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One-loop amplitudes for four-point functions with two external massive quarks and two external
massless partons up to O�"2�
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We present complete analytical O�"2� results on the one-loop amplitudes relevant for the next-to-next-
to-leading order (NNLO) quark-parton model description of the hadroproduction of heavy quarks as given
by the so-called loop-by-loop contributions. All results of the perturbative calculation are given in the
dimensional regularization scheme. These one-loop amplitudes can also be used as input in the
determination of the corresponding NNLO cross sections for heavy flavor photoproduction, and in
photon-photon reactions.
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I. INTRODUCTION

At the leading order (LO) Born term level, heavy quark
hadroproduction was studied some time ago [1]. The next-
to-leading order (NLO) corrections to unpolarized heavy
quark hadroproduction were first presented in [2,3], and in
[4,5] for photoproduction. Corresponding results with ini-
tial particles being longitudinally polarized were calcu-
lated in [6–10]. A calculation of the NLO corrections to
top-quark hadroproduction with spin correlations of the
final top quarks was performed in [11]. Analytical results
for the so-called ‘‘virtual plus soft’’ terms were presented
in [3,5,8] for the photoproduction and unpolarized hadro-
production of heavy quarks. Complete analytic results for
the polarized and unpolarized photoproduction, including
real bremsstrahlung, can be found in [10].

It is well known that the NLO QCD predictions for the
heavy quark production cross sections suffer from theo-
retical errors because of the large uncertainty in choosing
the renormalization and factorization scales. In spite of
considerable progress due to recent work in bringing closer
theory and experiment (see e.g. [12,13]), the need for next-
to-next-to-leading order (NNLO) results for heavy quark
production in QCD is by now clearly understood. The
NNLO corrections are expected to significantly reduce
the renormalization and factorization scale dependence
inherent to the NLO parton model predictions.

During the last several years much progress has been
achieved in developing and applying various techniques
for an all order resummation of heavy quark production
cross sections in different reactions. This concerns the
resummation of the divergent terms in some specific re-
gions of phase space (so-called large logarithms) to NLO
(NLL logs) and NNLO (NNLL logs) leading logarithmic
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accuracy. We may mention the work on the threshold and
recoil resummations [14] of NLL logs in hadronic colli-
sions. Much activity was also devoted to the resummation
of NNLL threshold logs for heavy quark production in
e�e� (see e.g. the informative review [15] and references
therein) and �� [16] reactions. However, this cannot re-
place the need of having the exact NNLO results for
obvious reasons. In fact, these resummed results could be
better understood when the exact NNLO results are
available.

The full calculation of the NNLO corrections to heavy
hadron production at hadron colliders will be a very diffi-
cult task to complete. It involves the calculation of many
Feynman diagrams of many different topologies. It is clear
that an undertaking of this dimension will have to involve
the efforts of many theorists. As one example, take the
recent two-loop calculation of the heavy quark vertex form
factor [17] which can be taken as one of the building blocks
of the NNLO calculation. Another building block is the so-
called NNLO loop-by-loop contributions which we have
begun to calculate. The necessary O�"2� one-loop scalar
master integrals that enter the calculation have been deter-
mined by us in [18]. The present paper is devoted to the
determination of the corresponding O�"2� gluon- and
quark-induced one-loop amplitudes including the full
spin and color content of the problem. In a sequel to this
paper we shall present results on the square of the one-loop
amplitudes thereby completing the calculation of the loop-
by-loop part needed for the description of NNLO heavy
hadron production.

In Fig. 1 we show one generic diagram each for the four
classes of contributions that need to be calculated for the
NNLO corrections to the gluon-initiated hadroproduction
of heavy flavors. They involve the two-loop contribution
1(a), the loop-by-loop contribution 1(b), the one-loop
gluon emission contribution 1(c) and, finally, the two gluon
emission contribution 1(d). The corresponding graphs for
the quark-initiated processes are not displayed.

In this paper we concentrate on the loop-by-loop con-
tributions exemplified by Fig. 1(b). Specifically, working
-1 © 2006 The American Physical Society
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FIG. 1. Exemplary gluon fusion diagrams for the NNLO cal-
culation of heavy hadron production.
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in the framework of the dimensional regularization scheme
[19], we shall present O�"2� results on the one-loop am-
plitudes. The expansion of the one-loop amplitudes up to
"2 is needed because the one-loop integrals exhibit ultra-
violet (UV) and infrared (IR)/collinear [or mass(M)] sin-
gularities up to O�"�2�. When squaring the one-loop
amplitudes to obtain the singular and finite parts of the
loop-by-loop contributions one must thus know the one-
loop amplitudes up to "2.

In dimensional regularization there are three different
sources that can contribute positive "-powers to the
Laurent series of the one-loop amplitudes. First, one has
the Laurent series expansion of the scalar one-loop inte-
grals which have been calculated up to O�"2� in [18].
Second, the evaluation of the spin algebra of the loop
amplitudes brings in the n-dimensional metric contraction
g��g�� � n � 4� 2". Third and last, the Passarino-
Veltman decomposition of tensor integrals will again bring
in the metric contraction g��g�� � n � 4� 2". The latter
two points will be treated in this paper. It is clear that
through the interplay of the three different sources of
positive " powers the Laurent series of the one-loop am-
plitude itself will, order by order, contain different orders
of the Laurent series coefficient of the scalar integrals.

We have confirmed the results on the Laurent expansion
of the one-loop amplitude up to O�"0� presented in [20].
These results will not be listed again in this paper. In this
paper we present analytical results for the coefficients of
the " and "2 terms of the " expansion including also their
imaginary parts. When presenting our results, we shall
make use of our notation for the coefficient functions of
the relevant scalar integrals calculated up to O�"2� in [18].
For the calculation of the one-loop diagrams with two
external massive quarks and two external massless partons
one needs one scalar one-point function A, five scalar two-
point functions Bi, six scalar three-point functions Ci, and
three scalar four-point functions Di. For example, for the
scalar four-point functions Di we defined successive coef-
ficient functions D�j�i according to the expansion

Di � iC"�m
2�

�
1

"2 D
��2�
i �

1

"
D��1�
i �D�0�i � "D

�1�
i

� "2D�2�i �O�"3�

�
; (1.1)
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where C"�m2� is defined by

C"�m2� �
��1� "�

�4��2

�
4��2

m2

�
"
: (1.2)

Similar expansions hold for the scalar one-point function
A, the scalar two-point functions Bi and the scalar three-
point functions Ci. For the convenience of the reader we
have included a table from [18] (see Table I) where all the
necessary one-loop master scalar integrals are listed. We
note that for the one-loop scalar integrals the UVand IR/M
singularities never overlap, i.e. do not multiply each other.
Singularities of order "�2 appear only when both IR and M
poles are present simultaneously. This last case is realized
when the massless gluon is attached to either massless
fermion or a gluon line in the Feynman diagrams.
Consequently, graphs 3(a1), 3(c1), 4(f1), and 4(f2) shown
in the next section have only "�1 poles, while graphs 3(a2),
3(a3), 3(c3), and 4(g2) have "�2 poles. The details of the
pole structure of the various Feynman diagrams can be
found in [20].

As remarked on before we have endeavored to calculate
the loop-by-loop contributions in three steps starting with
the scalar one-loop integrals, then calculating the one-loop
amplitudes and finally squaring the one-loop amplitudes. If
one’s interest is only in the unpolarized rate one can
directly move from step 1 to step 3 without the interim
step of having to evaluate the one-loop amplitudes.
However, in the latter case one loses the information on
the spin content of the one-loop contributions which cannot
be reconstructed from the rate expressions. On the other
hand, having expressions for the one-loop amplitudes al-
lows one to easily derive the one-loop contributions to
partonic cross section including any polarization of the
incoming or outgoing particles. Our results on the one-
loop amplitudes are given separately for every Feynman
diagram in order to facilitate the use of the results for other
relevant processes that differ by color factors.

The hadroproduction of heavy flavors proceeds through
the following two partonic channels:

g� g! Q�Q; (1.3)

where g denotes a gluon and Q�Q� denotes a heavy quark
(antiquark), and

q� �q! Q�Q; (1.4)

where q� �q� is a light massless quark (antiquark).
Note that the Abelian part of the NLO result for (1.3)

provides the NLO corrections to heavy flavor production
by two on-shell photons

�� �! Q�Q; (1.5)

with the appropriate color factor substitutions. The results
for (1.3) can also be used to determine the corresponding
amplitudes for heavy flavor photoproduction
-2



TABLE I. List of one-, two-, three- and four-point massive one-loop functions calculated in
our previous paper [18] up to O�"2�.

Nomenclature of [3] Our nomenclature Novelty Comments

1-point A�m� A Re

2-point B�p4 � p2; 0; m� B1 Re
B�p3 � p4; m;m� B2 Re, Im
B�p4; 0; m� B3 Re
B�p2; m;m� B4 Re

B�p3 � p4; 0; 0� B5 Re, Im

3-point C�p4; p3; 0; m; 0� C1 New Re, Im
C�p4;�p2; 0; m;m� C2 New Re
C��p2; p4; 0; 0; m� C3 Re
C��p2;�p1; 0; 0; 0� C4 Re, Im
C��p2;�p1; m;m;m� C5 Re, Im
C�p3; p4; m; 0; m� C6 Re, Im

4-point D�p4;�p2;�p1; 0; m;m;m� D1 New Re, Im
D��p2; p4; p3; 0; 0; m; 0� D2 New Re, Im
D��p2; p4;�p1; 0; 0; m;m� D3 New Re
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�� g! Q�Q: (1.6)

We mention that the partonic processes (1.3) and (1.4) are
needed for the calculation of the contributions of single-
and double-resolved photons in the photonic processes
(1.5) and (1.6).

NLO cross sections for the process (1.5) have been
determined in [21–23] for unpolarized and in [23,24] for
polarized initial photons. Note that the authors of [24] used
a nondimensional regularization scheme to regularize the
poles of divergent integrals. In the papers [21,24] analytic
results were presented for ‘‘virtual plus soft’’ contributions
alone. We also note that complete analytical results includ-
ing hard gluon contributions can be found only in [23]. The
two-photon reaction (1.5) will be investigated at future
linear colliders. NLO corrections for the heavy quark
production cross section (1.5) with incident on-shell pho-
tons in definite helicity states are of interest in themselves
as they represent an irreducible background to the inter-
mediate Higgs boson searches for Higgs masses in the
range of 90 to 160 GeV (see e.g. [23,24], and references
therein).

The paper is organized as follows. Section II contains an
outline of our general approach as well as one-loop ampli-
p1 µ

b

p2 ν

a

p3

p4

Q

Q

p1

p2

p1

p2

FIG. 2. The t-, u- and s-shannel leading order (Born) graphs
contributing to the gluon (curly lines) fusion amplitude. The
thick solid lines correspond to the heavy quarks.
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tudes for the gluon fusion subprocess for the self-energy
and vertex contributions including their renormalization.
In Sec. III we discuss the one-loop contributions to the four
box diagrams in the same gluon-gluon subprocess and give
a detailed description of our global checks on gauge in-
variance for our results. Section IV presents analytic re-
sults on the quark-antiquark subprocess (1.4). Our main
results are summarized in Sec. V. Finally, in two appendi-
ces we present results for the various coefficient functions
that appear in the main text.
II. CONTRIBUTIONS OF THE TWO- AND THREE-
POINT FUNCTIONS TO GLUON FUSION

The Born and the one-loop contributions to the partonic
gluon fusion reaction g�p1� � g�p2� ! Q�p3� �Q�p4�
are shown in Figs. 2–4. In this section we discuss our
evaluation of the self-energy and vertex graphs that con-
tribute to the above subprocess. With the 4-momenta
pi�i � 1; . . . ; 4� as shown in Fig. 2 and with m the heavy
quark mass we define

s � �p1 � p2�
2; t � T �m2 � �p1 � p3�

2 �m2;

u � U�m2 � �p2 � p3�
2 �m2: (2.1)

In order to isolate ultraviolet (UV) and infrared/collinear
(IR/M) divergences we have carried out all our calculations
in the dimensional regularization scheme (DREG) [19]
with the dimension of space-time being formally n � 4�
2".

First of all we note that in general the amplitudes for all
the Feynman diagrams in the gluon fusion subprocess can
be written in the form

M � ���p1����p2� �u�p3�M��v�p4�: (2.2)
-3
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FIG. 3. The t-channel one-loop graphs contributing to the
gluon fusion amplitude. Loops with dotted lines represent gluon,
ghost and light and heavy quarks.
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For purposes of brevity, we will present our results in terms
of truncated amplitudes M�� where the polarization vec-
tors and Dirac spinors are omitted. For reasons of brevity
we shall also refer to the truncated amplitudes as ampli-
tudes. Of course, the presence of the polarization vectors
and Dirac spinors is implicitly understood throughout this
paper in that the mass-shell conditions p�1 ���p1� � 0 and
6p3u�p3� � mu�p3� etc. are being used to simplify M��

[25]. Furthermore, M�� contains the common factor
C"�m2� defined in Eq. (1.2) which arises from the scalar
one-loop integrations described in [18]. Throughout the
paper we will omit from all our one-loop M�� amplitudes
the common factor

C � g4C"�m
2�; (2.3)

where g is the renormalized coupling constant.
There are three sets of contributing graphs: The

t-channel, u-channel and the s-channel graphs as exempli-
fied in Fig. 2 for the LO Born term contributions. Since the
u-channel amplitudes Mu can be obtained from the
t-channel amplitudes Mt by the relation

M t $Mu � fa$ b; p1 $ p2; �$ �g; (2.4)

we shall not list results of the u-channel contributions. In
(2.4) a; b are the color indices of the two gluons. We make
it clear from the outset that additional u-channel graphs are
obtained from the relevant t-channel graphs by the inter-
change of the two external bosonic lines (not only mo-
menta). In exception are the two vertex insertion diagrams
3(c3) and 3(c4) which will be discussed later on. All three
interchanges (color, Lorentz indices and bosonic mo-
menta) have to be done simultaneously. Note that the
second interchange in (2.4) implies also the interchange
t$ u. In general, when speaking about the t-u symmetry
of a given subset of amplitudes, we will imply invariance of
those amplitudes under the transformations (2.4).

We start by writing down amplitudes for the leading
order Born terms. For the t-channel gluon fusion subpro-
cess (first graph in Fig. 2) we have

B��t � �iTbTa���6p3 � 6p1 �m��
�=t;

where Tb and Ta are generators (Ta � �a=2, a � 1; . . . ; 8
and the �a are the usual Gell-Mann matrices) that define
the fundamental representation of the Lie algebra of the
color SU(3) group. Analogously, for the u and s channels
depicted in the second and third graph of Fig. 2 we have,
respectively,

B��u � �iTaTb���6p3 � 6p2 �m���=u;

B��s � i�TaTb � TbTa�C���3 ��=s;

where the tensor C���3 is obtained from the Feynman rules
for the three-gluon coupling and is given by
034030
C���3 � g���p1 � p2�� � g���p1 � 2p2��

� g���2p1 � p2��: (2.5)

We have omitted a common factor g2 in the Born ampli-
tudes. Acting with Dirac spinors �u�p3� and v�p4� on the
above truncated Born amplitudes from the left and the
right, respectively, and using the effective relations p�1 �
p�2 � 0, as remarked on before, we arrive at the following
expressions for the leading order amplitudes

B��t � iTbTa��� 6p1�
� � 2p�3 �

��=t;

B��u � iTaTb��� 6p2�� � 2p�3�
��=u;

B��s � 2i�TaTb � TbTa��g�� 6p1 � p
�
2 �

� � p�1�
��=s:

Next we proceed with the description of the two-point
insertions to the amplitudes of the subprocess (1.3). But
before we turn to the two-point functions one should
mention that our choice of renormalization scheme will
be a fixed flavor scheme throughout this paper. This implies
that we have a total number of flavors nf � nlf � 1, where
nlf is the number of light (i.e. massless) flavors and the
‘‘1’’ stands for the produced heavy flavor. Thus there will
only be nlf light flavors involved/active in the � function
for the running a QCD coupling 	s, and in the splitting
functions that determine the evolution of the structure
-4
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g2 h i1 

i2 j1 j2 

FIG. 4. The s-channel one-loop graphs contributing to the
gluon fusion amplitude. Loops with dotted lines as in g1, h, j1
and j2 represent gluon, ghost and light and heavy quarks. The
four-gluon coupling contribution appears in g2.
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functions. When having massless particles in the loops we
are using the standard MS scheme, while the contribution
of a heavy quark loop in the gluon self-energy with on-
shell external legs is subtracted out entirely.

Consider first the two t-channel self-energy insertion
graphs 3(d2) and 3(d3) in Fig. 3 with external legs on-
shell. These graphs are very important as they determine
the renormalization parameters in the quark sector.
Throughout this paper we use the so-called on-shell pre-
scription for the renormalization of heavy quarks, the
essential ingredients of which we describe in the following.
When dealing with massive quarks one has to choose a
parameter to which one renormalizes the heavy quark
mass. It is natural to choose a quark pole mass for such a
parameter—the only ‘‘stable’’ mass parameter in QCD.
The condition on the renormalized heavy quark self-energy
�r�6p� is

�r�6p�j6p�m � 0; (2.6)

which removes the singular internal propagator in these
self-energy insertion diagrams. This can be seen from the
explicit result for the renormalized heavy quark external
self-energy �r�6p� e.g. in dimensional regularization
scheme

�r�6p� � ig2CFC"�m
2�

"�1� 2"�

�
6p�m� 6p

m2�p2

p2

�

�
1�

m2�p2

2p2 �1� "�
�
�m

m2�p2

p2 �2� "�
�
:

(2.7)

The above condition (2.6) determines the mass renormal-
ization constant Zm. For the wave function renormalization
we have used the usual condition (see e.g. Ref. [4])

@
@ 6p

�r�6p�j6p�m � 0; (2.8)

which fully determines the wave function renormalization
constant Z2. Since the condition (2.8) is not mandatory in
general, there is a freedom in determining the constant Z2.
Note that the condition (2.8) sets all external heavy quark
self-energy insertion diagrams to zero, thus making the
heavy quark case similar to the massless one in this regard.
Below we list our expressions for the mass and wave
function renormalization constants.

In the DREG scheme we arrive at the result

Zm � 1� g2CFC"�m
2�

3� 2"
"�1� 2"�

; (2.9)

which can be expanded in " to give

Zm � 1� g2CFC"�m2�

�
3

"
� 4� 8"� 16"2 �O�"3�

�
;

Z2 � Zm; (2.10)

where CF �
4
3 and we do not make a distinction which

poles are of ultraviolet or IR=M origin as we did in [20].
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After the mass renormalization procedure is applied we
obtain the final results for the two self-energy insertion
graphs in the DREG scheme

M��
3�d2� � M��

3�d3� � �CFB
��
t

3� 2"
"�1� 2"�

� �CFB
��
t

�
3

"
� 4� 8"� 16"2 �O�"3�

�
:

(2.11)

From here on we will present only results for the " and
"2 order contributions to the amplitudes.

After addition of the mass renormalization counterterm
the contribution of the quark self-energy insertion graph
3(d1) with external legs off-shell reads

M��
3�d1� � CFB

��
t

X2

k�1

"k��B�k�1 t=T � 4B�k�1 m
2=t

� B�k�1�
1 t=T � k16m2=t�

� iCFTbTam����
X2

k�1

"k�B�k�1 =T � 2B�k�1 =t

� B�k�1�
1 =T � k8=t�: (2.12)

The coefficients B�k�1 and B�k�1�
1 come from the Laurent

series expansion of the scalar two-point function B1 (see
Table I) quite similar to the corresponding Laurent series
expansion of the four-point functions Di shown in
Eq. (1.1).

The remaining quark self-energy insertion graphs 4(i1)
and 4(i2) with external on-shell legs are derived in analogy
to the ones considered above:

M��
4�i1� � M��

4�i2� � �CFB
��
s �8"� 16"2�; (2.13)
-5
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Concerning the gluon self-energy insertion graphs 3(e1)
and 3(e2) with external legs on-shell, the only nonvanish-
ing contributions are those from heavy quark loops. They
are given by

M��
3�e1� � M��

3�e2� � �B
��
t

1

"
2

3
: (2.14)

However, these contributions are explicitly subtracted [to-
gether with the common factor C"�m2�, see Eqs. (1.2) and
(2.3)] in the on-shell renormalization prescription.
Therefore, due to the UV counterterm that subtracts this
loop with heavy quarks, there are no finite contributions to
the amplitudes from these self-energy diagrams. However,
at the same time this counterterm introduces the pole terms
from the light quark loop sector that are needed to cancel
soft and collinear poles from the other parts of the ampli-
tude, e.g. from the real bremsstrahlung part. This indicates
that in practice it is very hard to completely disentangle
UV and IR/M poles in heavy flavor production and in most
cases one obtains a mixture of both instead.

For the reasons specified above we present the gauge
field renormalization constant Z3, used for the gluon self-
energy subtraction:

Z3 � 1�
g2

"

��
5

3
NC �

2

3
nlf

�
C"��

2� �
2

3
C"�m

2�

�

� 1�
g2

"

�
��0 � 2NC�C"��

2� �
2

3
C"�m

2�

�
;

(2.15)

where the QCD beta-function �0 � �11NC � 2nlf�=3 con-
tains only light quarks. NC � 3 is the number of colors.
Accordingly, for the coupling constant renormalization we
obtain

Zg � 1�
g2

"

�
�0

2
C"��

2� �
1

3
C"�m

2�

�
: (2.16)

As was the case for the diagrams 3(e1) and 3(e2), dia-
grams 4(j1) and 4(j2) also vanish altogether due to the
explicit decoupling of the heavy quarks in our subtraction
prescription. However, instead of renormalizing separately
each Feynman diagram, one can chose to employ the
renormalization group invariance of the cross section and
do only a mass and coupling constant renormalization. In
this case, knowing the results for the gluon self-energy
diagrams turns out to be useful in checking the complete
cancellation of UV poles by just rescaling the coupling
constant in the LO terms gbare ! Zgg. One has

M��
�4j1� � M��

�4j2� � �B
��
s

1

"
2

3
: (2.17)
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Finally we arrive at the gluon self-energy insertion graph
4(h), which contains the off-shell gluon self-energy loop
that is used for the derivation of the renormalization con-
stant Z3. We have evaluated the internal loop in the
Feynman gauge. In our result we show separately the
gauge-invariant pieces for gluon plus ghost, light quarks
and one heavy quark flow inside the loop:

M��
�4h� � B��s

�
B5

iC"�m2�

�
�NC

n� 14� 8"
2�3� 2"�

� nlf
2�1� "�
3� 2"

�
�

1

"
2

3
I
�
; (2.18)

with n � 4� 2" in the DREG scheme. B5 is the two-point
integral whose explicit form is given in [18]. We expand
the first two terms in (2.18) in powers of " and find

M��
�4h� � B

��
s

��
NC

�
1

"
5

3
�

31

9
� "

�
188

27
�

5

3

�2�

�

� "2

�
1132

81
�

31

9

�2� �

10

3

�3�

��

� nlf

�
1

"
2

3
�

10

9
� "

�
56

27
�

2

3

�2�

�

� "2

�
328

81
�

10

9

�2� �

4

3

�3�

����
�s

m2

�
�"
�

1

"
2

3
I
�
;

(2.19)

with

I � 1� "
�
�

1

3
� B�0�2

3� �2

2

�
� "2

�
�

2

9
�

1

3
B�0�2 �

2

� B�1�2

3� �2

2

�
� "3

�
�

4

27
�

2

9
B�0�2 �

2

�
1

3
B�1�2 �

2 � B�2�2

3� �2

2

�
: (2.20)

In (2.20) we have made use of the definition

� �
�����������������������
1� 4m2=s

q
: (2.21)

Concluding our discussion on the 2-point insertions we
remark that the amplitudes for the relevant u-channel 2-
point insertion diagrams can be obtained from Eqs. (2.11),
(2.12), and (2.14) by the transformation (2.4).

Next we discuss the t- and u-channel vertex insertions.
In this paper we write down only the " and "2 terms of the
Laurent expansion. The terms proportional to "�2, "�1 and
"0 can be found in [20]. We begin with the purely non-
Abelian graph 3(b) with the four-gluon vertex. The ampli-
tude takes the following form:
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M��
3�b� � iNC

�
TbTa

X2

k�1

"kf�2p�3�
� � p�4�

� � p�3 �
� � 2p�4 �

���B�k�5 � 2C�k�1 m
2 � 4k� �mg���2B�k�5 � 2B�k�1�

5 � 4C�k�1 m
2

� C�k�1�
1 s� 12k� � 3m�����2B�k�5 � C

�k�
1 s� 8k�=2g=�s�2� � �a$ b;�$ ��

�
� i�ab

X2

k�1

"kf�p�3�
� � p�4�

�

� p�3 �
� � p�4 �

���B�k�5 � 2C�k�1 m
2 � 4k�=2�mg���B�k�5 � 2B�k�1�

5 � 4C�k�1 m
2 � 3C�k�1 s=2� C�k�1�

1 s�g=�s�2�:

(2.22)
It is easily seen from Eq. (2.22) that the amplitude for the
graph 3(b) is explicitly t-u symmetric, as it follows from
the geometric topology of this graph. It is thus important to
state that there is no u-channel equivalent of graph 3(b).

Next we turn to graphs 3(c1) and 3(c2). As mentioned
before, these diagrams occur also in other processes such
as photoproduction and �� production of heavy flavors
when one or two of the gluons are replaced by photons. For
this reason we also present the corresponding t-channel
color factors for these graphs. Then it is straightforward to
034030
separate our Dirac structure from the color coefficients and
one can easily deduce the corresponding results for the
other processes involving photons. In order to facilitate this
transscription we list the color factor for both diagrams
3(c1) and 3(c2) which turn out to be the same:

T3�c1�
col � T3�c2�

col �

�
CF �

NC
2

�
TbTa � �

1

6
TbTa: (2.23)

The complete amplitudes are
M��
3�c1� � B��t

X2

k�1

"kfB�k�1 �6m
2=t� 1� � 2B�k�1�

1 zt=t� 2C�k�2 m
2 � 4C�k�1�

2 m2 � k8�4m2=t� 1�g=6

� iTbTa
�
p�3 �

�
X2

k�1

"kfB�k�1 �zt=t� t=T� � B
�k�1�
1 �2zt=t� t=T� � 2�C�k�2 � 2C�k�1�

2 �m2 � k8zt=tg

�mp�3 6p1��
X2

k�1

"kfB�k�1 =T � B
�k�1�
1 �2=t� 1=T� � 2C�k�1�

2 � k4=tg

�m����
X2

k�1

"kfB�k�1 � B
�k�1�
1 � C�k�1�

2 t� 6kg
��
�3t�; (2.24)

where we have introduced the abbreviation zt � 2m2 � t.
For the graph 3(c2) we obtain

M��
3�c2� � B��t

X2

k�1

"kfB�k�1 �6m
2=t� 1� � 2B�k�1�

1 zt=t� 2C�k�2 m
2 � 4C�k�1�

2 m2 � k8�4m2=t� 1�g=6

� iTbTa
�
p�4�

�
X2

k�1

"kfB�k�1 ��2m2=t� 3� t=T� � B�k�1�
1 t=T � 2C�k�2 m

2 � k8T=tg �mp�4�2p
�
3 � �

� 6p1�

�
X2

k�1

"kfB�k�1 =T � B
�k�1�
1 �2=t� 1=T� � 2C�k�1�

2 � k4=tg �m����
X2

k�1

"kfB�k�1 � B
�k�1�
1 � C�k�1�

2 t� 6kg
��
�3t�:

(2.25)

Next we write down the results for graphs 3(c3) and 3(c4). The color factors for both diagrams are the same:

T3�c3�
col � T3�c4�

col � �
NC
2
TbTa � �

3

2
TbTa: (2.26)

We have

M��
3�c3� � 3B��t

X2

k�1

"kf�3B�k�1 m
2=t� C�k�3 t� k4�3m2=t� 1�g � 3iTbTa

�
p�3 �

�
X2

k�1

"kfB�k�1 m
2�1=T � 2=t� � B�k�1�

1 t=T

� C�k�3 t� k4zt=tg � 3m����
X2

k�1

"kfB�k�1 =2� 2kg �mp�3 6p1�
�
X2

k�1

"kfB�k�1 �2=t� 1=T� � B�k�1�
1 =T � k8=tg

��
t:

(2.27)
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And

M��
3�c4� � 3B��t

X2

k�1

"kf�3B�k�1 m
2=t� C�k�3 t� k4�3m2=t� 1�g � 3iTbTa

�
p�4�

�
X2

k�1

"kfB�k�1 m
2�1=T � 2=t�

� B�k�1�
1 �t=T � 2� � C�k�3 t� k4�2m2=t� 1�g � 3m����

X2

k�1

"kfB�k�1 =2� 2kg �mp�4�2p
�
3 � �

� 6p1�

�
X2

k�1

"kfB�k�1 �2=t� 1=T� � B�k�1�
1 =T � k8=tg

��
t: (2.28)
The results for the amplitudes of the relevant u-channel
vertex insertion diagrams are obtained from Eqs. (2.24),
(2.25), (2.27), and (2.28), by the transformation (2.4).
However, there is a subtle point involved here: we stress
that for the graphs 3(c3) and 3(c4) the Mt $ Mu trans-
formation (2.4) transforms the t-channel result of the graph
3(c3) to the u-channel result for the graph 3(c4), while the
t-channel result of 3(c4) goes to the u-channel result for
3(c3). This is important to keep in mind when dealing with
reactions which involve asymmetric set of graphs as e.g. in
the photoproduction of heavy flavors. The reason for this is
that when doing transformation (2.4) the three-gluon vertex
attached to one of the initial bosonic lines does not stay
attached to the same bosonic line. However, we note that
transformation p3 $ p4 does uniquely relate all the t- and
u-channel diagrams for the subprocess under
consideration.
034030
Next we turn to the remaining s-channel graphs shown
in Fig. 4. For all the gluon propagators we work in
Feynman gauge. This set of graphs is purely non-Abelian
for the QCD type one-loop corrections. In the case that one
wants to replace the gluonic vertex correction in graph
4(f1) by a photonic vertex correction one needs the explicit
form of the color factor for graph 4(f1):

T�4f1�
col �

�
CF �

NC
2

�
�TaTb � TbTa�

� �
1

6
�TaTb � TbTa�: (2.29)
The amplitude including the color factor is
M��
4�f1� � B��s

X2

k�1

"kf3B�k�2 � 2B�k�1�
2 � C�k�6 s�1� �

2� � 16kg=6� 2i�TaTb � TbTa�m��g���s� 2t� � 4p�3 p
�
4 � 4p�4 p

�
3	

�
X2

k�1

"kfB�k�2 � 2B�k�1�
2 � 8kg=�6s2�2�: (2.30)

Graph 4(f2) contributes as

M��
4�f2� � NCB

��
s

X2

k�1

"kfB�k�5 �8m
2 � s� � 2C�k�1 m

2s� k16�5m2 � s�g=�2s�2�

� 2iNC�TaTb � TbTa�m��g���s� 2t� � 4p�3 p
�
4 � 4p�4 p

�
3	

�
X2

k�1

"kfB�k�5 �8m
2 � s� � 2B�k�1�

5 s� 6C�k�1 m
2s� C�k�1�

1 s2 � k4�12m2 � s�g=2s3�4: (2.31)

We end our consideration of the vertex insertions for gluonic fusion with the sum of the two graphs 4(g1) and 4(g2)
which we refer to as the triangle graph contribution �tri� � 4�g1� � 4�g2�. For the case when one has gluons and ghosts
inside the triangle loop we obtain

M��
�tri��g� � �3NC

�
B��s

X2

k�1

"kf207B�k�5 � 12B�k�1�
5 � 54C�k�4 s� 8k� �k� 1�8 ~B�0�5 g � 6i�TaTb � TbTa�6p1

�
X2

k�1

"kfg���9B�k�5 � 12B�k�1�
5 � 9C�k�4 s� 8k� �k� 1�8 ~B�0�5 	=s

� 8p�2 p
�
1�3B

�k�1�
5 � 2k� �k� 1�2 ~B�0�5 	=s

2g

��
324; (2.32)

where ~B�0�5 � B�0�5 � 4=3. When one has light and heavy quarks inside the loop one has
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M��
�tri��q� � 6nlf

�
B��s

X2

k�1

"kf9B�k�5 � 3B�k�1�
5 � 2k� �k� 1�2B�0�5 g � 3i�TaTb � TbTa�6p1

� �g��=s� 2p�2 p
�
1=s

2	
X2

k�1

"kf3B�k�1�
5 � 5k� �k� 1��5 ~B�0�5 � 3�g

�
=81 (2.33)

where nlf is the number of light flavors in the triangle loop. For the heavy flavor case one has

M��
�tri��Q� � 6

�
B��s

X2

k�1

"kf6�3B�k�2 � 2B�k�1�
2 � �k� 1�4B�0�2 =3�m2=s� 9B�k�2 � 3B�k�1�

2 � 2k� 2�k� 1� ~B�0�2 g

� i�TaTb � TbTa�6p1�g��=s� 2p�2 p
�
1=s

2	
X2

k�1

"kf12�3B�k�2 � 2B�k�1�
2 � �k� 1�4B�0�2 =3�m2=s

� 18�C�k�5 � C
�k�1�
5 � �k� 1�C�0�5 �m

2 � 3B�k�1�
2 � 5k� �k� 1��5 ~B�0�2 � 3�g

��
81; (2.34)
where ~B�0�2 � B�0�2 � 4=3. The complete amplitude for the
triangle �tri� � 4�g1� � 4�g2� is the sum of the above three
expressions (2.32), (2.33), and (2.34):

M��
�tri� � M��

�tri��g� �M
��
�tri��q� �M

��
�tri��Q�: (2.35)

In Ref. [27] one can find general results for the gluon
triangle in any gauge and dimension. We have compared
the first two terms in (2.35) with the corresponding ex-
pressions in Ref. [27] and found complete agreement.
III. RESULTS FOR THE BOX DIAGRAMS IN
GLUON FUSION

In this section we describe the technically most involved
derivation of the 4-point massive box diagrams. The four
box graphs 3(a1), 3(a2), 3(a3), and 3(a4) contributing to
the subprocess g� g! Q�Q are depicted in Fig. 3. We
have used Passarino-Veltman techniques [28] to reduce
tensor integrals to scalar ones where the scalar master
integrals are taken from our previous publication [18].
034030
For each of the gluon fusion box diagrams we expand
the truncated amplitude M�� in terms of a set of 20
Lorentz-Dirac covariants multiplied by the same number
of invariant functions. In the reduction of the Lorentz-
Dirac structure to this basic set of 20 covariants we have
been making use of the mass-shell conditions described in
Sec. II. The 20 Lorentz-Dirac covariants are subdivided
into eight subsets according to their Dirac structure. The 20
invariant functions multiplying the covariants are sorted
according to the contributions of a basic set of functions
f�k�i (called basis functions) related to the scalar master
integrals of [18]. The index i runs over the members of the
set of basis functions occurring in a particular graph. The
index k denotes the power of " which the basis function
multiplies. The basis functions f�k�i are multiplied by coef-
ficient functions b�j�in where the index pair �n; j� identifies
the covariant which the coefficient function multiplies.
Note that the basis functions f�k�i have been defined such
that the coefficient functions b�j�in do not depend on the
index k. We thus cast the box amplitude into the following
universal form:
M�� � iTcol

X2

k�1

"k
�
M��

Bt

X
f�k�i b

�0�
i1 � 6p1

�
g��

X
f�k�i b

�1�
i1 � p

�
3 p

�
3

X
f�k�i b

�1�
i2 � p

�
3 p

�
4

X
f�k�i b

�1�
i3 � p

�
4 p

�
3

X
f�k�i b

�1�
i4

� p�4 p
�
4

X
f�k�i b

�1�
i5

�
� ��

�
p�3

X
f�k�i b

�2�
i1 � p

�
4

X
f�k�i b

�2�
i2

�
� ��

�
p�3

X
f�k�i b

�3�
i1 � p

�
4

X
f�k�i b

�3�
i2

�

�m����
X
f�k�i b

�4�
i1 �m�

� 6p1

�
p�3

X
f�k�i b

�5�
i1 � p

�
4

X
f�k�i b

�5�
i2

�
�m�� 6p1

�
p�3

X
f�k�i b

�6�
i1 � p

�
4

X
f�k�i b

�6�
i2

�

�m
�
g��

X
f�k�i b

�7�
i1 � p

�
3 p

�
3

X
f�k�i b

�7�
i2 � p

�
3 p

�
4

X
f�k�i b

�7�
i3 � p

�
4 p

�
3

X
f�k�i b

�7�
i4 � p

�
4 p

�
4

X
f�k�i b

�7�
i5

��

� fMt $Mug: (3.1)

The symbol fMt $Mug at the end of Eq. (3.1) needs to be explained. It has the same meaning as the symbol Mt $Mu
defined in Eq. (2.4) except that diagrams 3(a3) and 3(a4) are exempted from the sum. The crossed boxes 3(a3) and 3(a4) go
into each other under the Mt $Mu operation. More exactly, for each of these diagrams, when one symmetrically
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interchanges the two bosonic lines (together with the ap-
pended three-gluon vertex) one arrives at the original box
graph topology since these boxes represent diagrams of the
so-called nonplanar topology. This becomes even more
clear when one interchanges p3 $ p4: In this case each
of the two crossed box graphs is reflected into itself.

Taking parity into account one has altogether 2 
 2 
 2 

2=2 � 8 independent amplitudes and thus eight indepen-
dent covariants for the process g� g! Q�Q in
n � 4 dimensions. We have made no attempt to reduce
the 20 (plus 3 from the u-channel contributions) covariants
in (3.1) to a basic set of independent gauge-invariant co-
variants. In fact, gauge invariance will be checked later on
in terms of the expansion (3.1). At any rate, the number of
independent gauge-invariant covariants will very likely
change going from n � 4 to a general n � 4.

Depending on the type of the box graph one has a
different number of terms in the �i� summation in (3.1).
These numbers as well as the set of basis functions f�k�i
related to the scalar master integrals are specified below.
The coefficient functions b�j�in are given in Appendix A of
this paper.

In the expansion (3.1) it is convenient to choose one
covariant as the t-channel Born term amplitude structure
M��

Bt (and correspondingly a u-channel Born term ampli-
tude structure). We define it as
M��
Bt � ���6p3 � 6p1 �m��

�; (3.2)
which, when taken between the spin wave functions im-
plying the effective relations p�1 � 0; p�2 � 0, can be writ-
ten as
M��
Bt � 2p�3 �

� � �� 6p1��: (3.3)
For each of the box diagrams 3(a1) and 3(a2) we found
the following empirical relations between the b�5�in and b�6�in
coefficient functions:
b�6�i1 � b�5�i2 ; b�6�i2 � b�5�i1 : (3.4)
Because of the relations (3.4) we will not write down the
results for the b�6�in coefficients in the Appendix A.

Next we present the color factors and basis functions for
the Abelian type box diagram 3(a1). For this graph the
sums over i in (3.1) run from 1 to 17 for each of the 20
terms. One has
034030
Tcol �
1

4
�ab �

�
CF �

NC
2

�
TbTa: (3.5)

f�k�1 � B
�k�1�
1 ; f�k�2 � B

�k�
1 ; f�k�3 � B

�k�1�
2 ;

f�k�4 � B
�k�
2 ; f�k�5 � C

�k�1�
2 ; f�k�6 � C

�k�
2 ;

f�k�7 � C
�k�1�
5 ; f�k�8 � C

�k�
5 ; f�k�9 � C

�k�1�
6 ;

f�k�10 � C
�k�
6 ; f�k�11 �D

�k�1�
1 ; f�k�12 �D

�k�
1 ;

f�k�13 � k; f�k�14 � �k� 1�C�k�2�
2 ;

f�k�15 � �k� 1�C�k�2�
5 ; f�k�16 � �k� 1�C�k�2�

6 ;

f�k�17 � �k� 1�D�k�2�
1 :

(3.6)

The corresponding coefficient functions b�j�in are listed in
Appendix A. Many of the coefficient functions are in fact
related to each other. One has

b�j�12n � �tb
�j�
10n; j � 0: (3.7)

And for any given values of n and j one has

b�j�11n � �tb
�j�
9n; b�j�15n � s=�2t�b�j�14n; (3.8)

b�j�16n � s�2=�2zt�b
�j�
14n; b�j�17n � �st�

2=�2zt�b
�j�
14n:

Further relations are valid for particular sets of the
parameters n; j:

b�j�7n � s=�2t�b
�j�
5n; j� 0;1;2;4;

b�7�7n � s=�2t�b
�7�
5n ; n� 1;3;5;

b�j�8n � s=�2t�b
�j�
6n; j� 4;5;6;7:

(3.9)

Because of these relations among the coefficient func-
tions we will write down only the independent coefficients
b�j�in in Appendix A.

For the non-Abelian box diagram 3(a2) the sums over i
in (3.1) again run from 1 to 17 for each of the 20 terms in
(3.1). For the color factor we obtain

Tcol �
1

4
�ab �

NC
2
TbTa: (3.10)

The relevant 17 basis functions that describe the result of
evaluating the box diagram 3(a2) are given by

f�k�1 � B�k�1�
1 ; f�k�2 � B�k�1 ; f�k�3 � B�k�1�

5 ;

f�k�4 � B�k�5 ; f�k�5 � C�k�1�
1 ; f�k�6 � C�k�1 ;

f�k�7 � C�k�1�
3 ; f�k�8 � C�k�3 ; f�k�9 � C�k�1�

4 ;

f�k�10 � C�k�4 ; f�k�11 � D�k�1�
2 ;

f�k�12 � D�k�2 ; f�k�13 � k;

(3.11)

f�k�14 � �k� 1�C�k�2�
1 ; f�k�15 � �k� 1�C�k�2�

3 ;

f�k�16 � �k� 1�C�k�2�
4 ; f�k�17 � �k� 1�D�k�2�

2 :
-10
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There are five relations between particular coefficients
for the box diagram 3(a2), valid for any values of n and j:

b�j�9n � s=�2t�b�j�7n; b�j�11n � ��s=2�b�j�7n; (3.12)

and

b�j�14n � szt=�2t
2�b�j�15n; b�j�16n � s=�2t�b�j�15n;

b�j�17n � ��s=2�b�j�15n:
(3.13)

In addition, one has two sets of relations that are valid for
the corresponding parts of the expression (3.1) for the box
3(a2). The first set of relations is

b�j�5n � szt=�2t
2�b�j�7n; (3.14)

b�j�14n � 2b�j�5n; b�j�15n � 2b�j�7n;

b�j�16n � 2b�j�9n; b�j�17n � 2b�j�11n;
(3.15)

The above equalities are valid for j � 0; 2; 3; 4; 5; 6 and for
j � 1; 7 and n � 1. Note that in the presence of the set
(3.13) not all of the relations in (3.14) and (3.15) are
independent. Therefore, we can choose Eq. (3.14) and
only one relation (e.g. the second one) out of the four
relations in (3.15) as a set of independent relations.

The second set of relations is represented by the two
equalities that are identical to the ones of (3.12), but are
valid only for j � 4; 5; 6; 7 or for j � 1 and n � 2; 3; 4; 5:

b�j�10n � s=�2t�b�j�8n; b�j�12n � ��s=2�b�j�8n: (3.16)

In the case of the crossed box 3(a4) one has 20 basis
functions for each of the terms in (3.1). The color factor for
this graph takes the simple form

Tcol �
1
4�

ab: (3.17)

The functions fki are defined as follows:

f�k�1 � B�k�1�
1 ; f�k�2 � B�k�1 ; f�k�3 � B�k�1�

1u ;

f�k�4 � B�k�1u ; f�k�5 � C�k�1�
2 ; f�k�6 � C�k�2 ;

f�k�7 � C�k�1�
2u ; f�k�8 � C�k�2u ; f�k�9 � C�k�1�

3 ;

f�k�10 � C�k�3 ; f�k�11 � C�k�1�
3u ; f�k�12 � C�k�3u ;

f�k�13 � D�k�1�
3 ; f�k�14 � D�k�3 ; f�k�15 � k;

f�k�16 � �k� 1�C�k�2�
2 ; f�k�17 � �k� 1�C�k�2�

2u ;

f�k�18 � �k� 1�C�k�2�
3 ; f�k�19 � �k� 1�C�k�2�

3u ;

f�k�20 � �k� 1�D�k�2�
3 ;

(3.18)

where the subscript ‘‘u’’ is an operational definition pre-
scribing a �t$ u� interchange in the argument of that
function, i.e. B�k�1u � B�k�1 �t$ u�.
034030
There are numerous relations between the b�j�in coeffi-
cient functions for this diagram. These relations read as
follows:

For any value of n and j

b�j�11n � b�j�9nu=t; b�j�13n � �b
�j�
9nu; (3.19)

as well as

b�j�7n � b�j�5nu=t; j � 5;

b�j�8n � b�j�6nu=t; j � 1; 2;

b�j�12n � b�j�10nu=t; j � 4; 5; 6; 7;

b�1�12n � b�1�10nu=t; n � 1;

b�1�14n � �b
�1�
12nt; n � 0; 2;

b�2�14;2 � �b
�2�
12;2t:

(3.20)

Further one has a less general but still very useful relation
for any n

b�j�9n � �b
�j�
5ntu=�2D� tu�; j � 0; 3; 6; (3.21)

withD � m2s� tu. Equation (3.21) above is also valid for
j � 1; 7 and n � 1.

For the coefficient functions that effectively only multi-
ply the "2 terms we have two sets of relations. One set is

b�j�16n � 2b�j�5n; b�j�17n � 2b�j�7n; b�j�18n � 2b�j�9n;

b�j�19n � 2b�j�11n; b�j�20n � 2b�j�13n;
(3.22)

which are valid for the same values of j; n as specified in
and after (3.21). The other set reads

b�j�17n � b�j�16nu=t; b�j�18n � �b
�j�
16ntu=�2D� tu�;

b�j�19n � �b
�j�
16nu

2=�2D� tu�;

b�j�20n � b�j�16ntu
2=�2D� tu�:

(3.23)

The relations (3.23) are global for the crossed box 3(a4),
i.e. valid for any set of index values. Because the relations
(3.22) always occur together with the relations (3.21), only
the first relation of (3.22) is important. The other four
relations in (3.22) are redundant since they can be derived
from (3.19), the first relation in (3.20), (3.21), and (3.23).

In addition to the relations listed above, various coeffi-
cient functions of the crossed box are related by �t$ u�
exchange. For instance, the coefficient functions multiply-
ing the Born term structure M��

Bt (or j � 0) are related by

b�0�i;1 � b�0�i�2;1�t$ u�; i � 1; 2; 5; 6; 9; 10;

b�0�i;1 � b�0�i�1;1�t$ u�; i � 16; 18;
(3.24)

The remaining �j � 0� coefficient functions turn into
themselves under �t$ u�.
-11
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Other coefficient functions are negatively related by
�t$ u� exchange:

b�1�i;4 � �b
�1�
i�2;3�t$ u�; i � 1; 2; 5; 6; 9; 10;

b�1�i;4 � �b
�1�
i;3 �t$ u�; i � 13; 14; 15; 20;

b�1�i;4 � �b
�1�
i�1;3�t$ u�; i � 16; 18:

(3.25)

b�1�i;5 � �b
�1�
i�2;2�t$ u�; i � 1; 2; 5; 6; 9; 10;

b�1�i;5 � �b
�1�
i;2 �t$ u�; i � 13; 14; 15; 20;

b�1�i;5 � �b
�1�
i�1;2�t$ u�; i � 16; 18:

Furthermore, the whole term corresponding to j � 4 in
(3.1) is antisymmetric under �t$ u�. The following pairs
of coefficient functions are negatively related in the sense
of (3.25): the b�5�i2 are related to b�5�l1 , and the b�6�i2 are related
to b�6�l1 , where l can take any of the values l � i; i� 1; i� 2
depending on the value of i. The number of independent
coefficient functions is greatly reduced for this box be-
cause of all these relations. We took advantage of this fact
when writing down the relevant coefficient functions in
Appendix A.

As explained after Eq. (3.1) the crossed box 3(a4) is
obtained from 3(a3) with the help of the Mt $Mu
operation. For this reason we write down explicit results
only for one of the box 3(a3) in Appendix A.

A necessary check on the correctness of our one-loop
results is gauge invariance. For example, for gluon 1 this
implies that one must have

p1����p2� �u�p3�M
���one� loop�v�p4� � 0; (3.26)

for each of the remaining independent amplitude structures
that multiply e.g. p1�, p3� and ��. Similarly one must have

p2����p1� �u�p3�M���one� loop�v�p4� � 0; (3.27)

again, for each of the remaining independent amplitude
structures that multiply e.g. p2�, p3� and ��. We have
verified gauge invariance for the following gauge-invariant
subsets of diagrams: (i) When the incoming gauge bosons
are photons, i.e. including graphs 3(a1), 3(c1), 3(c2), 3(d1),
3(d2), and 3(d3) plus their u-channel counterparts with
their corresponding color weights; (ii) For the photopro-
duction of heavy flavors, i.e. including all the above dia-
grams plus graphs 3(a4), 3(c3), and 3(e1) plus their u-
channel counterparts, with corresponding color weights;
(iii) For the hadroproduction of heavy flavors, which ulti-
mately includes all the graphs from Figs. 3 and 4 plus their
relevant u-channel counterparts. We emphasize that the
above gauge invariance checks were made separately for
both color structures CF and NC, and for every existing
combination of color matrices Ta, Tb and �ab, whenever
they arise. When checking on gauge invariance all the
relevant s-, t- and u-channel graphs have to be added.
034030
Gauge invariance must of course be checked for each
power of " and for each of the coefficient functions of
the Laurent series expansion of the scalar master integrals
separately, independent of their actual numerical values.

Finally we note that the original computer output for the
box diagrams was extremely long. The final results were
cast into the above shorter form with the help of the
REDUCE Computer Algebra System [29].
IV. ANNIHILATION OF THE QUARK-ANTIQUARK
PAIR

The LO Born graphs contributing to this subprocess are
shown in Fig. 5. In Fig. 6 we show the graphs contributing
at one-loop order.

The leading order contribution proceeds only through
the s-channel graph. One has

Bq �q � iTaijT
a
kl �v�p2���u�p1� �u�p3���v�p4�=s: (4.1)

Here the color matrices Ta belong to different fermion
lines which are connected by the gluon having color index
a. We have again left out the factor g2 in the Born term
contribution (4.1). In the Passarino-Veltman reduction for
tensor integrals we can make use of the same scalar inte-
grals of [18] as those appearing in the gluon fusion sub-
process, with relevant shifts and interchanges of momenta
when needed.

Starting again with the 2-point insertions, we notice that
the result for graph 6(g) can be obtained from the one of
(2.19) for graph 4(h) in the gluon fusion subprocess by the
simple replacement

M6�g� � M��
4�h��B

��
s ! Bq �q�: (4.2)

The massless quark self-energy insertion graphs 6(j) and
6(k) with external legs on-shell vanish identically:

M6�j� � M6�k� � 0: (4.3)

The massive quark self-energy insertion graphs 6(h) and
6(i) with external legs on-shell are calculated in analogy to
-12



a b c 

d e f 

g h i 

j k 

FIG. 6. The one-loop Feynman diagrams contributing to the
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the ones considered in the previous section:

M6�h� � M6�i� � �CFBq �q
3� 2"
"�1� 2"�

: (4.4)

The results for the vertex insertions are relatively short.
Starting with graphs 6(c) and 6(d) one finds that they are
proportional to the LO Born term

M6�c� � Bq �q

X2

k�1

"kf3B�k�5 � 2B�k�1�
5 � 2C�k�4 sg=6 (4.5)

and

M6�d� � �3Bq �q

X2

k�1

"kB�k�5 =2: (4.6)
034030
For the other two vertex insertion diagrams we also
obtain simple expressions:

M6�e� �

�
Bq �q

X2

k�1

"kf3B�k�2 �2B�k�1�
2 �C�k�6 s�1��

2��16kg

�4iTaTam �v�p2�6p3u�p1� �u�p3�v�p4�

�
X2

k�1

"kfB�k�2 �2B�k�1�
2 �8kg=�s2�2�

��
6 (4.7)

and

M6�f� � 3
�
Bq �q

X2

k�1

"kfB�k�5 �8m
2=s� 1�

� 2C�k�1 m
2 � k16�5m2=s� 1�g

� 4iTaTam �v�p2�6p3u�p1� �u�p3�v�p4�

�
X2

k�1

"kfB�k�5 �8m
2=s� 1� � 2B�k�1�

5 � 6C�k�1 m
2

� C�k�1�
1 s� k4�12m2=s� 1�g=�s2�2�

��
�2�2�:

(4.8)

Turning to the two box diagrams 6(a) and 6(b) we note
that extensive Dirac algebra manipulations lead to rather
compact expressions for the amplitudes. We have ex-
panded the box diagrams in terms of seven independent
Dirac structures, the same set for each of the two box
graphs. Then every Dirac structure is multiplied by the
sums of products of a small set of basis functions and
coefficient functions. Thus, we have the following compact
expansion for the two box diagrams:
M � iTcol

X2

k�1

"k
�

�v�p2���u�p1� �u�p3���v�p4�
X
f�k�i h

�0�
i � �v�p2�6p3u�p1� �u�p3�6p1v�p4�

X
f�k�i h

�1�
i

� �v�p2��
� 6p3�

�u�p1� �u�p3��� 6p1��v�p4�
X
f�k�i h

�2�
i � �v�p2��

��	��u�p1� �u�p3����	��v�p4�
X
f�k�i h

�3�
i

�m �v�p2�6p3u�p1� �u�p3�v�p4�
X
f�k�i h

�4�
i �m �v�p2��

�u�p1� �u�p3��� 6p1v�p4�
X
f�k�i h

�5�
i

�m �v�p2��� 6p3��u�p1� �u�p3�����v�p4�
X
f�k�i h

�6�
i

�
: (4.9)
There are seven independent covariants in (4.9) upon
using the four mass-shell conditions. We have not at-
tempted to further reduce the set of seven covariants using
Fierz-type identities which are anyway valid only in n �
4-dimensions. Taking parity and the masslessness of the
initial quarks into account the number of amplitudes and
thereby the number of independent covariants in n � 4 is
2 
 2 
 2 
 2=2 
 2 � 4. However, this counting may no lon-
ger be true in n � 4.

The sums over i in (4.9) run from 1 to 15 in the box
diagram 6(a). Below we list the color factors and analytic
functions for the two 4-point functions of (4.9). For the
-13
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graph 6(a) we get:

Tcol � �TaimT
b
mj��T

b
knT

a
nl�; (4.10)

where the first parentheses in (4.10) corresponds to the
summation over color indices of the massless fermion
line. The basis functions read

f�k�1 � B
�k�
1 ; f�k�2 � B

�k�
5 ; f�k�3 � C

�k�1�
1 ;

f�k�4 � C
�k�
1 ; f�k�5 � C

�k�1�
3 ; f�k�6 � C

�k�
3 ;

f�k�7 � C
�k�1�
4 ; f�k�8 � C

�k�
4 ; f�k�9 �D

�k�1�
2 ;

f�k�10 �D
�k�
2 ; f�k�11 � k; f�k�12 � �k� 1�C�k�2�

1 ;

f�k�13 � �k� 1�C�k�2�
3 ; f�k�14 � �k� 1�C�k�2�

4 ;

f�k�15 � �k� 1�D�k�2�
2 :

(4.11)

As in the case of the gluon fusion boxes there exist a
number of universal relations among the various coeffi-
cient functions h�j�i valid for any value of j:

h�j�3 � zth
�j�
7 =t; h�j�5 � 2th�j�7 =s; h�j�9 � �th

�j�
7 ;

h�j�10 � �th
�j�
8 ; h�j�12 � 2zth

�j�
7 =t; h�j�13 � 4th�j�7 =s;

h�j�14 � 2h�j�7 ; h�j�15 � �2th�j�7 : (4.12)

The color factor for the second box graph 6(b) is

Tcol � �TaTb��TaTb�: (4.13)

All basis functions are obtained from those in (4.11) by the
interchange �t$ u�, except for the two additional func-
tions (with subscripts 16 and 17), e.g.

f�k�1 � B
�k�
1 �t$ u�; f�k�2 � B

�k�
5 ; f�k�3 � C

�k�1�
1 ;

f�k�4 � C
�k�
1 ; f�k�5 � C

�k�1�
3 �t$ u�;

f�k�6 � C
�k�
3 �t$ u�; f�k�7 � C

�k�1�
4 ; f�k�8 � C

�k�
4 ;

f�k�9 �D
�k�1�
2 �t$ u�; f�k�10 �D

�k�
2 �t$ u�; f�k�11 � k;

f�k�12 � �k� 1�C�k�2�
1 ; f�k�13 � �k� 1�C�k�2�

3 �t$ u�;

f�k�14 � �k� 1�C�k�2�
4 ; f�k�15 � �k� 1�D�k�2�

2 �t$ u�;

f�k�16 � B
�k�1�
1 �t$ u�; f�k�17 � B

�k�1�
5 : (4.14)

The last two functions f16 and f17 appear in the expansion
(4.9) only in two sums where h�1�i and h�4�i are present and,
consequently, these sums run from 1 to 17.

One has further relations for the various coefficient
functions h�j�i which are similar to those in Eq. (4.12). In
this case they are valid for any given value of j except for
j � 1 and j � 4.
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h�j�3 � zuh
�j�
7 =u; h�j�5 � 2uh�j�7 =s; h�j�9 � �uh

�j�
7 ;

h�j�10 � �uh
�j�
8 ; h�j�12 � 2zuh

�j�
7 =u; h�j�13 � 4uh�j�7 =s;

h�j�14 � 2h�j�7 ; h�j�15 � �2uh�j�7 ; (4.15)

where zu � 2m2 � u. In case of j � 1 and j � 4 one has

h�j�5 � 2uh�j�7 =s; h�j�9 � �uh
�j�
7 ; h�j�10 � �uh

�j�
8 ;

h�j�12 � zuh
�j�
14=u; h�j�13 � 2uh�j�14=s; h�j�15 � �uh

�j�
14 :

(4.16)

The coefficient functions h�j�i are given in Appendix B of
this paper. However, there exists a partial symmetry for
these box diagrams, which allows one to express most
coefficient functions for the box graph 6(b) through the
ones of the box graph 6(a). In particular, starting from the
coefficients h�j�i with superscript j � 2, we find the follow-
ing general relations:

h�j�i �6�b�	 � �h
�j�
i �6�a�	�t$ u�; j � 2;

h�j�i �6�b�	 � h�j�i �6�a�	�t$ u�; j � 3; 5; 6:
(4.17)

Consequently, for graph 6(b) only the coefficients h�0�i , h�1�i
and h�4�i are presented in Appendix B. We reiterate that all
the one-loop amplitudes of this chapter must be multiplied
by the common factor (2.3).

V. CONCLUSIONS

We have presented analytic O�"2� results on the one-
loop amplitudes for gluon- and light quark-induced heavy
quark pair production including their absorptive parts [30].
These are needed for the calculation of the loop-by-loop
part of the parton model description of NNLO heavy
hadron production in hadronic collisions. We have not
included the finite and divergent pieces in our presentation
since these were already obtained in an earlier publication
[20]. The advantage of having the results in amplitude form
is that one retains the full spin information of the partonic
subprocess which would be of later use when one wants to
consider polarization phenomena in heavy hadron produc-
tion. As an immediate next step we plan to square the one-
loop amplitudes and to sum over the spins of the external
partons. This will provide the necessary input for the loop-
by-loop part of the NNLO parton model description of
unpolarized heavy hadron or top-quark pair production
which is presently under study at the TEVATRON II and
will be studied at the upcoming hadron collider LHC.
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APPENDIX A

Here we present the coefficients of the box contributions
for the gluon fusion subprocess appearing in Eq. (3.1).
034030
We define a shorthand notation

z1 � m2s� t2; z2 � s� 2t;

zt � 2m2 � t; zu � 2m2 � u;
(A1)
D � m2s� ut:

First we list coefficients for the Abelian type of box
diagram 3(a1):
b�0�i;1 � 0; i� 1;2;3;4;13; b�0�5;1 ��10tzt=D; b�0�6;1 � 2tzu=D; b�0�8;1 � szu=D; b�0�9;1 ��5st�2=D;

b�0�10;1 ��su1�2=D; b�0�12;1 � s�D�m
2s�2�=D; b�0�14;1 ��24tzt=D;
b�1�1;1�0; b�1�2;1��2z2
t =tD; b�1�3;1�0; b�1�4;1�2zt=D; b�1�5;1�2tzt�6D�st�

2�=D2;

b�1�6;1��2zt�2m
2D�st2�2�=D2; b�1�8;1��2m

2z2D�s
2tzt�

2�=D2; b�1�9;1� s�
2=�2zt�b

�1�
5;1; b�1�10;1� s

2t2�4=D2;

b�1�13;1�16m2zt=tD; b�1�14;1�4tzt�6D�st�2�=D2;
b�1�1;2 � 4Tu�2=D2; b�1�2;2 � �4m2�2D2 � 2t2D� st�D� 2t2��2�=st2D2; b�1�3;2 � 4tuzt=sD
2;

b�1�4;2 � 4m2�D� 2szt�=sD2; b�1�5;2 � 4tzt�2m2D� t�D�m2s��2�=D3;

b�1�6;2 � �8m2�T�sT � 2m2t�D� st3zt�2�=tD3; b�1�8;2 � 4m2t�uz2D� s2z1�2�=sD3;

b�1�9;2 � 2t2�2��2m2 � s�D�m2s2�2�=D3; b�1�10;2 � 4m2t�2��2s� t�D� s2t�2�=D3;

b�1�13;2 � 16m2��2sT � tzt�D� 3m2stzt�=st
2D2; b�1�14;2 � 4tzt�4m

2D� t�D� 3m2s��2�=D3;
b�1�1;3 � �4�2D2 � 2m2�3m2 � s�D�m4st�2�=sTD2;

b�1�2;3 � �4zt�2m2D2 � t�2m4D� �3s� 2t�ztD� 2m2t2zu��=st2TD2;

b�1�3;3 � 4�ztD� t�m
2s� u�2m2 � s���2�=s�2D2;

b�1�4;3 � 4�s2�m2 � t��4 � �m2 � 4s��2D� tz1�
2 � ztD�=s�

2D2;

b�1�5;3 � �4t�2�2m2 � 2s� t�D2 � t�6m2z2 � s2�2�D�m2s�6sD� 2tD� stzu��2�=sD3;

b�1�6;3 � �4�4m2TD2 � t��2m4 � t2�zt � 2m2tz2�D� 2m4st2z2�
2�=tD3;

b�1�8;3 � �2�2m2sD2 � �2m2u3 � s2t2�2 � 2m2t3�D� 2m2s2z1u�2�=sD3;

b�1�9;3 � �2t�D2 � �9m2s� 2m2t� st� 3t2�D�2 � s2�3D�m2u��4�=D3;

b�1�10;3 � �2zt�tztD� s
2t2�4 � �2m2s2z2 �m

2stu� t4��2�=D3;

b�1�13;3 � 16m2�s�4D� t�8m2 � 5s��D�2 � 3t2�D�m2s�2�z2 � 3m2s3t�4�=s2t2�2D2;

b�1�14;3 � 4tzt�2�2sT � 3sz2 � 3tu�D� su�D� 3m2s��2�=sD3;
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b�1�1;4 � 4Tztz2=sD
2; b�1�2;4 � 8T�ztD� st

2�2�=stD2; b�1�3;4 � �4�sztD� st�D� tzt��
2�=s2�2D2;

b�1�4;4 � �4�3T�2D� ztD� 2t2zt�2�=s�2D2; b�1�5;4 � �4tzt�6D2 � 4tTD� s2tT�2�=sD3;

b�1�6;4 � 4zt��2m4 � t2�D� 2st2T�2�=D3; b�1�8;4 � �2�2m2�3s� 2t�D2 � 3s2tTD�2 �m2stz2D� 2s2t3zt�2�=sD3;

b�1�9;4 � 2t�4m2D2 � s�6m2s� 6m2t� 7st� 2t2�D�2 � s2t3�4�=sD3;

b�1�10;4 � 2t�D2 � �3m2s� 10m2t� 4st� t2�D�2 � 2st3�4�=D3; b�1�13;4 � 16m2zt�6tD� s�2sT � t
2��2�=s2t�2D2;

b�1�14;4 � �4tzt�2�6m2s� 8m2t� 7st� 3t2�D� 3st3�2�=sD3;

b�1�i5 � b�1�i2 ; (A2)

b�2�1;1 � 4Tu=sD; b�2�2;1 � �2T�2D� st�=stD; b�2�3;1 � �4u�D� tzt�=s
2�2D;

b�2�4;1 � �2��4m2 � 3s�D� stzt�=s
2�2D; b�2�5;1 � 2t2zt�4m

2s� tz2�=sD
2; b�2�6;1 � �2�2�m4 � tT�D� t3zt�=D

2;

b�2�8;1 � �2�m
2t� szt�D� st2zt�=D2; b�2�9;1 � t�4m2uD� st�4m2s� tz2��2�=sD2;

b�2�10;1 � t�4m2uD� s2�2D� t2��2�=sD2; b�2�13;1 � 16m2�s2T�2 � 3tuzt�=s
2t�2D;

b�2�14;1 � 4t2zt�4m
2s� 2st� 3t2�=sD2;

b�2�1;2 � �4�D�m2u�=sD; b�2�2;2 � �2�2�s� T�D�m2st�=stD; b�2�3;2 � �4t�m2z2 � szu�=s2�2D;

b�2�4;2 � 2�D�2 � tzu�=s�
2D; b�2�5;2 � �2t�2zt�4s� t�D�m

2s2t�2 � 3m2stz2 � st
2zu�=sD

2;

b�2�6;2 � �2�2T2D� t3zu�=D
2; b�2�8;2 � ��2D

2 � 2m2tD� t2uz2�=D
2;

b�2�9;2 � �t�tD� �6sD� 5m2st� 3s2t� 3t3��2�=D2; b�2�10;2 � �t
2�4m2D� s2u�2�=sD2;

b�2�13;2 � 16�s��m2 � s�D� 2m2st��2 �m2t2�2T � u��=s2t�2D; b�2�14;2 � �4tzt�10sD� 2m2sz2 � 3t2u�=sD2;

b�3�1;1 � 4�m4s� TD�=stD; b�3�2;1 � 2�2�s� T�D�m2s�4m2 � t��=stD;

b�3�3;1 � �4�sD�m2s2�2 �m2tz2�=s
2�2D; b�3�4;1 � �2�2sD� 3m2s2�2 � 2m2tz2�=s

2�2D;

b�3�5;1 � 2�4m2D2 � 4t�6m2s�m2t� st�D� st3�5s� 3t��2 � 2t3z1�=sD
2;

b�3�6;1 � 2��2m2T � t2�D�m2st2�2 � 2m4tz2�=D2;

b�3�7;1 � ��24m2s� 8m2t� 7st�D� s2t�3m2 � 2t��2 � 2t2z1�=D
2; b�3�8;1 � �2m

2�s� t�D� 2m2s2t�2 � st2zu�=D
2;

b�3�9;1 � �t�uD� ��8s� 3t�D�m2s�5s� 6t���2�=D2; b�3�10;1 � �2�s
2T � 2m2t2�D� s2�2m2z1 � t2u��2�=sD2;

b�3�13;1 � 16��16m4 � s2�D�m2tu�5zt � 4z2��=s
2t�2D; b�3�14;1 � 4tzt��10s� 3t�D�m2s�4s� 5t��=sD2;

b�3�1;2 � 4T�m2s�D�=stD; b�3�2;2 � 2T�3szt � 2t2�=stD; b�3�3;2 � �4�sD�2 �m2tz2�=s
2�2D;

b�3�4;2 � �2��3sT � t2��2 � tzt�=s�2D; b�3�5;2 � 2�4m2D2 � 2t3D� st4�2 � 4m2t2z1�=sD2;

b�3�6;2 � 2�2m2TD� 2st2T�2 � t3zt�=D2; b�3�7;2 � �t�2tD� st
2�2 � 4m2z1�=D2;

b�3�8;2 � �t�2s
2T�2 � 2m2D� stzt�=D2; b�3�9;2 � t2�4m2D� s�4m2s� tz2��2�=sD2;

b�3�10;2 � ��2�4m
4s� 2m2tu� s2t�D� s2�4m2sT � t3��2�=sD2; b�3�13;2 � �16m2�4s2T�2 � 3t2zt�=s

2t�2D;

b�3�14;2 � 4t2zt�2m2s� 2st� 3t2�=sD2;
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b�4�1;1 � 0; b�4�2;1 � 0; b�4�3;1 � 4=s�2; b�4�4;1 � 4=s�2; b�4�5;1 � 2t2=D; b�4�6;1 � 2t�s� 3t�=D;

b�4�9;1 � �tz2=D; b�4�10;1 � ��2D� s
2�2 � tz2�=D; b�4�13;1 � �24=s�2; b�4�14;1 � 0;
b�5�1;1 � 4T=tD; b�5�2;1 � 4T=tD; b�5�3;1 � 4zt=sD�
2; b�5�4;1 � 4zt=sD�

2; b�5�5;1 � 4�TD� 2t2zt�=D
2;

b�5�6;1 � 4tTz2=D
2; b�5�7;1 � 2t�D� 2z1�=D

2; b�5�9;1 � �2t�D� 2st�2�=D2; b�5�10;1 � �2T�2D� s2�2�=D2;

b�5�13;1 � �24�m2s�2 � tzu�=stD�2; b�5�14;1 � 12t2zt=D2;
b�5�1;2 � 4m2=tD; b�5�2;2 � 4m2=tD; b�5�3;2 � 4zu=sD�2; b�5�4;2 � 4zu=sD�2; b�5�5;2 � 4�TD� 2m2tz2�=D2;

b�5�6;2 � 4t2zu=D2; b�5�7;2 � 2�2m2sz2 � tD�=D2; b�5�9;2 � 2t�D� 2su�2�=D2;

b�5�10;2 � 2��s�2 � 2T�D�m2s2�2�=D2; b�5�13;2 � �24�m2s�2 � tzu�=stD�
2; b�5�14;2 � �12tuzt=D

2;
b�7�1;1 � 0; b�7�2;1 � �2zt=D; b�7�3;1 � 0; b�7�4;1 � �2�4D� st�2�=sD�2; b�7�5;1 � �2tzt�4D� tz2�=D2;

b�7�6;1 � �2t�6TD� st2�2�=D2; b�7�9;1 � s�2=�2zt�b
�7�
5;1; b�7�10;1 � t�8m2D� 2stu�2 � tz2

2�=D
2;

b�7�13;1 � 16�m2s�2 � 2D�=sD�2; b�7�14;1 � �4tzt�4D� tz2�=D
2;
b�7�1;2 � �4��2m2s� tz2�D�m2t2z2�=stD2; b�7�2;2 � �4�4D2 � stD� 2m2t2z2�=stD2;

b�7�3;2 � 4�2TD� �2sD� t2u��2�=s�2D2; b�7�4;2 � �4��3m2z2 � 2s2 � 3st�D� 2m2s2t�2�=s2�2D2;

b�7�5;2 � �4�2D3 � 4t�2m2 � s�D2 � 2t2u�2s� 3t�D�m2s2t3�2�=sD3;

b�7�6;2 � 4t��6m4 � 2m2s� 4m2t� t2�D� 2m2st2�2�=D3; b�7�7;2 � 2�4ztD2 � 2u�2m2s� t2�D�m2s2t2�2�=D3;

b�7�9;2 � 2t�t�2sT � 12m2t� s2�D� s2�4�m2 � s�D� t2zu��
2�=sD3;

b�7�10;2 � �2�12m2tD2 � s2�2m2s� t2�D�2 � 2m2t2z2�D� s2�2��=sD3;

b�7�13;2 � 16�t�2m2u� sz2�D� s�5m
2sD� t2D� 3m2t2u��2�=s2t�2D2;

b�7�14;2 � 4tzt�2s�2zt � 3s�D� 3t2�s2�2 � tz2��=sD3;
b�7�1;3 � �4�2ztuD�m
4tz2�=sTD

2; b�7�2;3 � �4�4TD2 � t�4m2u� st�D� 2m4t2z2�=stTD
2;

b�7�3;3 � 4��2T � s�D� �m2s2 � t2u��2�=s�2D2; b�7�4;3 � �4��m2s� 6m2t� s2�D� 2s2tU�2�=s2�2D2;

b�7�5;3 � 4t�2�4m2 � u�D2 � t�s2 � 2t2�D�m2s2tu�2�=sD3; b�7�6;3 � 4t��6m4 � 2m2t� t2�D� 2m2stu�2�=D3;

b�7�9;3 � �2t�4D2 � tztD� ��4m
2s� 3s2 � 3t2�D�m2suz2��

2�=D3;

b�7�10;3 � 2�8m2uD2 �m2stz2D� s2t�m2 � t�D�2 � 2m2s2tuz2�2�=sD3;

b�7�13;3 � 16�2tu�3m2 � s�D�m2�4sD� 3tu2�s�2�=s2t�2D2;

b�7�14;3 � 4tzt��8m2s� 2st� 6t2�D� 3s3t�2 � 3st2zt�=sD3;
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b�7�1;4 � �4T�2sD� t2z2�=stD
2; b�7�2;4 � �8T�sD� t2z2�=stD

2; b�7�3;4 � �4�2�3m2 � 2t�D� t3�2�=s�2D2;

b�7�4;4 � �4�m2�s� 2t�D� 2st3�2�=s2D2�2; b�7�5;4 � �4�2D3 � 8m2tD2 � 2t3�2s� 3t�D� s2t3T�2�=sD3;

b�7�6;4 � 4t��6m2T � 2sT � t2�D� 2st2T�2�=D3; b�7�7;4 � 2�12m2D2 � �4m2sT � 3t2z2�D� st4�2�=D3;

b�7�9;4 � 2t�3D2 � 2m2ztD� �3�m2s� t2�D� st2zt��2�=D3;

b�7�10;4 � 2�2�2m2u� sz2�D
2 � 2m2t2z2D� s

2tzt�D� 2t2��2�=sD3;

b�7�13;4 � 16�2m2t�2s� 3t�D� 3s�D2 �m2t3��2�=s2t�2D2; b�7�14;4 � 4tzt�2�4m2s� 2st� 3t2�D� 3st2zt�=sD3;

b�7�1;5 � �4Tuz2=sD2; b�7�2;5 � �4�2D2 � t�D� 2m2t�z2�=stD2; b�7�3;5 � �4�2m2D� t2u�2�=s�2D2;

b�7�4;5 � 4��sT � 6m2t�D� 2m2s2t�2�=s2D2�2; b�7�5;5 � 4tzt�4D2 �m2stz2�=sD3;

b�7�6;5 � �4t�2D2 � �6m2T � tzt�D� 2m2st2�2�=D3;

b�7�9;5 � �2t�4�2m2 � s�D2 � 2m2tz2D�m
2s2�2D� tz2��

2�=sD3;

b�7�10;5 � �2�2�2m2 � s�z2D
2 � 2m2stztD� s

2t2�D� 2m2z2��
2�=sD3;

b�7�13;5 � 16�2m2t2D� s�2D2 � 3m2t2u��2�=s2t�2D2; b�7�14;5 � 4tzt�8D
2 � tz2D� 3m2stz2�=sD

3:

Next we list the coefficients for the non-Abelian box diagram 3(a2):

b�0�1;1 � 0; b�0�2;1 � 2zt=t2; b�0�3;1 � 0; b�0�4;1 � 0; b�0�6;1 � �s�4T � s�=D; b�0�7;1 � �16t2=D;

b�0�8;1 � �2�szt � 4t2�=D; b�0�10;1 � s�s� 2t�=D; b�0�12;1 � s�szt � 4t2�=D; b�0�13;1 � �16m2=t2;

b�1�1;1 � 0; b�1�2;1 � 2zt=D; b�1�3;1 � 0; b�1�4;1 � 2�m2s� t2�=sD; b�1�6;1 � �2�sT � 4m2t�D� t2z2
2�=D

2;

b�1�7;1 � 2t2�8D� szt�=D
2; b�1�8;1 � 2t�4TD� t2z2�=D

2; b�1�10;1 � �D
2 � 4t2D� st2z2�=D

2;

b�1�12;1 � t3�4D� sz2�=D2; b�1�13;1 � �16m2=D;

b�1�1;2 � �4Tuzt=tD2; b�1�2;2 � �4m2�D� 2tzt�=tD2; b�1�3;2 � �4t2u=sD2; b�1�4;2 � 4m2��D� 2st�2�=s�2D2;

b�1�5;2 � 2��4m4s� 2m2t2 � st2�D�m2s2t2�2�=D3; b�1�6;2 � 4m2��2m2D2 � s2tD�2 � s3t2�4�=s�2D3;

b�1�7;2 � 4t2�2m2sT � t2u�=D3; b�1�8;2 � 8m2t2z1=D
3; b�1�13;2 � 16m2�D� 3m2s�2�=s�2D2;

b�1�15;2 � 4t2�TD� 3m2z1�=D3;

b�1�1;3 � 4m2zt�2D�m
2t�=tTD2; b�1�2;3 � �4��2T�5m2s� 4m2t� t2� � 3t2z2�D� 2m2t3zu�=stTD

2;

b�1�3;3 � 4tu2=sD2; b�1�4;3 � 4��u�8m2 � 3s� � sT�D� 2m2s2u�2�=s2�2D2;

b�1�5;3 � 2�4tD2 � ��10m2s� t2��2m2 � s� � 2s2t�D� st2u2�2�=D3;

b�1�6;3 � 2�2m2�3zt � s� t�D
2 � s2�2m2s� t2�D�2 � 2m4s4�4�=s�2D3;

b�1�7;3 � 4t2��3s�2m2 � s� � 2tz2�D�m
2s3�2 �m2stz2�=sD

3; b�1�8;3 � 4tzt�tD� 2m2su�=D3;

b�1�13;3 � �16m2�4�t�5m2 � 2t� � s2�2�D� s�2m2su� s2zt � t
3��2�=s2t�2D2;

b�1�15;3 � 4t2�8D2 � s�7s� 5t�D� 3m2s��s2�2 � tz2��=sD3;
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b�1�1;4 � 4Tzt=D
2; b�1�2;4 � 8tTz2=sD

2; b�1�3;4 � 4t3=sD2; b�1�4;4 � �4��3m2 � 2t�D� 2t3�2�=s�2D2;

b�1�5;4 � �2�4�3m2 � 2t�D2 � t2�2m2 � s� 4t�D� st4�2�=D3;

b�1�6;4 � 2�2�2m4 � szt�D2 � s2�2m2T � tzt�D�2 � 2st2�m2z1 � t2zt��2�=s�2D3;

b�1�7;4 � �4t2�6D2 � stD� t3z2�=sD3; b�1�8;4 � �4t2��2T � t�D� 2t2zt�=D3;

b�1�13;4 � 16m2�2�2T � s� 2t�D� 3st2�2�=s2�2D2; b�1�15;4 � �4t2�12D2 � 2tuD� 3t3z2�=sD
3;

b�1�i5 � b�1�i2 ; (A3)

b�2�1;1 � 0; b�2�2;1 � �2T�3s� 4t�=sD; b�2�3;1 � 0; b�2�4;1 � ���D� 2t2��2 � 4m2zt�=s�
2D;

b�2�6;1 � ��2�2m2 � s�D2 � 2s�m2s� tT�D�2 � tzt�4m2D� s2�4m2 � t��2��=s�2D2;

b�2�7;1 � 2t3�8m2s� 5st� 4t2�=sD2; b�2�8;1 � �2t�2sTzt � t3�=D2; b�2�10;1 � ��2m
2s2T � 4t2D� t3z2�=D2;

b�2�12;1 � �t
2�2sD� t�8m2s� 5st� 4t2��=D2; b�2�13;1 � �16�sTu�2 � 2m4z2�=s

2�2D;

b�2�1;2 � 0; b�2�2;2 � 2�2�m2s� 2t2�D�m2t2�3s� 4t��=st2D; b�2�3;2 � 0;

b�2�4;2 � �tz2 � �3m
2s� 2st� t2��2�=s�2D;

b�2�6;2 � �2m
2tz2D� s�szt � 4tT�D�2 �m2s2tz2�2 � 2m2s3t�4�=s�2D2;

b�2�7;2 � �2t2�8�s� t�D� tu�3s� 4t��=sD2; b�2�8;2 � �2�D2 � 5t2D�m2st�4m2 � t��=D2;

b�2�10;2 � ��2m
2s2T � 4t2D� t2u�3s� 2t��=D2; b�2�12;2 � �t

2�2�s� 4t�D� tu�3s� 4t��=D2;

b�2�13;2 � 8��2sD2�2 � st�2m2t�3s� 2t� � 3uD��2 � 2m2t3z2�=s2t2�2D;

b�3�1;1 � 0; b�3�2;1 � �2�2�m2s� 2tzt�D�m
2t2�5s� 4t��=st2D; b�3�3;1 � 0;

b�3�4;1 � ��8m
2D� s�7m2s� 3t2��2 � 3s2zt�=s2�2D;

b�3�6;1 � ��D
2 � 3m2z2D� �10m2s� 4m2t� 2st� 3t2�D�2 �m2st�2s�2 � 3z2��

2�=�2D2;

b�3�7;1 � 2t2�16sD� tu�5s� 4t��=sD2; b�3�8;1 � 2�D2 � 5t2D�m2t2�5s� 4t��=D2;

b�3�10;1 � ��2D
2 � 10stD� 4m2st2 � 5st2u�=D2; b�3�12;1 � t�4D2 � 5stD�m2st�5s� 4t��=D2;

b�3�13;1 � 8�t�16m4 � su�D�m2s2�2D� t�4m2 � t���2 �m2t2�5s� 4t�z2�=s2t2�2D;

b�3�1;2 � 0; b�3�2;2 � 2T�8m2s� 3st� 4t2�=stD; b�3�3;2 � 0; b�3�4;2 � ���D� s�4m
2 � t���2 � 3szt�=s�2D;

b�3�6;2 � �12m2D2 � 2t�m2 � s�z2D� st�4m
2z1 � stzt��

2�=s�2D2; b�3�7;2 � �2t4�5s� 4t�=sD2;

b�3�8;2 � 2t2�2D� 4m2t� t2�=D2; b�3�10;2 � ��2m
2s2T � 3st3 � 2t4�=D2; b�3�12;2 � t�2sztD� t3�5s� 4t��=D2;

b�3�13;2 � �16�s��4m2 � t�D�m2t2��2 � 6m4tz2�=s
2t�2D;

b�4�1;1 � 0; b�4�2;1 � 2=t; b�4�3;1 � 0; b�4�4;1 � 2=s�2; b�4�6;1 � �D� sz2�
2�=�2D; b�4�7;1 � 0;

b�4�8;1 � �2st=D; b�4�13;1 � 8�4m2 � u�=st�2;

b�5�1;1 � 0; b�5�2;1 � 8T=tD; b�5�3;1 � 0; b�5�4;1 � 8zt=s�2D; b�5�6;1 � 2�z2D� 2stzt�2�=�2D2;

b�5�7;1 � 8t3=D2; b�5�8;1 � �4t�D� 2t2�=D2; b�5�13;1 � 32��m2s�2 � tzu�=st�2D;
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b�5�1;2 � 0; b�5�2;2 � 8m2=tD; b�5�3;2 � 0; b�5�4;2 � 8zu=s�
2D; b�5�6;2 � �2z2�D� 2m2s�2�=�2D2;

b�5�7;2 � �8t2u=D2; b�5�8;2 � �4t�D� 2tu�=D2; b�5�13;2 � �32�m2s�2 � tzu�=st�
2D;
b�7�1;1 � 0; b�7�2;1 � 2t=D; b�7�3;1 � 0; b�7�4;1 � �2zt=�
2D; b�7�6;1 � ��4�

2D2 � sztD� stz1�
2�=�2D2;

b�7�7;1 � �2t2�4D� st�=D2; b�7�8;1 � �2st3=D2; b�7�13;1 � 16m2z2=s�
2D;
b�7�1;2 � �4Tu=D2; b�7�2;2 � �4�6D2 � t�zt � 3u�D� 2t3u�=stD2; b�7�3;2 � 4�ztD�m
2�2D� tz2��

2�=s�4D2;

b�7�4;2 � �4�3m2z2D� �4m2t� 3szt � 4s2�2�D�2 � 2m2stz2�2�=s2�4D2;

b�7�5;2 � 2�ztD
2 � sTztD�

2 � �8m4s� 8m2s2 � 4m2t2 � 4s2t� 3st2 � t3�D�4 � st�2m4s� t2u��4�=�4D3;

b�7�6;2 � 2��12m4z2D
2 � s2�2m2z1 � 5m2sz2 � st

2�D�4 �m2s�4tD� s2z2�D�
2 � 2m2s3tz1�

4�=s2�4D3;

b�7�7;2 � 4t2�4D2 � 2u�2s� t�D�m2s2t�=sD3; b�7�8;2 � 4t��4m2s� 2m2t� t2�D� 2t3u�=D3;

b�7�13;2 � 16�16m4tztD� 2m2s3�2D�m2s��4 � s2t�4m4s� 7m2tzu � 2tu2��2�=s3t�4D2;

b�7�15;2 � 4t2�2��s2�2 � u�3s� 2t��D� 3st2u�=sD3;
b�7�1;3 � 4m2�2D�m2t�=TD2; b�7�2;3 � �4�4TD2 � t�2m2T � 3st� 2t2�D� 2m2t3u�=stTD2;

b�7�3;3 � 4zu�4m2D� s�2D� tu��2�=s2�4D2;

b�7�4;3 � 4�2m2�4m2z2 � szt�D� 3s2�m2 � s�D�2 � 2s2�2m2t2 � tu�s� 3t���2�=s3�4D2;

b�7�5;3 � 2��2D3 � 2tztD
2 � 2m2�3s� 2t�D2�2 � 2s�4m2 � 3s�D2�4 � st�s2 � 4m2t�D�4 � 2m2st�6m2 � t�D�2

�m2s2tz2
2�

2 �m2s2t2�3s� 2t��4�=s�4D3;

b�7�6;3 � 2�3m2z2D2 �m2�8m2 � 3s� 18t�D2�2 � s2t�10m2 � t�D�2 � 2m2s2�zt � 2u�D�4 � 2m2s2tz2
2�

2

� 2m2s2t2�3s� 2t��4�=s�4D3;

b�7�7;3 � 4t2�2�2m2s� s2 � t2�D� s2tU�=sD3; b�7�8;3 � 4t��4m2s� tzt�D� 2m2stu�=D3;

b�7�13;3 � 16�2t�8m4zt � s
2zu�D� 10m2s2tD�2 �m2s3�4D� 3st��4 � 3m2s2t2zt�

2�=s3t�4D2;

b�7�15;3 � 4t2�2��s2�2 � u�s� 2t��D� 3stu2�=sD3;
b�7�1;4 � 4tT=D2; b�7�2;4 � �8T��2s� t�D� st2�=stD2; b�7�3;4 � �4zt�4m
2D� st2�2�=s2�4D2;

b�7�4;4 � b�7�4;3 � 4�3sD� 2tz2
2��

2�=s�2D2; b�7�5;4 � b�7�5;3 � 2�4zuD2 � 2s2�m2 � 2t�D�2 � s3t2�4�=�2D3;

b�7�6;4 � b�7�6;3 � 4�2�2m2z2 � sT�D2 � s2�m2s� 3t2�D�2 � s4t2�4�=s�2D3; b�7�7;4 � 4t2�2�2m2s� t2�D� s2tT�=sD3;

b�7�8;4 � 4t��2sT � tzt�D� 2t4�=D3; b�7�13;4 � b�7�13;3 � 16��4m2 � 3s�D� 3tz2zu�=s�2D2;

b�7�15;4 � 4t2�2�4m2s� tz2�D� 3st3�=sD3;
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b�7�1;5 � �4Tu=D2; b�7�2;5 � �4�2D2 � t�2T � s�D� 2t3u�=stD2; b�7�3;5 � 4�ztD�m
2�szt � 4D��2�=s�4D2;

b�7�4;5 � 4�3�2m2t� sT�D� 2m2z2D�2 � 2st2zu�2�=s2�4D2;

b�7�5;5 � 2�2�16m6 � 8m4t� s2t�D2 � 2m2s�3sD� 2m2tz2�D�2 � 2m2s3�3m2 � 4t�D�4 �m2st2z3
2�

2�=s2�4D3;

b�7�6;5 � 2�2�5m2zt � sz2�D2 � 2m2�6s� t�D2�2 � 4m2t2z2D�2 � st�4m2u� st�D�4 � 2m2s�D2 � st2z2��4�=s�4D3;

b�7�7;5 � 4t2�4D2 � tz2D� st2u�=sD3; b�7�8;5 � 4t�2D2 � tztD� 2t3u�=D3;

b�7�13;5 � �16�tzuD�m
2t�tzt � sz2��

2 � u�2TD� t2u��4�=st�4D2; b�7�15;5 � 4t2�8D2 � 2tz2D� 3st2u�=sD3:

Finally, the coefficients for the crossed box 3(a4) are

b�0�1;1 � 0; b�0�2;1 � �zt=t
2; b�0�3;1 � 0; b�0�5;1 � 7t�2D� tu�=sD; b�0�6;1 � t�2D� s2 � tu�=sD;

b�0�10;1 � �2�t� u�D� t�s
2 � tu��=sD; b�0�14;1 � �2�t

2 � u2�D� tu�s2 � tu��=sD; b�0�15;1 � 8m2�t2 � u2�=t2u2;
b�1�1;1 � 0; b�1�2;1 � 2m2zt=tD; b�1�3;1 � 0; b�1�4;1 � 2zu�D�m2u�=u2D; b�1�5;1 � t�2D� tu��tzu � 6D�=sD2;

b�1�6;1 � �2�2m
2 � t�D2 � 2st2D� t2u2zt�=sD2; b�1�8;1 � ��2zuD

2 � 2stuD� tu3zt�=sD2;

b�1�10;1 � �t�4D
2 � 2t2D� t2uzu�=sD2; b�1�12;1 � t�4D2 � 2tuD� tu2zu�=sD2;

b�1�15;1 � 16m2��tD�m2u�t� u��=tu2D;
b�1�1;2 � 4Tuzu=sD
2; b�1�2;2 � 4m2�2D2 � t�s� 2T�D� 2t2uzt�=st

2D2; b�1�3;2 � 4t2Uzu=suD
2;

b�1�4;2 � 4m2��zt � u�D� 2m2u�t� u��=suD2; b�1�5;2 � 2t�2m2�2m2t2 � 2m2u2 � t2u�D� t2u3zt�=s2D3;

b�1�6;2 � �4m2�2�2t� u�D3 � t3u�2t� u�D� t4u2�t� u��=s2tD3;

b�1�8;2 � 4m2�2D3 � tu2�2t� u�D� t2u3�t� u��=s2D3; b�1�9;2 � �2t2u2�2m2D� t2zu�=s2D3;

b�1�10;2 � 4m2t2u�tD�m2s�t� u��=s2D3; b�1�15;2 � �16m2�2�m2t2 � uT�2t� u��D� 3t2u2zt�=st
2uD2;

b�1�16;2 � �2t�2D� tu��4m4s�t� u� � tu2zt�=s
2D3;
b�1�1;3 � �4�m2t2D� u�m4u� t2U�zt�=stTD
2;

b�1�2;3 � 4�2T�t� T�D2 � t�2m4s�m4zt � t2u�D� 2m2tTu2zt�=st2TD2; b�1�3;3 � �4tUzu=sD2;

b�1�4;3 � 4U�zuD� 2u2zt�=suD
2; b�1�5;3 � 2t��12D3 � 4u�2m2 � t�D2 � u2�5uzt � st�D� tu

4zt�=s
2D3;

b�1�6;3 � 2��2�4m2t� 2m2u� 3t2�D3 � 2t3uD2 � t2u2�tzt � 4m2u�D� 2m2t3u3�t� u��=s2tD3;

b�1�8;3 � 2�2�2m2 � 3u�D3 � 2tu2D2 � u3�tzt � 4m2u�D� 2m2tu4�t� u��=s2D3;

b�1�9;3 � 2t2u�6D2 � u�t� 2U�D� u3zt�=s2D3; b�1�10;3 � 2tu�2tD2 � u�tzt � 4m2u�D� 2m2tu2�t� u��=s2D3;

b�1�15;3 � �16m2�4uD2 � 2m2�t2 � u2�D� 3tu3zt�=st
2uD2;

b�1�16;3 � �2t�2D� tu��12D2 � 2u�zt � 2U�D� 3u3zt�=s
2D3;
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b�2�1;1 � �4Tu=sD; b�2�2;1 � 2T�2D� tu�=stD; b�2�3;1 � 4�m2t�D�=sD; b�2�4;1 � �2U�2D� t2�=suD;

b�2�5;1 � �t
2�2D2 � 10m2sD� 3t2u2�=s2D2; b�2�6;1 � ��sT �D��2m

4s2 � t2u2� � 2t4D�=s2D2;

b�2�8;1 � ��2�2m2s� tu�D2 � 2su�2m2u� st�D� t3u3�=s2D2; b�2�9;1 � t3u�8D� 3tu�=s2D2;

b�2�10;1 � t�4sD2 � 2t�s2 � 2u2�D� t3u2�=s2D2; b�2�12;1 � ��2�m2s2�t� u� � 2t2u2�D� t3u3�=s2D2;

b�2�14;1 � t2�2�2m2s2 � t2u� u3�D� t2u3�=s2D2; b�2�15;1 � �8�4m2t2u� �2m2�t� u� � st�D�=stuD;

b�2�16;1 � �4t2�2D�m2s��D�m2s�=s2D2; (A4)

b�2�1;2 � 4�D�m2u�=sD; b�2�2;2 � 2�2�m2u� 2tT�D� t3U�=st2D; b�2�3;2 � 4tU=sD;

b�2�4;2 � 2��tzu � 2u2�D�m2u3�=su2D; b�2�5;2 � �t�2�8m
2su� 7stzu � tu2�D� 3t2u3�=s2D2;

b�2�6;2 � �2�2m
4s2 � 4m2s2t�m2stu� st2u� t4�D� t3u3�=s2D2;

b�2�8;2 � ��2�2m4s2 � 2m2stu� sTu2 � t3u�D� t2u4�=s2D2; b�2�9;2 � t2u�2�7t� 3u�D� 3tu2�=s2D2;

b�2�10;2 � �2s�t� u�D
2 � 2t3�s� 2u�D� t3u3�=s2D2; b�2�12;2 � �t�2�2m

2s2 � t2u� tu2�D� tu4�=s2D2;

b�2�15;2 � 8��2m2su2 � 2m2t�t2 � u2� � stu2�D� 4m2t2u3�=st2u2D;

b�2�16;2 � �4t�2D� tu���7t� 4u�D� tu2�=s2D2;

b�3�1;1 � 0; b�3�2;1 � �2��8m2 � t� 2u�D� 5m2tu�=stD; b�3�3;1 � 0;

b�3�4;1 � �2��tzu � 2u�3m2 � u��D� 5m2u3�=su2D; b�3�5;1 � t�2D� tu��2�7t� 8u�D� 5tu2�=s2D2;

b�3�6;1 � t�2�stzt � 3m2su� 2t�t2 � u2��D� 5t2u3�=s2D2; b�3�10;1 � t2�2�4m2s� 5su� t2�D� 5tu3�=s2D2;

b�3�12;1 � ��4�t
2 � u2�D2 � 2tu�st� 5u2�D� 5t2u4�=s2D2;

b�3�15;1 � �16��s�m2t� u2� � 4m2u�t� u��D� 5m2tu3�=stu2D;

b�3�1;2 � 0; b�3�2;2 � �2T�8D� 5tu�=stD; b�3�3;2 � 0; b�3�4;2 � �2��2m2t� 6m2u� 3tu�D� 5m2tu2�=su2D;

b�3�5;2 � �t
2�2D� tu��2D� 5tu�=s2D2; b�3�6;2 � �t

2�2�m2s� s2 � 4tu�D� 5t2u2�=s2D2;

b�3�10;2 � t2�2�4m2s� s2 � tu�D� 5t2u2�=s2D2; b�3�12;2 � ��2�2m
2s�t2 � u2� � s2tu� t2u2�D� 5t3u3�=s2D2;

b�3�15;2 � �16��4m2u�t� u� � stU�D� 5m2t2u2�=stu2D;

b�4�i;1 � 0; i � 1; 3; 5; 9; 16; b�4�2;1 � �1=t; b�4�4;1 � 1=u;

b�4�6;1 � t�u� t�=D; b�4�10;1 � t�t� u�=D; b�4�15;1 � �4�t� u�=tu;

b�5�1;1 � �4T=tD; b�5�2;1 � �4T=tD; b�5�3;1 � 4m2=uD; b�5�4;1 � 4m2=uD; b�5�5;1 � �4�D2 �m2st2�=sD2;

b�5�6;1 � 2tTu=D2; b�5�7;1 � 4�D2 �m2stu�=sD2; b�5�9;1 � 4t3u=sD2; b�5�10;1 � �2tTu=D2;

b�5�15;1 � �24�2m2t�D�=tuD; b�5�16;1 � �6t2�2D� tu�=sD2;

b�6�1;1 � 0; b�6�2;1 � �8m2=tD; b�6�3;1 � 0; b�6�4;1 � 8U=uD; b�6�5;1 � 4tu�2D� tu�=sD2;

b�6�6;1 � 2t�2m2u�D�=D2; b�6�10;1 � �b
�6�
6;1; b�6�15;1 � 32�2m2u�D�=tuD;
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b�7�1;1 � 0; b�7�2;1 � 2m2=D; b�7�3;1 � 0; b�7�4;1 � 2�m2u�D�=uD; b�7�5;1 � t�4D� tu��2D� tu�=sD2;

b�7�6;1 � t�6D2 � 2t2D� t2u2�=sD2; b�7�10;1 � t3�2D� u2�=sD2; b�7�15;1 � 8�D� 2m2u�=uD;

b�7�1;2 � �4Tu2=s=D2; b�7�2;2 � 4��5m2s� Tu�D� 2tTu2�=stD2; b�7�3;2 � �4t2U=sD2;

b�7�4;2 � �4��2m2s� Tu� 4u2�D� 2m2tu2�=suD2;

b�7�5;2 � 2t��8D3 � 4u�t� 2u�D2 � tu2�7t� 4u�D� t3u3�=s2D3;

b�7�6;2 � 2t��6D3 � u2�4m2s� 5t2�D� 2t3u3�=s2D3; b�7�9;2 � 2t2u�4D2 � u�3t� 4u�D� t2u2�=s2D3;

b�7�10;2 � �2tu2��4m2s� 5t2�D� 2t3u�=s2D3; b�7�15;2 � 16�2�t� 2u�D2 � 2u2�m2 � 3t�D� 3m2t2u2�=stuD2;

b�7�16;2 � �2t�2D� tu��8D2 � 8suD� 3t2u2�=s2D3;

b�7�1;3 � �4�D2 �m2uD�m2Tu2�=sTD2; b�7�2;3 � 4�3TD2 �m2�st� Tu�D� 2m2tTu2�=stTD2;

b�7�3;3 � 4tuU=sD2; b�7�4;3 � 4U�D� 2tu�=sD2; b�7�5;3 � 2t��8D3 � 2u�t� u�D2 � tu2�t� u�D�m2stu3�=s2D3;

b�7�6;3 � 2t��6D3 � 2u�t� u�D2 � tu2�t� 2u�D� 2m2stu3�=s2D3; b�7�9;3 � 2t2u�4D2 � u�t� 2u�D� tu3�=s2D3;

b�7�10;3 � 2tu��2m2s�t� u� � 3t2u�D� 2m2stu2�=s2D3; b�7�15;3 � 16m2�2�t� 2u�D� 3tu2�=stD2;

b�7�16;3 � �2t�2D� tu��8D2 � 2suD� 3tu3�=s2D3;

b�7�1;4 � 4tTu=sD2; b�7�2;4 � 4T��3s� u�D� 2t2u�=stD2; b�7�3;4 � �4�D2 �m2tD�m2t2U�=sUD2;

b�7�4;4 � 4��m4 � 3tzu�D� 2m4tu�=sUD2; b�7�5;4 � �2t��8m4s2 � 6m2st�t� u� � t2u2�D� t4u2�=s2D3;

b�7�6;4 � �2t�6D3 � 2u�t� u�D2 � t2u�4t� 3u�D� 2t4u2�=s2D3; b�7�9;4 � 2t2u�4D2 � t�2t� 3u�D� t3u�=s2D3;

b�7�10;4 � 2tu�2�t� u�D2 � t2�4t� 3u�D� 2t4u�=s2D3; b�7�15;4 � �16�4D2 � 2t�m2 � 2t�D� 3m2t3�=stD2;

b�7�16;4 � �2t�2D� tu��8D2 � 6stD� 3t3u�=s2D3;

b�7�1;5 � �4Tu2=sD2; b�7�2;5 � 4�D2 �m2uD� 2tTu2�=stD2; b�7�3;5 � �4t2U=sD2;

b�7�4;5 � 4�D2 �m2tD� 2t2uU�=suD2; b�7�5;5 � �2t�8D3 � 4tuD2 � 2t2u2D�m2st2u2�=s2D3;

b�7�6;5 � 2t��6D3 � 2�t2 � u2�D2 � t2u2D� 2t3u3�=s2D3; b�7�9;5 � 2t2u�4D2 � tuD� t2u2�=s2D3;

b�7�10;5 � �2t�2�t2 � u2�D2 � t2u2D� 2t3u3�=s2D3; b�7�15;5 � 16�2sD2 � 2m2tuD� 3m2t2u2�=stuD2;

b�7�16;5 � �2t�2D� tu��8D2 � 3t2u2�=s2D3:

APPENDIX B

This appendix contains the coefficients for the one-loop corrections to the subprocess q �q! QQ. As regards the box
diagram Fig. 6(a) we obtain the following coefficients h defined in Eq. (4.9):

h�0�1 � �2T�2=st� 1=D�; h�0�2 � 2�1� tzt=�
2D�=s; h�0�4 � �tzt � sTz1=D� tzt=�

2�=D;

h�0�6 � �2tT�1� st=D�=D; h�0�7 � �t�s
2T=D� 2t�=D; h�0�8 � �m

2s� 2t2 � st3=D�=D;

h�0�11 � 16m2�T=t� 2tzt=s
2�2�=D;
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h�1�1 � �8T=sD; h�1�2 � 8�t�m2z2=s�
2�=sD; h�1�4 � �4zt�t

2=D� �1� 1=�2�=2�=D; h�1�6 � 8t2T=D2;

h�1�7 � 4t�2� t2=D�=D; h�1�8 � 4stT=D2; h�1�11 � �64m2zt=s
2�2D;

h�2�1 � zt=tD; h�2�2 � �1=D; h�2�4 � s�1� st�2=D�=2D; h�2�6 � �tz1=D2;

h�2�7 � stz2=2D2; h�2�8 � �sz1=2D2; h�2�11 � �8m2=tD;

h�3�1 � 0; h�3�2 � 0; h�3�4 � szt=4D; h�3�6 � t2=2D; h�3�7 � st=2D; h�3�8 � st=4D; h�3�11 � 0;

(B1)

h�4�1 � 4T=tD; h�4�2 � 4zt=s�2D; h�4�4 � 2�stzt=D� 2m2z2=s�2�=D; h�4�6 � h�4�5 ;

h�4�7 � 2st2=D2; h�4�8 � h�4�7 ; h�4�11 � �16�m2=t� zu=s�2�=D;

h�5�1 � �2=D; h�5�2 � �2z2=s�2D; h�5�4 � s�z1=D� z2=s�2�=D; h�5�6 � h�5�5 ;

th�5�7 � s2t=D2; h�5�8 � h�5�7 h�5�11 � �16zu=s�2D;

h�6�i � h�5�i =2:

The values for the other coefficient functions h�j�i with i � 3; 5; 9; 10; 12–14 and arbitrary j are not written out. They can be
inferred from the relations presented in the Eq. (4.12).

The nontrivial coefficients for the second box diagram 6(b) are

h�0�1 � 2�T=D� 2�s�U�=su�; h�0�2 � �2�s=D� 1=s� �2� uzu=D�=s�
2�;

h�0�4 � 1� �8m2s� 2m2u� s2�=D� ut2�t� u�=D2 � �2� uzu=D�=�
2;

(B2)

h�0�6 � 2u�m2st=D�m2 � 2u�=D; h�0�7 � �u�4s� 2u� st2=D�=D;

h�0�8 � �2� s�m2 � 2u�=D�m2s2t=D2; h�0�11 � �16m2�s�U� 2tuzu=s
2�2�=uD;

The values for the other coefficient functions h�0�i with i � 3; 5; 9; 10; 12–15 are not spelled out. Again they can be inferred
from the relations Eq. (4.15).

Next we write

h�1�1 � 4�2m2t=u� z2u�=sD; h�1�2 � 2z2u�1� 1=�2�=sD; h�1�3 � �2�2m2s2�2 � 2utzu � sD�=D2;

h�1�4 � 2�z1u�2m
2 � s�=D� 2m2z2u=s�

2�=D; h�1�6 � 4u�m2s� uzu�=D
2; h�1�7 � 2��2ut2=D� s� 4u�=D;

h�1�8 � 2s�m2s� uzu�=D2; h�1�11 � 16m2�3=u� 4zu=s2�2�=D; h�1�14 � 2u�2uz2u � s2�1� 2�2��=D2;

h�1�16 � �4zu=uD; h�1�17 � 4=D: (B3)

h�4�1 � �4U=uD; h�4�2 � �4zu=s�
2D; h�4�3 � �2z2u�m

2s=D� 1=�2�=D;

h�4�4 � �2�suzu=D� 2m2z2u=s�
2�=D; h�4�6 � �4u3=D2; h�4�7 � 2sut=D2; h�4�8 � �2su2=D2;

h�4�11 � 16m2=uD; h�4�14 � �2suz2u=D
2; h�4�16 � 4=D; h�4�17 � 4z2u=s�

2D:

The remaining coefficient functions h�j�i ; j � 1; 4 with i � 5; 9; 10; 12; 13; 15 can be obtained from the relations Eq. (4.16).
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[22] M. Drees, M. Krämer, J. Zunft, and P. M. Zerwas, Phys.
Lett. B 306, 371 (1993).

[23] B. Kamal, Z. Merebashvili, and A. P. Contogouris, Phys.
Rev. D 51, 4808 (1995); 55, 3229(E) (1997).

[24] G. Jikia and A. Tkabladze, Phys. Rev. D 54, 2030 (1996).
[25] According to the discussion in [26] this implies that, when

further processing our LO and one-loop results in cross
section calculations by folding in the appropriate ampli-
tudes, one may use the Feynman gauge for the spin sums
of polarization vectors. At the same time, ghost contribu-
tions associated with external gluons have to be omitted.

[26] W. C. Kuo, D. Slaven, and B. L. Young, Phys. Rev. D 37,
233 (1988).

[27] A. I. Davydychev, P. Osland, and O. V. Tarasov, Phys. Rev.
D 54, 4087 (1996); 59, 109901(E) (1999).

[28] G. Passarino and M. Veltman, Nucl. Phys. B160, 151
(1979).

[29] A. Hearn, REDUCE User’s Manual Version 3.7 (Rand
Corporation, Santa Monica, CA, 1995).

[30] See EPAPS Document No. E-PRVDAQ-73-054605 for our
analytical results for all the box graphs in REDUCE format.
For more information on EPAPS, see http://www.aip.org/
pubservs/epaps.html.
-25


