necessarily
irreducible) unitary representation of G. We would like
to project a specific irreducible representation r out of the
carrier space of the T�g�’s. Let us define the transforma-
tions

P�r�ij �
dr
jGj

X
g2G

D�r�?ij �g�T�g�; (A2)

where jGj is the number of elements G has and ? denotes
complex conjugation.

It is straightforward to show that if j i is any vector
belonging to the carrier space of T�g�’s then for a fixed j
the dr vectors

j	ii � P�r�ij j i; i � 1; . . . dr (A3)

either transform as basis vectors of the irreducible repre-
sentation r or they are all zero. For the proof see any
standard text on group representations, e.g. Ref. [48].
Equations (A2) and (A3) can be exploited to project out
different representations of 2O from a given state on the
lattice and its rotated copies.

In particular, we would like to construct pentaquark
states belonging to G1 that corresponds to spin 1=2.
Although more complicated cases also can be considered,
here we restrict ourselves to the one where the spin indices
of all the quarks but one have been contracted to be scalars
and the total spin of the pentaquark arises by combining the
spin 1=2 (G1) of the remaining quark with the orbital
angular momentum of all the constituents. Therefore, we
have to project G1 out of G1  s, where s is a representa-
tion of the cubic group O (not 2O), corresponding to the
orbital part.

In practice s depends on the spatial arrangement of
quark sources and this can be exploited to make things as
simple as possible. Equation (A2) implies that, in general,
projection to a specific spin involves as many terms as the
number of elements of the group 2O, i.e. 48. The situation,
however, is much better if the projection formula (A3) is
applied to a state, with an orbital part having some degree
of symmetry under cubic rotations. The simplest case is
when the five quark sources all have complete rotational
symmetry, i.e. the orbital part is trivially s � A1. In this
case all the rotated copies of the quark sources are identi-
cal, the sum in Eq. (A2) can be explicitly computed and the
projection reduces to projection to spin up or spin down.
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The decomposition here is A1 G1 � G1. All the opera-
tors used in lattice pentaquark spectroscopy so far fall into
this category.

To explore the possibility of nonzero orbital angular
momentum we have to consider less symmetric quark
sources. Another possibility is to put the antiquark at the
origin with a rotationally symmetric wave function, dis-
place the two pairs of �ud� quarks along a coordinate axis
(say z) keeping the arrangement cylindrically symmetric
with respect to the z axis. Inspired by the Jaffe-Wilczek
diquark-diquark-antiquark picture [26], in anticipation of
orbital angular momentum 1, we construct this state to be
antisymmetric with respect to the interchange of the two
displaced quark pairs. Let us call such a state j � zi. It is
easy to see that the rotated copies of this state span a three-
dimensional space carrying the representation T1 of O. A
possible set of basis states is given by �ud� pairs displaced
along the three coordinate axes; j � xi, j � yi, j � zi. This
arrangement corresponds to projecting out the spin 1=2
�G1� component from the decomposition

T1 G1 � G1 �H: (A4)

Let us choose j i � j "i  j � zi and compute P�G1�
11 j i.

The transformations T�g� appearing in Eq. (A2) are direct
products of G1 transformations acting on the quark spin
and transformations acting on the orbital part. Each term in
the sum and as a consequence the whole sum itself can be
decomposed into three terms proportional to j � xi, j � yi,
and j � zi. The G1 matrices can be easily obtained by
restricting the defining representation of SU�2� to 2O and
with the factors D�G1�?

ij �g� they can be summed indepen-
dently for the three terms resulting in

P�G1�
11 
j"i  j � zi� �

0 0

1 0

 !
j"i  j � xi �

0 0

i 0

 !
j"i

 j � yi �
1 0

0 0

 !
j"i  j � zi

� j#i  j � xi � ij#i  j � yi � j"i

 j � zi: (A5)

In a similar fashion we obtain the other (spin down) basis
element of the G1 projection;

P�G1�
21 
j"i  j � zi� � j"i  j � xi � ij"i  j � yi � j#i

 j � zi: (A6)

Note that, up to some numerical factors coming from the
normalization of spherical harmonics, these expressions
are identical to the spin 1=2 part of the SU�2� Clebsch-
Gordan decomposition 1  1=2 � 1=2 � 3=2. We also
could construct spin 1=2 from similar but symmetric orbi-
tal states for the quarks displaced to x; y; z � �d. This
would correspond to A1 G1 � G1 or 0  1=2 � 1=2 for
SU�2�.
-9
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Building these states requires seven quark sources: an
antiquark at the origin and six quark sources, two along
each coordinate axis (we use the same mass and source for
the u and d quarks). Equation (A4) shows that keeping the
same spatial arrangement the representationH correspond-
ing to spin 3=2 also could be projected out. However, we
have not explored this possibility here. For that we would
have had to replace the matrix elements D�G1�?

ij �g� in
Eq. (A2) with those of H.

Besides the diquark-diquark-antiquark wave function
we also wanted to study triquark-quark-antiquark states.
The simplest nontrivial way to do that is to displace the
quark-antiquark pair along a coordinate axis, say �z. Let
us call the orbital part of this state j � zi. Its rotated copies
span the six-dimensional space with a possible basis
formed by j � xi, j � xi, j � yi, j � yi, j � zi, j � zi.
This space, however, can be split into an antisymmetric
part spanned by combinations of the form j � xi � j �
xi; . . . and a symmetric one spanned by j � xi � j � xi,
etc. The representation ofO on the antisymmetric part is T1
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in exactly the same way as in the diquark-diquark case,
resulting again in the spin projected state

P�G1�
11 
j"i  �j � zi � j � zi�� � j#i  �j � xi � j � xi�

� ij#i  �j � yi � j � yi�

� j"i  �j � zi � j � zi�:

(A7)

The three-dimensional symmetric part of the orbital
space is reducible to A1 � E. Thus we also can produce
spin 1=2 trivially from the symmetric part by A1 G1 �
G1,

P�G1�
11 
j"i  �j � zi � j � zi�� � j"i  
j � xi � j � xi

� j � yi � j � yi � j � zi

� j � zi�: (A8)
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Praszałowicz (World Scientific, Singapore, 1987), p. 112;
Phys. Lett. B 575, 234 (2003).

[26] R. L. Jaffe and F. Wilczek, Phys. Rev. Lett. 91, 232 003
(2003); Phys. Rev. D 69 114017 (2004).

[27] K. Cheung, Phys. Rev. D 69, 094029 (2004); R. D.
Matheus, F. S. Navarra, M. Nielsen, R. Rodrigues
da Silva, and S. H. Lee, Phys. Lett. B 578, 323 (2004).

[28] F. Stancu and D. O. Riska, Phys. Lett. B 575, 242 (2003);
M. Karliner and H. J. Lipkin, Phys. Lett. B 575, 249
(2003); L. Y. Glozman, Phys. Lett. B 575, 18 (2003); S.
Capstick, P. R. Page, and W. Roberts, Phys. Lett. B 570,
185 (2003); B. G. Wybourne, Phys. Lett. B 575, 242
-10



COMPREHENSIVE SEARCH FOR THE �� PENTAQUARK . . . PHYSICAL REVIEW D 73, 034506 (2006)
(2003); A. Hoska, Phys. Lett. B 571, 55 (2003);V. E.
Lyubovitskij, P. Wang, Th. Gutsche, and A. Faessler,
Phys. Rev. C 66, 055204 (2002); B. K. Jennings and K.
Maltman, Phys. Rev. D 69, 094020 (2004); C. E. Carlson,
C. D. Carone, H. J. Kwee, and V. Nazaryan, Phys. Lett. B
573, 101 (2003); C. E. Carlson, C. D. Carone, H. J. Kwee,
and V. Nazaryan, Phys. Lett. B 579, 52 (2004); C. E.
Carlson, C. D. Carone, H. J. Kwee, and V. Nazaryan,
Phys. Rev. D 70, 037501 (2004); F. Huang, Z. Y. Zhang,
Y. W. Yu, and B. S. Zou, Phys. Lett. B 586, 69 (2004); I. M.
Narodetskii, Yu. A. Simonov, M. A. Trusov, and A. I.
Veselov, Phys. Lett. B 578, 318 (2004); S. M. Gerasyuta
and V. I. Kochkin, Int. J. Mod. Phys. E 15, 71 (2006);
Phys. Rev. D 71, 076009 (2005); R. Bijker, M. M.
Giannini, and E. Santopinto, Eur. Phys. J. A 22, 319
(2004); R. Bijker, M. M. Giannini, and E. Santopinto,
Rev. Mex. Fis. 50S2, 88 (2004).

[29] N. Itzhaki, I. R. Klebanov, P. Ouyang, and L. Rastelli,
Nucl. Phys. B684, 264 (2004); D. E. Kahana and S. H.
Kahana, Phys. Rev. D 69, 117502 (2004); F. J. Llanes-
Estrada, E. Oset, and V. Mateu, Phys. Rev. C 69, 055203
(2004).

[30] S. L. Zhu, Phys. Rev. Lett. 91, 232 002 (2003); J.
Sugiyama, T. Doi, and M. Oka, Phys. Lett. B 581, 167
(2004); Y. Kondo, O. Morimatsu, and T. Nishikawa, Phys.
Lett. B 611, 93 (2005); S. H. Lee, H. Kim, and Y. Kwon,
Phys. Lett. B 609, 252 (2005); P. Z. Huang, W. Z. Deng,
X. L. Chen, and S. L. Zhu, Phys. Rev. D 69, 074004
(2004).

[31] F. Csikor, Z. Fodor, S. D. Katz, and T. G. Kovacs, hep-lat/
0407033; S. Sasaki, Nucl. Phys. B, Proc. Suppl. 140, 127
(2005).

[32] F. Csikor, Z. Fodor, S. D. Katz, and T. G. Kovacs, J. High
Energy Phys. 11 (2003) 070.

[33] S. Sasaki, Phys. Rev. Lett. 93, 152 001 (2004).
[34] N. Mathur et al., Phys. Rev. D 70, 074508 (2004).
034506
[35] N. Ishii, T. Doi, H. Iida, M. Oka, F. Okiharu, and H.
Suganuma, Phys. Rev. D 71, 034001 (2005).

[36] T. T. Takahashi, T. Umeda, T. Onogi, and T. Kunihiro, hep-
lat/0410025; T. T. Takahashi, T. Umeda, T. Onogi, and
T. Kunihiro, Phys. Rev. D 71, 114509 (2005).

[37] T. W. Chiu and T. H. Hsieh, Phys. Rev. D 72, 034505
(2005); T. W. Chiu and T. H. Hsieh (unpublished).

[38] C. Alexandrou, G. Koutsou, and A. Tsapalis, Nucl. Phys.
B, Proc. Suppl. 140, 275 (2005).

[39] C. Gattringer et al. (BGR Collaboration), Nucl. Phys.
B677, 3 (2004).

[40] S. Aoki et al. (CP-PACS Collaboration), Phys. Rev. D 67,
034503 (2003).

[41] C. R. Allton, V. Gimenez, L. Giusti, and F. Rapuano, Nucl.
Phys. B489, 427 (1997).

[42] H. P. Shanahan et al. (UKQCD Collaboration), Phys. Rev.
D 55, 1548 (1997).

[43] C. J. Morningstar and M. J. Peardon, Phys. Rev. D 56,
4043 (1997); Phys. Rev. D 60, 034509 (1999).

[44] Actually we used a slightly modified ’’effective mass,’’
namely, the solution of the equation cosh�meff 	 �t�
Nt=2��= cosh�meff 	 �t� Nt=2� 1�� � C�t�=C�t� 1� to
get a flat plateau even for t values close to Nt=2.

[45] Note that the energies of the states are determined by the
exponential decays of correlation functions; extracting
several decay rates, which differ just by a few percent,
from the sum of noisy decays is, in practice, not feasible.

[46] The volume dependence and the larger operator basis of
this work suggest that the odd parity signal of our previous
analysis [32], which was quite close to the �� pentaquark
mass, was most probably a mixture of the two lowest lying
scattering states.

[47] R. C. Johnson, Phys. Lett. 114B, 147 (1982).
[48] A. O. Barut and R. Raczka, Theory of Group

Representations and Applications (PWN Scientific,
Warszawa, 1980), p. 178.
-11


