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Magnetic polarizability of hadrons from lattice QCD in the background field method
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We present a calculation of hadron magnetic polarizability using the techniques of lattice QCD. This is
carried out by introducing a uniform external magnetic field on the lattice and measuring the quadratic
part of a hadron’s mass shift. The calculation is performed on a 244 lattice with standard Wilson actions at
beta � 6:0 (spacing a � 0:1 fm) and pion mass down to about 500 MeV. Results are obtained for 30
particles covering the entire baryon octet (n, p, �0, ��, ��, ��, �0, �) and decuplet (�0, ��, ��, ���,
��0, ���, ���, ��0, ���, ��), plus selected mesons (�0, ��, ��, K0, K�, K�, �0, ��, ��, K�0, K��,
K��). The results are compared with available values from experiments and other theoretical calculations.
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I. INTRODUCTION

Electric and magnetic polarizabilities are fundamental
properties of hadrons. They determine the dynamical re-
sponse (deformation) of a hadron to external electromag-
netic fields, and provide valuable and sensitive information
about the internal strong interaction structure of the hadron
as a composite particle. In [1], the results of a lattice
calculation of hadron electric polarizability for neutral
hadrons, based on the methods of [2], has been presented.
In this work, we will focus on the first calculation of hadron
magnetic polarizability from lattice QCD. Our aim is to
TABLE I. A list of electric and magnetic polar
from recent experiments. The method is elastic C

�p

Illinois (1991) [3] 10:9� 2:2
Mainz (1992) [4] 10:62�1:19

�1:25

Saskatoon (1993) [5] 9:8� 0:4
Saskatoon (1995) [6] 12:5� 0:8
MAMI (2001) [7] 11:9� 0:5�

TABLE II. A list of electric and magnetic pola
from recent experiments. In the method colum
Compton Scattering; Quasifree means Quasifree

Ref. Method

[8] Neutron Scattering 12:
[9] Quasifree 12:5
[10] Quasifree
[11] Elastic
[12] Elastic 8:8

06=73(3)=034503(15)$23.00 034503
present the lattice data in sufficient detail in order to
facilitate comparison with existing information in this area.

Traditionally, the symbol � is used to represent the
electric dipole polarizability, and� for the magnetic dipole
polarizability. A considerable number of experiments have
been performed with the aim of measuring nucleon polar-
izabilities. Most of these have specifically targeted the
proton, some attempts have also been made at measuring
the neutron polarizabilities. The experimental values are
listed in Tables I and II.

Despite some shortcomings, measurements for the pro-
ton polarizabilities in these experiments are in reasonable
izabilities in units of 10�4 fm3 for the proton
ompton scattering off the proton.

�p

� 1:3 3:3� 2:2� 1:3
�1:03
�1:07 3:58�1:19�1:03

�1:25�1:07

� 1:1 4:4� 0:4� 1:1
� 0:5 2:1� 0:8� 0:5
1:3� 0:3 1:2� 0:7� 0:3� 0:4

rizabilities in units of 10�4 fm3 for neutron
n, Elastic means elastic (or free) Deuteron
Deuteron Compton Scattering.

�n �n

3� 1:5� 2:0 3:1� 1:6� 2:0
� 1:8�1:1

�0:6 � 1:1 2:7� 1:8�0:6
�1:1 � 1:1

7:6� 14:0 1:2� 7:6
5:5� 2:0 10:3� 2:0
� 2:4� 3:0 6:5� 2:4� 3:0
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agreement with each other. The experimental situation
regarding the polarizabilities of the neutron is still quite
unsatisfactory. This is mainly because a neutron Compton
scattering experiment cannot be directly performed.

The experimental situation on the nucleon can be ap-
proximately summarized as the following: the electric
polarizability is roughly the same for the proton and neu-
tron, with a value of around 10 in units of 10�4 fm3; the
magnetic polarizability is roughly the same for the proton
and neutron, with a value of around 3 in the same units.

On the theoretical side, nucleon polarizabilities have
been most studied in the framework of chiral perturbation
theory (ChPT) [13–18]. Other approaches include quark
models [19–21], chiral soliton models [22,23]. For reviews
on polarizabilities, see Refs. [24,25].
II. METHOD

A. Weak field expansion

The approach is based on the mass shifts of the particles
measured both in the absence and presence of magnetic
fields in the QCD vacuum. For small external magnetic
fields, the mass shift (in the unit system of @ � 1 � c)

�m�B	 
 m�B	 �m�0	; (1)

is given by

�m�B	 � � ~� � ~B� 1
2�
~B2: (2)

By averaging �m�B	 over the field ~B, and its inverse � ~B,
we will form

�m�B	even � �
1
2�
~B2: (3)

After we get the even ~B mass shift from the lattice simu-
lation, we do least-chi-square fits to the data points with a
polynomial

�m�B	even � c2B2 � c4B4 � � � � : (4)

The magnetic polarizability is then the negative quadratic
coefficient

� � �2c2: (5)

The quartic and higher terms in Eq. (4) are included in
order to measure possible numerical contamination.

B. Interpolating fields

The calculation of hadron masses centers around the
time-ordered, two-point correlation function in the QCD
vacuum, projected to zero momentum:

G�t	 �
X
~x

h0jTf��x	 ���0	gj0i; (6)

where � is the interpolating field built from quark fields
with the quantum numbers of the hadron under considera-
tion. On the quark level, G�t	 is evaluated in terms of quark
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propagators by way of path integrals. On the hadronic
level, G�t	 is a sum of exponentials which has the entire
mass spectrum of a given channel. The ground state can be
extracted by fitting G�t	 at large times where it dominates.

We consider a wide variety of particles in this study. For
octet baryons, the local interpolating fields are

�n � �abc�daTC�5ub	dc; (7)

�p � �abc�uaTC�5d
b	uc; (8)

��� � �abc�daTC�5sb	dc; (9)

��0
�

1���
2
p �abc��uaTC�5sb	dc � �daTC�5sb	uc
; (10)

��� � �abc�daTC�5ub	sc; (11)

��� � �abc�saTC�5d
b	sc; (12)

��� � �abc�saTC�5ub	sc; (13)

��8
�

1���
6
p �abc�2�uaTC�5db	sc � �uaTC�5sb	dc

� �daTC�5sb	uc
: (14)

In the above expressions, C is the charge conjugation
operator and the superscript T means transpose. The sum
over the color indices is implied and the �abc ensures that
constructed states are color-singlet. For simplicity, the
explicit dependence of the quark field operators on
space-time q�x	 is not written out. The normalization
factors are chosen so that in the limit of SU(3)-flavor
symmetry all correlation functions simplify to that of the
proton. In addition to the octet lambda �8, we also con-
sider flavor-singlet lambda �S,

��S
� �abc�uds�uaTC�5db	sc: (15)

Using the transpose of the terms in the parenthesis, it may
be written as

��S
� �2�abc���uaTC�5db	sc � �uaTC�5sb	dc

� �daTC�5s
b	uc
; (16)

which has a structure similar to ��8
except for the coeffi-

cient of the first term. Since SU(3)-flavor symmetry is
broken by the strange quark, it is interesting to study an
interpolating field that is made up of the terms common to
both types,

��C
�

1���
2
p �abc��uaTC�5sb	dc � �daTC�5sb	uc
: (17)

Note that since the u and d quarks respond to magnetic
fields differently, the usual isospin symmetry in u and d
quarks is explicitly broken.
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For decuplet baryons, the local interpolating fields are

���
� � �abc�daTC��d

b	dc; (18)

��0

� �
1���
3
p �abc�2�daTC��u

b	dc � �daTC��d
b	uc
; (19)

���
� �

1���
3
p �abc�2�uaTC��d

b	uc � �uaTC��u
b	dc
; (20)

����
� � �abc�uaTC��ub	uc; (21)

����
� �

1���
3
p �abc�2�daTC��sb	dc � �daTC��db	sc
; (22)

���0
� �

2���
3
p �abc��uaTC��db	sc � �daTC��sb	uc

� �saTC��ub	dc
; (23)

����
� �

1���
3
p �abc�2�uaTC��sb	uc � �uaTC��ub	sc
; (24)

���
� �

1���
3
p �abc�2�saTC��db	sc � �saTC��sb	dc
; (25)

��0

� �
1���
3
p �abc�2�saTC��ub	sc � �saTC��sb	uc
: (26)

We use the Lorentz index � � 3 in this calculation. Note
that for baryons the correlation function G�t	 is a 4� 4
matrix in Dirac space. In the Dirichlet boundary condition
used in this work, the sum of the upper diagonal compo-
nents couple to the positive-parity state, while the lower
components couple to the negative-parity state. So only
diagonal elements are computed.

For mesons, we consider the pseudoscalar states

��
�
�x	 � �u�x	�5d�x	; (27)

��
0
�x	 �

1���
2
p � �u�x	�5u�x	 � �d�x	�5d�x	
; (28)

��
�
�x	 � �d�x	�5u�x	; (29)

�K
�
�x	 � �u�x	�5s�x	; (30)

�K
0
�x	 � �d�x	�5s�x	; (31)

�K
�
�x	 � �s�x	�5u�x	; (32)
034503
and the vector states

��
�

� �x	 � �u�x	��d�x	; (33)

��
0

� �x	 �
1���
2
p � �u�x	��u�x	 � �d�x	��d�x	
; (34)

��
�

� �x	 � �d�x	��u�x	; (35)

�K
��

� �x	 � �s�x	��d�x	; (36)

�K
�0
�x	 � �d�x	��s�x	; (37)

�K
��

� �x	 � �s�x	��u�x	: (38)

Here �q � q��0. For the vector mesons, we average over
the spatial Lorentz indices � � 1, 2, 3. Note that in form-
ing the correlation function for the �0 state, there is a term
from the local contraction in the form of

1���
2
p �M�1

u �x; x	 �M
�1
d �x; x	
; (39)

where M�1
q �x; x	 denotes all-to-all quark propagators (dis-

connected quark loops). In the zero magnetic field and
SU(2) isospin symmetry in u and d quarks, the term
vanishes. In the presence of magnetic field, however, it is
no longer so. The same is true for the �0 state. The
calculation of these disconnected loops are prohibitively
expensive and is prone to large statistical errors. In this
work we will ignore the effect of the disconnected loops for
these mesons.

C. Lattice Techniques

We briefly discuss how the magnetic field is introduced
on the lattice. The procedure we use is very similar to but
not exactly the same as the one presented in [2].

In the continuum case, the fermion action is modified by
the minimal coupling prescription

@� ! @� � iqA�; (40)

where q is the charge of the fermion field and A� is the
vector potential describing the external field. On the lattice,
the prescription amounts to supplying a phase factor,
eiaqA� , to the link variables in a given direction. Choosing

A2 � Bx1 and A0 � A1 � A3 � 0 (41)

a constant magnetic field

F12 � @1A2 � @2A1 � B3 � B (42)

can be introduced in the z-direction.
We introduce two dimensionless parameters which char-

acterize the field. One is given by

� � qBa2: (43)
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The other is the integer lattice length,

� � x1=a: (44)

In terms of these two parameters the phase factor becomes:

eiaqA2 � ei�� ! �1� i��	; (45)

where we have linearized the phase factor to mimic the
continuum prescription. The field strength we use will be
chosen small enough to satisfy the linearization require-
ment [2].

To summarize, the method to place the external mag-
netic field on the lattice in the z-direction is to multiply
each gauge field link variable in the y-direction with a
x-dependent factor:

U2�x	 ! �1� i��	U2�x	: (46)

A comment on boundary condition is in order here. To use
small magnetic fields on the lattice, one is forced to break
periodicity (as by the x-dependent factor here). Two op-
tions have been attempted. One is to enforce periodic
boundary condition in the x-direction anyway and experi-
ence a large return spike in the magnetic field across the
x-direction boundary, as has been done by Bernard et al.
[26] in their calculation of the magnetic moments. The
other is to use Dirichlet (or fixed) boundary condition and
let quarks originate from the center of the lattice in the
x-direction, as done in this work. To address the issue of
possible effects of boundary conditions on our results, we
have checked that the difference in the mass shifts from the
two different boundary conditions are quite small (on the
1% to 3% level) as compared to the statistical errors (on the
10% level).

D. Simulation Details

Most of our results are based on the standard Wilson
quark action on a quenched 244 lattice with lattice spacing
a � 0:1 fm. The lattice coupling � � 6:0. We have ana-
lyzed 150 configurations to extract hadron magnetic polar-
izabilities. Fermion propagators M�1 were constructed at
six different quark masses, which correspond to six 	
values,

	 � 0:1515; 0:1525; 0:1535; 0:1540; 0:1545; 0:1555:

(47)

The critical kappa value is 	c � 0:157 096. Using

mq �
1

2a

�
1

	
�

1

	c

�
(48)

we can get the corresponding quark masses: 230 MeV,
189 MeV, 147 MeV, 126 MeV, 105 MeV, 64 MeV. The
corresponding pion masses are: 1000 MeV, 895 MeV,
782 MeV, 721 MeV, 657 MeV, 512 MeV. The strange quark
mass is set at 	 � 0:1535. The boundary condition on the
034503
fermion field is periodic in the y and z directions, Dirichlet
(or fixed) in the x and t directions. The quarks originate
from the source point �x; y; z; t	 � �12; 1; 1; 2	.

In an exploratory study, the same calculation was per-
formed using a different action, namely, the tree-level
tadpole-improved Lüscher-Weisz gauge action with lattice
spacing a � 0:17 fm (or 1=a � 1159 MeV) set from the
string tension, and the tadpole-improved clover quark ac-
tion. We accumulated 15 configurations and the prelimi-
nary results have been presented in Ref. [27]. We will focus
on the Wilson results. The clover results will be shown
together with the Wilson results mainly for comparison
purposes and as an independent check. In most cases, the
results from the two action schemes are consistent with
each other with errors, giving us confidence in the
calculation.

We used six different values of the parameter in units of
10�3

� � 0:0;�0:36;�0:72;�1:44;�2:88;�5:76: (49)

The � values in this sequence are related by a factor of�2.
Thus we are able to study the response of a hadron com-
posed of both up and down (strange) quarks, whose charges
are related by the same factor, to four different nonzero
magnetic fields. In units of 10�3e�1a�2, the magnetic field
takes the values �1:08, 2.16, �4:32, and 8.64. In physical
units, the magnitude of the weakest magnetic field is
2:46� 1013 tesla. This is a very strong magnetic field.
On the other hand, in the sense of the mass shift, this is
really not that strong. We can estimate the ratio of mass
shift of proton to the mass of proton:


m
m
�

1
2�pB

2

m
� 1:60� 10�5: (50)

Here we have used 2� 10�4 fm3 as the value of �p. From
this rough estimation we can see that the mass shift is very
small even in such a strong magnetic field.
III. RESULTS

In this section, we present the numerical results of our
lattice study. We calculated the magnetic polarizability for
30 charged and neutral hadrons from their quadratic re-
sponse to the field. Since this is a first calculation of these
quantities, we will show effective-mass plots for the com-
puted mass shifts for all of the particles considered at one
value (the weakest) of the magnetic field. They form the
basis of our analysis and give an unbiased view of the
quality of our data. The mass shifts are fitted to the poly-
nomial form discussed in Section II A from which the
magnetic polarizability is extracted. We group the results
according to the particle types: octet, decuplet, and
mesons.
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FIG. 2 (color online). Mass shifts of the neutron as a function of th
order of top left-to-right to bottom left-to-right).

FIG. 1 (color online). Effective-mass plots for the neutron
(upper) and proton (lower) mass shifts in lattice units at the
weakest magnetic field. The lines correspond to quark masses
from the heaviest (circles) to the lightest (triangles).

MAGNETIC POLARIZABILITY OF HADRONS FROM . . . PHYSICAL REVIEW D 73, 034503 (2006)
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A. Octet Baryons

Figure 1 shows the effective-mass plot for the neutron
and proton. There is reasonable plateau behavior for the
neutron and our results are extracted from the time window
of 12 to 14. The plateau behavior for the proton is not as
good as for the neutron. Figure 2 shows the mass shifts for
the neutron as a function of the magnetic fields. There is
good parabolic behavior going through the origin, an in-
dication that contamination from the linear term has been
effectively eliminated by averaging results from ~B and� ~B.
It is typical of all the particles so we will not show more
such plots. We tried a number of ways in fitting to the data.
First, we did the fitting with the B2 term only, or with the
B2 term plus the B4 term. We found that the B4 term is
numerically small. This confirms that the magnetic fields
we use are indeed weak. We also tried fits using only the
two smallest fields in magnitude, or the three smallest, or
all four values. They all give results consistent within
errors bars. The results quoted below are mostly from
fitting to the two smallest fields.

For charged particles, there is the possibility of Landau
levels on the order of jqB=�2M	j in the presence of mag-
netic fields, where q and M are the charge and mass of the
particle, respectively. It is a linear term that is not elimi-
nated by the averaging procedure. Their effects only show
up at very large times, larger than where we fit the data. We
e magnetic field B at the six quark masses (heavy to light in the

-5



FIG. 4 (color online). Effective-mass plots for the octet sigma
mass shifts in lattice units at the weakest magnetic field in the
order of �� (top), �0 (middle), �� (bottom). The lines corre-
spond to quark masses from the heaviest (circles) to the lightest
(triangles).

FIG. 3 (color online). Magnetic polarizability of the neutron
and proton as a function of m2

� in physical units. The solid
symbols are the results from the Wilson action, while the empty
symbols are from the clover action. The Wilson results are
obtained from the time window of 12 to 14. The experimental
value, which we take to be the same for neutron and proton, is
indicated by the star.

FIG. 5 (color online). Magnetic polarizability of the octet
sigma states in physical units. The solid symbols are the results
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studied this issue by including a linear term in the fit and
found that the results for c2 are essentially unaffected.

Figure 3 shows the extracted magnetic polarizability for
the neutron and the proton as a function of pion mass
squared1 in physical units. Two sets of data are displayed,
one from the Wilson action based on 150 configurations,
one from the clover action based on 15 configurations. The
two sets are consistent within errors. The experimental
value, which is roughly the same for neutron and proton
with a large uncertainty, is also indicated. One can see that
the proton results are consistent with the experimental
value, while the neutron results, which have smaller errors
than the proton, are much bigger. This difference between
the proton and the neutron is one of the surprises of our
calculation. We do not attempt a chiral extrapolation in this
work because the theoretical ansatz from chiral effective
theories is quite limited at the moment and the systematic
uncertainties of the lattice results are not quantified. The
reader can get an idea on the chiral behavior by looking at
the quark mass dependence in the figures and tables. The
observations we make here and below are based on the
value at the smallest pion mass and the trend as a function
of the quark mass, therefore should be taken as qualitative.
For example, the proton magnetic polarizability has a
weaker quark mass dependence than the neutron. At the
chiral limit, the agreement with experiment for the proton
is expected to remain, and the difference between the
proton and the neutron is expected to grow.

Figure 4 shows the effective-mass plot for the octet
sigma states. There is reasonable plateau behavior and
we fit in the range of 12 to 14. Figure 5 shows the magnetic
polarizability for the three octet sigma states. The ��
from the Wilson action, while the empty symbols are from the
clover action. The Wilson results are obtained from the time
window of 12 to 14.

1The pion mass squared is proportional to the quark mass in
QCD.
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FIG. 8 (color online). Effective-mass plots for the lambda
mass shifts in lattice units at the weakest magnetic field in the
order of �8 (top), �C (middle), �S (bottom). The lines corre-
spond to quark masses from the heaviest (circles) to the lightest
(triangles).

FIG. 6 (color online). Effective-mass plots for the octet cas-
cade mass shifts in lattice units at the weakest magnetic field in
the order of �0 (upper) and �� (lower). The lines correspond to
quark masses from the heaviest (circles) to the lightest (tri-
angles).
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results are similar to those for the proton and also suffer
from large errors. The �0 results are positive and the ��

are negative, both have much smaller errors compared to
the ��.

Figure 6 shows the effective-mass plot for the octet
cascade states, and Fig. 7 shows the corresponding mag-
FIG. 7 (color online). Magnetic polarizability of the octet
cascade states in physical units. The solid symbols are the results
from the Wilson action, while the empty symbols are from the
clover action. The Wilson results are obtained from the time
window of 12 to 14.

FIG. 9 (color online). Magnetic polarizability of the octet
lambda states in physical units from the Wilson action. The
results for �8 and �C are obtained from the time window of 12
to 14, while for �S 5 to 7.
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TABLE III. The calculated magnetic polarizabilities for the octet baryons as a function of the pion mass from the Wilson action. The
pion mass is in GeV and the magnetic polarizability is in 10�4 fm3. The time window from which each polarizability is extracted is
given in the last column. The errors are statistical.

	 0.1515 0.1525 0.1535 0.1540 0.1545 0.1555 Fit range
m� 1.000 0.895 0.782 0.721 0.657 0.512

p 0:09� 0:29 0:14� 0:37 0:26� 0:48 0:40� 0:56 0:64� 0:67 2:36� 1:20 12–14
n 9:4� 0:2 10:4� 0:3 11:6� 0:4 12:3� 0:5 13:4� 0:6 17:0� 1:1 12–14
�� �0:15� 0:36 0:09� 0:42 0:24� 0:50 0:40� 0:56 0:61� 0:64 1:60� 1:00 12–14
�0 8:0� 0:3 8:5� 0:3 9:1� 0:4 9:6� 0:5 10:1� 0:6 11:9� 0:9 12–14
�� �11:8� 0:3 �12:6� 0:3 �13:6� 0:4 �14:2� 0:4 �14:7� 0:4 �16:1� 0:5 12–14
�0 10:7� 0:3 11:3� 0:4 11:9� 0:4 12:3� 0:4 12:8� 0:5 13:9� 0:7 12–14
�� �12:6� 0:3 �13:1� 0:3 �13:8� 0:4 �14:1� 0:4 �14:6� 0:4 �15:6� 0:5 12–14
�8 9:1� 0:4 9:9� 0:5 10:8� 0:6 11:4� 0:7 12:1� 0:8 14:0� 1:2 12–14
�C 9:3� 0:4 10:2� 0:5 11:2� 0:6 11:9� 0:7 12:6� 0:9 15:0� 1:4 12–14
�S 3:6� 0:1 3:4� 0:2 3:3� 0:2 3:3� 0:3 3:2� 0:4 3:2� 1:0 5–7
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netic polarizability extracted from 12 to 14. Figure 8 shows
the effective-mass plot for the octet lambda states, and
Fig. 9 shows the corresponding magnetic polarizability.
In this case, only the Wilson results are available. One
can see that the results for �8 and �C are almost the same.
The signal for flavor-singlet �S plateaus much earlier than
the other octet states, and the signal is lost quickly. Our
results are extracted from the range 5 to 7.

The results of our calculation in the octet sector from the
Wilson quark action are summarized in Table III.

Judging from the values at the smallest pion mass, one
can observe the following broad features in the octet sector.
The positively charged states (p and ��) have small and
positive values around 2, but suffer from large errors. The
charge-neutral states (n, �0, �0, �8) have similar values to
each other around 12. The negatively charged states (��,
��) have similar values to each other around�16. The �S

has a very weak quark mass dependence. The values are
expected to change a little bit after chiral extrapolations.

In the case of hyperons, quark model [20] gives 1.7 for
�� and�1:7 for ��, compared with our values of about 2
and �16, respectively. ChPT at the O�p3	 order [14] pre-
dicts � � 10� and small and positive values across the
octet, which is a different pattern from the results on the
lattice. It would be interesting to see if the pattern receives
significant corrections at the next order of ChPT.
B. Decuplet Baryons

Figure 10 displays the effective-mass plot for the Delta
states. The plateaus form earlier for the decuplet states than
the octet states, probably due to the fact that the decuplet
states are heavier. Figure 11 shows the magnetic polar-
izability for the four Delta states. The interesting result
here is that the ��� polarizability is large and negative
(around �60 at the smallest pion mass), which means it is
most easily deformed (decreasing mass) under the probing
034503
magnetic field. It is the largest magnetic polarizability we
observed on the lattice.

Figure 12 displays the effective-mass plot for the dec-
uplet sigma states, and Fig. 13 shows the corresponding
magnetic polarizability as a function of the pion mass
squared. Figure 14 displays the effective-mass plot for
the decuplet cascade states, and Fig. 15 shows the corre-
sponding magnetic polarizability as a function of the pion
mass squared.

The results of our calculation in the decuplet sector from
the Wilson action are summarized in Table IV.

From the values at the smallest pion mass, one can
observe the following features in the decuplet sector. The
values are expected to change a little bit after chiral ex-
trapolations. The positively charged states (�� and ���)
have negative values around�5 and relatively small errors.
The situation is opposite to that for the octet members (p
and ��). The charge-neutral states (�0, ��0, ��0) have
similar values to each other around 10, similar to the
situation in the octet sector. The negatively charged states
(���, ���, ��) have similar values to each other around
�15, again similar to the situation in the octet sector. Note
that the value for ��, �12:4�2	, is simply predicted from
the �� at the strange quark mass (	 � 0:1535). This
prediction is free of uncertainty from chiral extrapolations.
An experimental measurement of the �� magnetic polar-
izability is greatly desired. Historically, the precise deter-
mination of the mass and magnetic moment of the �� has
paid significant dividends to our understanding of hadron
structure and dynamics. Its magnetic polarizability pro-
vides another such potential opportunity.

There are no experimental measurements on the decup-
let states, and very limited theoretical information. An
estimate in the Skyrme model [23] gives a value of
�14:9 for ��, which is consistent with the value on the
lattice. The large and negative value for the ��� calls for
theoretical explanations.
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FIG. 10 (color online). Effective-mass plots for the Delta states
mass shifts in lattice units at the weakest magnetic field in the
order of, from top down, ���, ��, �0, ��. The lines corre-
spond to quark masses from the heaviest (circles) to the lightest
(triangles).

FIG. 11 (color online). Magnetic polarizability of the �’s in
physical units. The solid symbols are the results from the Wilson
action, while the empty symbols are from the clover action. The
Wilson results are obtained from the time window of 10 to 12.

FIG. 12 (color online). Effective-mass plots for the decuplet
sigma mass shifts in lattice units at the weakest magnetic field in
the order of ��� (top), ��0 (middle), ��� (bottom). The lines
correspond to quark masses from the heaviest (circles) to the
lightest (triangles).
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FIG. 15 (color online). Magnetic polarizability of the decuplet
cascade states in physical units. The solid symbols are the results
from the Wilson action, while the empty symbols are from the
clover action. The Wilson results are obtained from the time
window of 10 to 12.

FIG. 13 (color online). Magnetic polarizability of the decuplet
sigma states in physical units. The solid symbols are the results
from the Wilson action, while the empty symbols are from the
clover action. The Wilson results are obtained from the time
window of 10 to 12.

FIG. 14 (color online). Effective-mass plots for the decuplet
��0 (upper), ��� (lower) mass shifts in lattice units at the
weakest magnetic field. The lines correspond to quark masses
from the heaviest (circles) to the lightest (triangles).
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C. Mesons

Figure 16 displays the effective-mass plot for the pion
states. The plateau happens much later than in the neutron.
We fit in the range of 16 to 18. In our calculation, �� and
�� have identical mass shifts, meaning they have identical
magnetic polarizability. The same is true for all other
charged mesons we considered. This is expected because
they are antiparticles to each other and have the same mass.
Figure 17 shows the corresponding magnetic polarizability
as a function of the pion mass squared.

Figure 18 displays the effective-mass plot for the kaon
states. The quality of the plateaus is about the same as that
of the pion states and we fit in the same range of 16 to 18.
Figure 19 shows the corresponding magnetic polarizability
as a function of the pion mass squared.

Figure 20 displays the effective-mass plot for the rho
mesons. The plateau for �0 is not as good as that for �0,
and we fit in the range of 9 to 11. We also fit a bit earlier
(range 14 to 16) for �� than for the pions (16 to 18).
Figure 21 shows the corresponding magnetic polarizability
as a function of the pion mass squared.

Figure 22 displays the effective-mass plot for the rho
mesons, and Fig. 23 shows the corresponding magnetic
polarizability as a function of the pion mass squared.

The results of our calculation in the meson sector from
the Wilson action are summarized in Table V.

Based on the values at the smallest pion mass, one can
observe the following features in the meson sector. The
charged states (��, K�) have similar values to each other
around �24, which are about twice in magnitude (around
�12) as the other two pairs (��, K��). The neutral states
(�0, K0, K�0) have similar values to each other around�5,
except �0 which is about 3 times as large (around 15).
-10



TABLE IV. The calculated magnetic polarizabilities for the decuplet baryons as a function of the pion mass from the Wilson action.
The pion mass is in GeV and the magnetic polarizability is in 10�4 fm3. The time window from which each polarizability is extracted
is given in the last column. The errors are statistical.

	 0.1515 0.1525 0.1535 0.1540 0.1545 0.1555 Fit range
m� 1.000 0.895 0.782 0.721 0.657 0.512

��� �39:9� 0:7 �43:9� 0:8 �48:7� 1:0 �51:5� 1:1 �54:7� 1:3 �63:1� 1:9 10–12
�� �2:5� 0:2 �3:0� 0:3 �3:5� 0:5 �3:9� 0:6 �4:3� 0:7 �5:1� 1:1 10–12
�0 7:6� 0:2 8:2� 0:3 8:8� 0:4 9:2� 0:5 9:6� 0:6 10:9� 1:0 10–12
�� �10:1� 0:2 �11:1� 0:2 �12:4� 0:2 �13:1� 0:3 �14:0� 0:3 �16:2� 0:5 10–12
��� �2:9� 0:3 �3:2� 0:4 �3:6� 0:5 �3:9� 0:6 �4:2� 0:6 �5:1� 0:9 10–12
��0 7:9� 0:2 8:4� 0:3 8:9� 0:4 9:2� 0:5 9:5� 0:6 10:3� 0:8 10–12
��� �10:9� 0:2 �11:7� 0:2 �12:6� 0:3 �13:1� 0:3 �13:7� 0:3 �15:0� 0:4 10–12
��0 8:1� 0:3 8:5� 0:3 9:0� 0:4 9:2� 0:5 9:4� 0:5 9:8� 0:7 10–12
��� �11:9� 0:2 �12:4� 0:2 �12:8� 0:3 �13:1� 0:3 �13:4� 0:3 �14:0� 0:3 10–12
�� �12:4� 0:2 10–12
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The most recent measurement of pion polarizability [28]
gives ��� �	�� � 11:6, which implies ��� of about �6
assuming ��� �	�� � 0 according to leading-order
ChPT. The lattice value of �24 has the same sign but is
much more negative. There is no measurement for the rho
andK mesons, although there are plans to do so [29]. Other
FIG. 16 (color online). Effective-mass plots for the pion mass
shifts in lattice units at the weakest magnetic field in the order of
�0 (upper) and �� (lower). The lines correspond to quark
masses from the heaviest (circles) to the lightest (triangles).
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theoretical calculations have produced various values,
about �2 for ��, and a small but positive value (about
�2) for �0. They include ChPT at two-loop order [30],
dispersion sum rule (DSR) [31], and NJL model [32]. The
positive sign for �0 is consistent with the lattice value.

In the case of kaon, ChPT predicts �0:6 for K� [33].
NJL model predicts �11 for K� and 13 for K0 [34]. In the
case of vector mesons, the information is extremely lim-
ited. The only calculation is from the QCD string theory
[35] which gives �0:8 for rho and �0:6 for K�.

IV. SUMMARY AND OUTLOOK

In this work we have presented the results of the first
lattice calculation of hadron magnetic polarizabilities.
Hadron masses were extracted from fits to baryon and
meson two-point correlation functions at six different
quark masses and four different nonzero magnetic fields.
FIG. 17 (color online). Magnetic polarizability for the pion
states in physical units. The solid symbols are the results from
the Wilson action, while the empty symbols are from the clover
action. The Wilson results are obtained from the time window of
16 to 18.

-11



FIG. 18 (color online). Effective-mass plots for the kaon mass
shifts in lattice units at the weakest magnetic field in the order of
K0 (upper) and K� (lower). The lines correspond to quark
masses from the heaviest (circles) to the lightest (triangles).

FIG. 20 (color online). Effective-mass plots for the rho meson
mass shifts in lattice units at the weakest magnetic field in the
order of �0 (upper) and �� (lower). The lines correspond to
quark masses from the heaviest (circles) to the lightest (tri-
angles).
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Magnetic polarizabilities of hadrons were extracted from
the hadron mass shifts induced by the presence of an
external uniform magnetic field. The bulk of our results
FIG. 19 (color online). Magnetic polarizability for the kaon
states in lattice units. The solid symbols are the results from the
Wilson action, while the empty symbols are from the clover
action. The Wilson results are obtained from the time window of
16 to 18.
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are based on 150 configurations on a 244 lattice at a spacing
of about 0.1 fm and pion mass down to about 500 MeV,
using the standard Wilson actions. The clover quark action
FIG. 21 (color online). Magnetic polarizability for the rho
meson states in lattice units. The solid symbols are the results
from the Wilson action, while the empty symbols are from the
clover action. The Wilson results are obtained from the time
window of 9 to 11 for �0 and 14 to 16 for ��.
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FIG. 22 (color online). Effective-mass plots for the K� mass
shifts in lattice units at the weakest magnetic field in the order of
K�0 (upper) and K�� (lower). The lines correspond to quark
masses from the heaviest (circles) to the lightest (triangles).
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was also used as a check. In both cases, clear signals for
hadron magnetic polarizabilities are seen and the calcu-
lated results from Wilson and clover quark actions are
FIG. 23 (color online). Magnetic polarizability for the K�

states in physical units. The solid symbols are the results from
the Wilson action, while the empty symbols are from the clover
action. The Wilson results are obtained from the time window of
14 to 16.
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generally in good agreement with each other. We inves-
tigated 30 particles sweeping through the baryon octet and
decuplet and selected mesons. Most of the polarizabilities
have not been measured, except for the nucleon and pion,
so most of our results are predictions. Aside from the
figures, the results are tabulated in three separate tables.
Below is a summary of the main results of the calculation.

Our value for the proton magnetic polarizability agrees
reasonably with the most recent world average value of
about 3 in units of 10�4 fm3, but suffers from relatively
large errors. Our value for the neutron magnetic polar-
izability (about 15 to 20), which has smaller errors, is
much greater than the world average value. This large
difference between the proton and the neutron on the lattice
is an interesting result that is worth further study.

In the decuplet sector, the most interesting result is the
large and negative magnetic polarizability (about�60) for
the ���. Theoretical explanations, such as those from
chiral effective theories, are called for. The �� value of
�12:4�2	 is a prediction free of uncertainty from chiral
extrapolations, and can be directly compared with the
experiment. A measurement of the �� magnetic polar-
izability is greatly desired.

Between the octet and the decuplet, we observe the
following pattern. Positively charged p and �� have rela-
tively small and positive values, albeit with large errors, a
situation opposite to that for the decuplet members �� and
��� which have negative and slightly larger values along
with smaller errors. It is important to increase the statistics
to obtain a better signal for the p and �� on the lattice to
confirm this difference. In addition, the charge-neutral
particles have values on the order of 20, while the nega-
tively charged particles on the order of �20.

In the meson sector, we confirmed the expected result
that a positively charged particle has identical magnetic
polarizability as its negatively charged partner (��, K�,
��, K��). All charged mesons have negative magnetic
polarizabilities, and all neutral mesons have positive
ones. In terms of magnitude, the pseudoscalar mesons
have about twice as large values as the vector mesons.
Futhermore, the vector mesons have a weaker quark mass
dependence than the pseudoscalar mesons.

Taken as a whole, our results demonstrate the efficacy of
the methods used in computing the magnetic polarizabil-
ities on the lattice. In addition to increasing statistics to the
300 to 500 configurations range, further studies should
focus on assessing the systematic uncertainties.

First, finite-volume effects must be investigated by
changing the lattice size or lattice spacing. This is particu-
larly relevant considering the fact that the dipole magnetic
polarizability is a volume effect (in units of fm3).
Calculations on a larger lattice 324 are under way.
Another volume is needed to perform a continuum
extrapolation.

Next, a chiral extrapolation is needed to provide better
comparison with the experiment and other approaches. To
-13



TABLE V. The calculated magnetic polarizabilities for the selected mesons as a function of the pion mass from the Wilson action.
The pion mass is in GeV and the magnetic polarizability is in 10�4 fm3. The time window from which each polarizability is extracted
is given in the last column. The errors are statistical.

	 0.1515 0.1525 0.1535 0.1540 0.1545 0.1555 Fit range
m� 1.000 0.895 0.782 0.721 0.657 0.512

�� �16:0� 0:3 �17:8� 0:4 �19:8� 0:5 �21:1� 0:5 �22:5� 0:6 �26:4� 0:8 16–18
�0 8:4� 0:2 9:1� 0:3 10:1� 0:4 10:8� 0:5 11:6� 0:5 14:1� 0:8 16–18
K� �18:4� 0:4 �19:4� 0:4 �20:5� 0:5 �21:1� 0:5 �21:7� 0:6 �23:1� 0:6 16–18
K0 3:7� 0:1 3:8� 0:2 4:0� 0:2 4:1� 0:2 4:3� 0:2 4:7� 0:3 16–18
�� �11:8� 0:3 �12:5� 0:3 �13:1� 0:4 �13:3� 0:5 �13:3� 0:6 �12:5� 1:2 14–16
�0 5:3� 0:2 5:6� 0:2 5:9� 0:3 6:0� 0:4 6:1� 0:4 6:5� 0:7 9–11
K�� �13:0� 0:3 �13:2� 0:4 �13:3� 0:5 �13:3� 0:5 �13:2� 0:6 �12:7� 0:8 14–16
K�0 3:0� 0:2 3:2� 0:2 3:3� 0:3 3:5� 0:3 3:6� 0:3 4:1� 0:5 14–16
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facilitate the chiral extrapolation, on the one hand, we need
to perform calculations at smaller pion masses. This is hard
to achieve with the standard Wilson quark action due to
technical difficulties. An attractive alternate is the so-
called twisted-mass quark action [36] which can push the
pion mass down to about 250 MeV at a cost of about a
factor of 2. To further decrease the pion mass, one needs
chiral fermions such as the overlap [37] which has been
used to push the pion mass down to about 180 MeV [38].
The downside of overlap fermions is its cost: it is much
more expensive to simulate than the standard Wilson fer-
mions. On the other hand, we need better ansatz from
chiral effective theories to provide a physical basis for
the extrapolations.

Third, the effects of the quenched approximation should
be investigated. Work is currently under way using the CP-
PACS dynamical configurations [39] based on the
renormalization-group improved gauge action and mean-
field improved clover quark action. The three lattice sizes
in the set are useful for doing a continuum extrapolation.
034503
Finally, as far as the cost of our calculation is concerned,
it is equivalent to 11 standard mass-spectrum calculations
using the same action (5 values of the parameter � to
provide 4 nonzero magnetic fields, 5 to reverse the field,
plus the zero-field to set the baseline). This factor can be
reduced to 7 if only two nonzero values of magnetic field
are desired. Reversing the field is well worth the cost: the
magnetic moments can be extracted from the linear re-
sponse in the mass shifts in the same data set [40].
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