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We investigate finite volume effects in the pattern of chiral symmetry breaking. To this end we employ a
formulation of the Schwinger-Dyson equations on a torus which reproduces results from the correspond-
ing lattice simulations of staggered quarks and from the overlap action. Studying the volume dependence
of the quark propagator we find quantitative differences with the infinite volume result at small momenta
and small quark masses. We estimate the minimal box length L below which chiral perturbation theory
cannot be applied to be L ’ 1:6 fm. In the infinite volume limit we find a chiral condensate of
jh �qqij2 GeV

MS
� �253� 5 MeV�3, an up/down quark mass of m2 GeV

MS
� 4:1� 0:3 MeV and a pion decay

constant which is only 10% smaller than the experimental value.
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I. INTRODUCTION

Dynamical chiral symmetry breaking is certainly one of
the most interesting phenomena of QCD. It is entirely a
strong coupling effect in the sense that dynamical quark
masses cannot be generated at any order in perturbation
theory. Thus nonperturbative methods like lattice Monte-
Carlo simulations [1], chiral perturbation theory [2] or the
Green’s function approach using the Schwinger-Dyson and
Bethe-Salpeter equations (SDE/BSE) [3,4], are needed to
explore chiral symmetry and its breaking pattern.

With the rediscovery of the Ginsparg-Wilson relation
and the construction of actions for overlap, domain wall
and perfect fermions, the lattice formulation of QCD
emerged in principle as an appropriate nonperturbative
tool, with which to study the effects of dynamical chiral
symmetry breaking. However, in practice, lattice simula-
tions with small quark masses are extremely expensive in
terms of CPU-time. It is only with staggered fermion
actions that quark masses not far from their physical values
have been achieved to date, but these actions have the
disadvantage that full chiral symmetry is only recovered
in the continuum limit. Consequently, there is no certainty
with any finite volume that the correct breaking pattern can
be observed.

Lattice simulations are, of course, always performed at a
finite volume. Since continuous symmetries cannot be
spontaneously broken at a finite volume V, chiral symme-
try is restored in the limit of zero quark mass, m! 0,
independently of the formulation of the lattice action. Thus
one first has to perform the limit V ! 1 before one can
investigate the chiral limit. At the hadron level, whether for
mesons and baryons, chiral perturbation theory provides a
reliable tool with which to make such an extrapolation (see
e.g. [5–7] and references therein). Volume effects for any
particles that couple to the pion can be arranged in powers
of exp��M�L�, where M� is the pion mass and L is the
size of the box [8]. On the other hand, chiral perturbation
theory has nothing to say about volume effects in the
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underlying quark and gluon substructure. For this the
Green’s function approach employing Schwinger-Dyson
equations provides a suitable alternative. Indeed, a recent
investigation of the gluon and ghost propagator of the
Landau gauge Yang-Mills theory on a torus could offer
an explanation for systematic differences in the infrared
behavior of these propagators in a box, compared with the
infinite volume limit [9].

In the present work we extend this analysis and inves-
tigate finite volume effects in the quark propagator. To this
end we study the QCD-gap equation for the quark propa-
gator on a torus. The input from the Yang-Mills sector of
QCD consists of numerical solutions for the ghost and
gluon propagator, which match corresponding lattice cal-
culations [10,11]. Presently unknown contributions from
the quark-gluon vertex are parametrised such that the
quenched lattice quark propagators from each of
Ref. [12] (staggered) and Ref. [13] (overlap) are repro-
duced by the gap equation. This idea has already been
explored to some extent by Bhagwat et al. [14].

Our treatment differs from that of Ref. [14] in two
essential respects: first, we solve the coupled set of three
SDEs for the ghost, gluon and quark propagators, and so
include the Yang-Mills sector of the SDEs in the Green’s
function approach. Second, we calculate our propagators
on a manifold similar to that of the lattice and fit the
interaction to reproduce the lattice results of the gluon
and quark propagators on their respective manifolds.

One of the advantages of the Green’s function approach
is that volume effects can be studied continuously from
very small to very large volumes (corresponding studies for
meson observables using chiral perturbation theory e.g.
have to distinguish between two different regions of chiral
counting [7]). Furthermore, one has direct access to the
infinite volume and the continuum limit without the need to
perform any extrapolations. We are thus in a position to
study chiral symmetry restoration at small volumes to-
gether with effects at large and infinite volumes in the
same framework.
-1 © 2006 The American Physical Society
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The paper is organized as follows: In the next section we
shortly review basic properties of the pattern of dynamical
chiral symmetry breaking in a box. In particular, we recall
the derivation of the Casher-Banks relation and a basic
estimate for a minimal box length for chiral perturbation
theory. In Sec. III we discuss the technical details associ-
ated with solving the quark Schwinger-Dyson equation on
a torus. Our results on the compact manifold are presented
in Sec. IV. We start with a summary of finite volume effects
in the Yang-Mills sector based on the results of Ref. [9].
These are used as input into the quark-SDE together with a
model for the quark-gluon interaction, which is discussed
in Sec. IVA. The interaction is fitted so that the lattice data
for the quark propagator from Ref. [12] (staggered) and
Ref. [13] (overlap), respectively, are reproduced by the
quark-SDE. We then determine the corresponding quark
propagator at larger volumes and in the infinite volume
limit. The results are compared in Sec. IV B. For small
quark masses we find sizeable quantitative volume effects
which are still present at comparably large volumes. These
effects are qualitatively similar for both the propagators
from staggered and overlap quarks. The small volume
behavior of the quark propagator is investigated in
Sec. IV C. For a fixed, small current quark mass we deter-
mine the onset of dynamical chiral symmetry breaking
when the volume of the box is increased. We find a
minimal box length of L ’ 1:6 fm, below which chiral
perturbation theory cannot be safely applied. Finally, we
discuss the infinite volume properties of our quark propa-
gator. We determine the chiral condensate in Sec. VA,
comment on possible analytic structures in Sec. V B and
give results for the corresponding pion mass and decay
constant in Sec. V C. We summarize and conclude in
Sec. VI.
II. CHIRAL SYMMETRY BREAKING IN A BOX

Before we embark on our investigation, let us recall the
finite volume behavior of the chiral condensate, as this is
the order parameter of dynamical chiral symmetry break-
ing, [15]. The fermion propagator in its spectral represen-
tation is given by

SA�x; y� �
X
n

un�x�u
y
n �y�

m� i�
; (1)

where un�x� and �n are eigenfunctions and eigenvalues of
the Euclidean Dirac operator, Dun�x� � �nun�x�. The
gauge field A is treated as an external field. These eigen-
functions occur either as zero modes or in pairs of opposite
eigenvalues. Setting x � y, integrating over x and neglect-
ing the zero mode contributions, one obtains

1

V

Z
V
SA�x; x� � �

2m
V

X
�n>0

1

m2 � �2
n
: (2)

The quark condensate can be deduced by averaging the
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left-hand side of this equation over all gauge field configu-
rations and then taking the infinite volume limit to give

h �qqi � �2m
Z 1

0
d�

����

m2 � �2 ; (3)

where ���� is the mean level density of the spectrum,
which becomes dense in the infinite volume limit. In the
chiral limit, m! 0, only the infrared part of the spectrum
contributes and one finally arrives at the Banks-Casher
relation [16]

h �qqi � ����0�: (4)

If the two limits are interchanged, i.e. if one takes the
chiral limit before the infinite volume limit, one has a
discrete sum in Eq. (2) and the infrared part of the spectrum
cannot trigger a nonvanishing chiral condensate: chiral
symmetry is restored. If, however, at a given volume the
explicit quark massm is not too small, one can still observe
the spontaneous formation of a quark condensate. If the
factor �m2 � �2

n�
�1 varies only slightly with n, the sum in

Eq. (2) can still be replaced by an integral and Eq. (4)
remains valid. For this to be a legitimate approximation
one needs m	 ��
 1=V���� � �=�Vjh �qqij�, at the
lower end of the spectrum. Thus one obtains the condition

Vmjh �qqij 	 �: (5)

To get a feeling for this condition, note that for a typical
value of the chiral condensate of jh �qqij � �0:25 GeV�3 and
a volume of V � �5 fm�4 the quark mass has to be of the
order m	 5 � 10�4 GeV, which is well satisfied for all
quark masses of physical interest. Whether there are size-
able modifications to the corresponding quark propagator
due to the box is however a different question, as we shall
see in Sec. IV B.

Chiral perturbation theory builds upon the chiral limit,
i.e. it can only be applied on volumes large enough such
that small quark masses remain accessible.
Correspondingly the chiral expansion parameter
p=�4�f�� has to be small. On a torus the bosonic degrees
of freedom have momenta p � 2�n=L with n a vector of
integers. Small nonzero momenta are therefore only
present if the condition

L >>
1

2f�

 1 fm (6)

is satisfied. A priori there is no way to say by how much L
has to exceed 1 fm [7]. In Sec. IV C we will see that this
scale can be estimated using the quark-SDE on a torus.
III. THE QUARK SCHWINGER-DYSON EQUATION
ON A TORUS

In Euclidean momentum space, the renormalized
dressed ghost, gluon and quark propagators in the
Landau gauge are given by
-2
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FIG. 1. The coupled set of Schwinger-Dyson equations for the gluon, ghost and quark propagators.
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DG�p2� � �
G�p2�

p2 ; (7)

D���p� �
�
��� �

p�p�
p2

�
Z�p2�

p2 ; (8)

S�p� �
Zf�p

2�

i 6p�M�p2�
(9)

Here the ghost dressing function G�p2�, the gluon dressing
function Z�p2� and the quark wave function renormaliza-
tion Zf�p2� also depend on the renormalization point �2,
whereas the quark mass function M�p2� is a renormaliza-
tion group invariant. These propagators are given by their
corresponding Schwinger-Dyson equations shown dia-
grammatically in Fig. 1. Since we aim to analyze a
quenched lattice quark propagator we will also work in
the quenched approximation in the SDE approach and so
neglect the quark loop in the gluon-SDE. An estimate of
unquenching effects for the propagators and for light me-
son observables can be found in Ref. [17].

On a compact manifold, the ghost, gluon and quark
fields have to obey appropriate boundary conditions in
the time direction. These have to be periodic for the gluon
and ghost fields,1 and antiperiodic for the quarks. It is
convenient, though not necessary, to choose the same con-
ditions in the spatial directions.2 We choose the box to be
of equal length in all directions, L1 � L2 � L3 � L4 � L,
and denote the corresponding volume V � L4. Together
1The condition for the ghost field can be read off easily from
its BRST-transformation [9].

2Different conditions in the spatial directions have been ex-
plored in [18,19].
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with the boundary conditions this leads to discretized
momenta in momentum space. Thus all momentum inte-
grals appearing in the Schwinger-Dyson equations are
replaced by sums over Matsubara modes. Since the ghost
and gluon SDE on a torus have been investigated in detail
in Refs. [9,20], we only discuss the quark-SDE here. On
the manifold R4, the quark-SDE can be written as

S�1�p� � Z2�S
0�p���1 � CF

Z2eZ3

g2

�2��4



Z
d4k��S�k����k; p�D���p� k�; (10)

where the factor CF � 4=3 stems from the color trace and
we have introduced a reduced quark-gluon vertex ���k; p�,
by defining �full

�;i �k; p� � ig �i2 ���k; p�. The bare quark
propagator is given by �S0�p���1 � i� � p� Zmm��2�,
where m��2� is the renormalized current quark mass.
The wave function and quark mass renormalization factors,
Z2 and Zm, are determined in the renormalization process.
The ghost renormalization factor, ~Z3, will be discussed
below, when we introduce our expression for the quark-
gluon vertex. The quark mass functionM�p2� and the wave
function Zf�p2� can be extracted from Eq. (10) by suitable
projections in Dirac-space.

Note that the quark propagator determined from Eq. (10)
is independent of the regularization procedure. In our
numerical calculations we use a subtracted version of
Eq. (10) and an O(4)-invariant UV-cutoff (for details see
e.g. Ref. [21]). It is a simple matter to explicitly verify
numerically (and also analytically) that the resulting quark
propagator is independent of the cutoff, which therefore
can be sent to infinity at the end of each calculation. The
quark-SDE, Eq. (10), therefore represents not only the
-3
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infinite volume limit but also the continuum limit (in
coordinate space) of any representation of the SDE on a
compact manifold. We will use the phrase infinite volume/
continuum limit in the following to indicate this simulta-
neous removal of both an ultraviolet and an infrared cutoff.

On a torus with antiperiodic boundary conditions for the
quark fields, the momentum integral changes into a sum of
Matsubara modes,

Z d4q

�2��4
�� � �� ���! 1

L4

X
n1;n2;n3;n4

�� � ��; (11)
counting momenta qn �
P
i�1::4�2�=L��ni � 1=2�êi,

where êi are Cartesian unit vectors in Euclidean momen-
tum space. For the numerical treatment of the equations it
is convenient to rearrange this summation so that it repre-
sents a spherical coordinate system [20], see Fig. 2 for an
illustration. We then write

1

L4

X
n1;n2;n3;n4

�� � �� �
1

L4

X
j;m

�� � ��; (12)
where j counts spheres with qnqn � const, andm numbers
the grid points on a given sphere. The corresponding
momentum vectors are denoted qm;j and their absolute
values are given by qm;j � jqm;jj. It is then a simple matter
to introduce an O�4�-invariant cutoff by restricting j to an
interval [1,N]. The resulting quark-SDE is given by
FIG. 2 (color online). Two-dimensional sketch of the momen-
tum grid dual to the four-torus for a fixed Cartesian momentum
cutoff. The hyperspheres depicted by dashed lines are not
complete in the sense that additional momentum points on these
spheres are generated if the cutoff is increased. The O(4)-
invariant cutoff used in our calculations sums only over complete
hyperspheres, which are indicated by fully drawn circles.
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S�1�pi;l� � Z2�S
0�pi;l��

�1 � CF
Z2eZ3

g2

L4



XN
j;m

��S�kj;m����kj;m; pi;l�D���pi;l � kj;m�:

(13)

Note that the momentum argument of the gluon propagator
is a difference of two antiperiodic Matsubara momenta and
thus lives on a momentum grid corresponding to periodic
boundary conditions as it should.

The quark Schwinger-Dyson equations, Eqs. (10) and
(13), can be solved numerically employing well-
established methods once the input from the Yang-Mills
sector, the gluon propagator D�� and the fully dressed
quark-gluon vertex ���k; p� are specified. Our numerical
method on the torus is outlined in Ref. [9], the correspond-
ing continuum method as well as details on the renormal-
ization procedure of the quark-SDE are given in Ref. [21].
The truncation scheme of the Yang-Mills sector is dis-
cussed in Refs. [20].

IV. NUMERICAL RESULTS FOR THE
PROPAGATORS

A. Yang-Mills sector and parameter fitting

Before we discuss our ansatz for the quark-gluon vertex,
let us shortly summarize the results of Ref. [9] for the ghost
and gluon propagators on the torus. In Fig. 3, the numerical
solutions for the gluon propagator Z�p2�=p2 (left diagram)
and the ghost dressing function G�p2� (right diagram) in
the continuum and on a torus3 are displayed together with
the results of recent lattice simulations. Overall there is
very good agreement between the DSE-solutions on the
compact manifold and the lattice data. However, the infra-
red (IR) behavior of the DSE-solutions on R4 is qualita-
tively different, although the truncation scheme used in
solving the SDEs is the same. The ghost dressing function
in Fig. 3 diverges in the infinite volume/continuum limit,
whereas it stays finite on the compact manifold. For the
gluon propagator, this difference can be expressed in terms
of an infrared power law,

Z�p2� 
 �p2�2�: (14)

One obtains � � 0:5 (IR-finite) on a compact manifold
(even for very large volumes), whereas � � 0:596 (IR-
vanishing) on R4 in agreement with analytical results
[20,22–24]. This is a decisive difference, since it can be
shown that an infrared vanishing gluon propagator cannot
have a positive definite spectral function and is therefore
3There are two slight changes compared to the treatment in
Ref. [9]: we adapted the overall scale to match the lattice results
and the ultraviolet cutoff has been increased from � �
2:47 GeV to � � 3:60 GeV in order to minimize artifacts due
to the cutoff.
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FIG. 3 (color online). The results for gluon and ghost from Dyson-Schwinger equations in the continuum and on the torus are
compared with the lattice data of Refs. [10,11]
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confined. Indeed, Zwanziger has argued that the lattice
gluon propagator should vanish in the continuum limit
[25] and therefore be confined as an effect of the proximity
of the Gribov-horizon for low momentum gauge field
configurations. However, no statement could be made as
to the rate with which the continuum limit behavior is
approached. Current extrapolations of lattice data to the
infinite volume limit (on large asymmetric lattices) are
somewhat ambivalent. Whereas an extrapolation of the
gluon dressing function leads to � � 0:52 (IR-vanishing),
one obtains � � 0:5 (IR-finite) from an extrapolation of
the corresponding gluon propagator [26]. Therefore, it
seems as if there is a genuine difference between propa-
gators on different manifolds, which has to be taken into
account when extrapolating to infinite volumes. The dif-
ferences shown in Fig. 3 may serve as a measure of the
upper limit of these effects.

The (quenched) solution for the gluon propagator on
both type of manifolds is used directly as input in the
corresponding quark-SDE on a torus and in the infinite
volume/continuum limit. What remains then is to specify
an explicit expression for the quark-gluon vertex. Here we
follow the strategy of Ref. [14] and employ a parametriza-
tion of the vertex such that the (quenched) lattice results for
the quark propagator are reproduced by the gap equation.
Our ansatz for the vertex is

���k;�2� � ���1�k2��2�k2; �2��3�k2; �2� (15)

where k2 is the gluon momentum and �2 is the renormal-
ization scale. The ansatz depends on the gluon momentum
only and is thus the simplest possible form that respects
charge conjugation symmetry. Furthermore, this choice of
momentum dependence ensures the existence of a corre-
sponding kernel in the Bethe-Salpeter equation for mesons
in accordance with the axial-vector Ward-Takahashi iden-
tity, cf. Sec. V C. The three components of this ansatz are
given by
034029
�1�k
2� �

��m
ln�k2=�2

QCD � 	�
; (16)

�2�k
2; �2� � G�k2; �2�G�
2; �2�


 ~Z3��
2�h�ln�k2=�2

g � 	��
1�� (17)

�3�k
2; �2� � Z2��

2�
a�M� � k2=�2

QCD

1� k2=�2
QCD

; (18)

where � � �9=44 is the (quenched) one-loop anomalous
dimension of the ghost, �m � 12=33 the corresponding
anomalous dimension of the quark and 	 � e� 1 acts as
a convenient infrared cutoff for the logarithms. It is well
known that the effective interaction g2Z�1�2�3 in the
quark-SDE has to approach the running coupling in the
ultraviolet momentum regime [27]. In our ansatz this UV-
part of the interaction is represented by �1. The scale �QCD

is scheme dependent. Here, since we fit to the lattice data of
Refs. [12,13], its value corresponds to the momentum
subtraction scheme used therein. The product Z�2�3

goes to a constant for large momenta, since the ultraviolet
behavior of the ghost and gluon dressing functions is given
by

G�z� � G�s�
�
! log

�
z
s

�
� 1

�
�
;

Z�z� � Z�s�
�
! log

�
z
s

�
� 1

�
�
;

(19)

with ! � �0��s�=�4�� � 11Nc��s�=�12�� and a large
scale s. The anomalous dimensions of the ghost and the
gluon dressing functions in Z�2�3 combine to �� � �
�1� �, which is balanced by the explicit logarithm in �2.
The scale �g in Eq. (17) represents a possibly scheme-
dependent scale inherent in the Yang-Mills part of the
interaction, which is related to the analytic structure of
the gluon propagator. The coefficient h is fixed such that
the ultraviolet behavior of the resulting running coupling
-5



TABLE II. Parameters used in the vertex model, Eqs. (15)–
(18).

TABLE I. Renormalized quark masses in the SDE on the torus
at 
 � 2:9 GeV compared with the bare quark masses on the
lattice from Refs. [12,13]. Note that the bare staggered quark
masses are smaller than the renormalized quark masses from the
SDE, whereas the corresponding bare overlap quark masses are
larger (cf. the discussion in the text).

staggered overlap

mlattice (GeV) 0.028 0.057 0.114 0.090 0.140 0.210 0.300
MSDE�


2�(GeV) 0.044 0.080 0.151 0.076 0.112 0.162 0.225
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matches the one calculated on the lattice in Ref. [11]. The
renormalization group invariant G�
2; �2�~Z3��

2� with the
arbitrary scale 
 is introduced to impose the correct cutoff-
and renormalization point dependences of the effective
interaction in the quark-SDE. Together, the product �1�2

represents the non-Abelian content of the quark-gluon
vertex as expressed in its Slavnov-Taylor identity (STI)
given by [28]

G�1�k2�k����q; k� � S�1�p�H�q; p� �H�q; p�S�1�q�;

(20)

where q and p are the quark momenta. This identity
enforces the presence of the ghost factorG�k2� in �2, which
makes the quark-gluon vertex an infrared singular object,
similar to the three- and four-gluon vertices [29]. The
remaining part of �1�2 is infrared finite and can be inter-
preted as a model for the ghost-quark scattering kernel
H�q; p�. The dependency of the vertex on the quark wave
function Zf through the inverse quark propagators in the
STI is taken care of by �3, the form of which is chosen
appropriately. The extra factor Z2 is vital in ensuring
multiplicative renormalizability of the quark-SDE.4 The
dependence of this part of the vertex on the quark mass is
expressed in terms of the function

a�M� �
a1

1� a2M�

2�=�QCD � a3M

2�
2�=�2
QCD

: (21)

In order to preserve multiplicative renormalisability of the
quark-SDE, it is important that the scale 
 at which the
quark mass function is read off (and also the ghost factor in
�1) is not correlated with the renormalization point.
Instead it should be a fixed scale sufficiently far into the
ultraviolet region that volume effects are negligible. In our
calculations we use 
 � 2:9 GeV.

To fit the various parameters in our model interaction we
solve the quark-SDE on a torus employing a momentum
range similar to that used in the lattice calculations of
Refs. [12,13]. In the SDE this corresponds to a 244 (364)
lattice in momentum space with a smallest momentum of
304 MeV (200 MeV) corresponding to a box-size of L1 �
L2 � L3 � L4 � L � 2:04 fm (L � 3:10 fm) for the
staggered (overlap) quarks. We first determine the parame-
ters h;�g and �QCD by fitting the ‘‘Yang-Mills part’’ �1�2

of our vertex model to the ultraviolet part of the lattice
running coupling from Ref. [11], which agrees with the
two-loop results from perturbation theory. This fit is not
unique but gives a range of pairs ��g;�QCD� related to the
value of h. We then choose current quark masses m��2�
such that the ultraviolet behavior of the lattice quark mass
functions are reproduced by the solutions of the quark-
SDE. As the ultraviolet behavior of the quark mass func-
4Note that the effective interaction of Ref. [14] fails to ensure
multiplicative renormalizability and is therefore only valid at the
fixed renormalization point chosen in their work.
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tion is determined by the ultraviolet behavior of the input
interaction, we find the same result for each pair
��g;�QCD�. This merely reflects the fact that the ultravio-
let behavior of the quark mass function is controlled by re
summed perturbation theory and is therefore model inde-
pendent. We then deduce values of the function a�m� in
Eq. (21) such that the lattice quark mass functions are
reproduced. Although this is possible for all values of the
pairs ��g;�QCD�, the corresponding quark wave functions
Zf�p2� favor a small range of values for �QCD and �g.
Finally we fix the coefficients a1;2;3 and determine the
values of the quark mass function M�
� corresponding to
different renormalized current quark masses m��2�. Our
final best parameter sets together with the quark masses are
tabulated in Tables I and II. Note that the bare staggered
quark masses are smaller than the renormalized quark
masses from the SDE, whereas the corresponding bare
overlap quark masses are larger. Comparing the functions
MSDE�mlattice� for both formulations we find agreement if
the bare staggered quark masses are multiplied by a factor
1.70. No additional additive corrections, which recently
have been identified as a consequence of taste symmetry
breaking [30], are necessary.

A few comments on the quality of our fits are in order.
The scales �QCD and �g cannot be determined very well;
we estimate the error in these scales to be of the order of
30%. With the given values for these scales, the uncertainty
in the parameter h is then only related to the (small) error
bars of the lattice coupling from Ref. [11], i.e. of the order
of 2%. The errors for our values of the parameters
a1; a2; a3 are correlated to both the error in the determi-
nation of the current quark mass from the lattice data and
the error bars of the lattice data in the infrared momentum
regime. This leads to uncertainties of the order of a few
percent. We have also performed fits to a�M� setting a3 �
0, thereby testing the possible redundancy of this parame-
h �g(GeV) �QCD(GeV) a1 a2 a3

staggered 1.33 1.50 0.35 25.30 4.80�1:39
overlap 1.31 1.50 0.35 25.58 3.44 2.23
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ter. The fits become worse in the range where lattice data
are available, but still might be of tolerable quality.
However, there is a nontrivial effect which convinced us
of the importance of the parameter a3: if a3 � 0 we
obtained vastly different values for a�M� in the chiral limit
for the staggered and the overlap data. However, fitting a3

as a free parameter these values almost coincide. As a
consequence, one obtains almost identical quark propaga-
tors if the infinite volume/continuum limit and then the
chiral limit are performed. On general grounds the overlap
and staggered formulation of quarks on the lattice should
coincide in the continuum limit. Possible residual scheme
dependences at finite current quark masses necessarily
vanish in the chiral limit, provided there are no additive
mass corrections (see above). This is exactly what we see if
a3 is included as a free parameter. All qualitative conclu-
sions of our paper do not depend on the details of the fits
and are stable with respect to a variation of the parameters
within the errors given above. For our quantitative results
we have included these uncertainties in our estimate of the
overall error margins. Unfortunately, it is extremely diffi-
cult to give a quantitative estimate of the systematic trun-
cation error, i.e. an estimate of possible changes once
subleading structures of the vertex are taken into account.
Wherever possible we have tried to assess such effects on a
qualitative basis.

B. The quark propagator at finite and infinite volume

In Fig. 4 we compare our results from the SDE with the
lattice data. The solutions for the quark mass function
M�p2� from the SDE can be nicely fitted to the lattice
results in both, the staggered and the overlap formulation.
For the quark wave function Zf�p2� in the staggered for-
mulation, shown in the upper right diagram of Fig. 4, we
observe a slightly larger spread in the SDE solutions than
on the lattice.5 The same is true when compared to the
overlap data, although here in addition we observe a larger
fall in the infrared. We have tried to reproduce this steeper
decrease by considering various modifications of our
model interaction, Eqs. (15)–(18), but have not succeeded.
In particular introducing additional ghost factors, which
correspond to an even more singular vertex in the contin-
uum, does not improve the situation. It seems to us, that
such a fall can only be reproduced when further tensor
structures of the quark-gluon vertex is taken into account.
Indeed, employing the Ball-Chiu construction [31]

�BC
� �

1

2
�A�p2� � A�q2���� �

1

2
�A�p2� � A�q2��



�6p� 6q��p� q��

p2 � q2 � i�B�p2� � B�q2��
�p� q��
p2 � q2

(22)
5The parametrization used in Ref. [14] leads to a similar large
spread (not explicitly shown in their paper).

034029
instead of �� (and modified parameters a1;2;3), we could at
least reproduce the sharper decrease at small masses.
However, as can be seen in Fig. 4, the problem remains
for large masses. It is therefore not clear to us, whether the
sharper low momentum decrease in the overlap data should
be taken seriously and really interpreted as an indication of
the importance of a richer tensor structure in the quark-
gluon vertex, or whether one should prefer the staggered
data and conclude that the ��-part of the vertex is sufficient
to reproduce the lattice results. We leave this question open
for future investigations in both the SDE-formalism and on
the lattice, and proceed using our simple construction,
Eqs. (15)–(18).

To assess finite volume effects we now compare the
lattice/SDE-results on the compact manifold with the infi-
nite volume/continuum limit. To this end we solve the
quark-SDE in the continuum employing our lattice in-
spired ansatz for the quark-gluon vertex and the continuum
solutions for the ghost and gluon propagators, discussed in
Sec. IVA, as input. This procedure does take into account
finite volume effects from three different sources: first,
from the gluon propagator; second, from the quark-gluon
vertex via its ghost content in �2; and third, effects gen-
erated by the quark-SDE itself. The parameters of the fitted
quark-gluon interaction are kept fixed, as are the renormal-
ized current quark masses. In Fig. 5 we compare our results
in the infinite volume limit to the lattice data. We observe
finite volume effects for momenta smaller than 1 GeV. The
most pronounced effects occur in the infrared momentum
region, where the continuum mass functions approach
finite values at vanishing momentum which are substan-
tially larger than anticipated from the lattice data alone. We
conclude that lattice data underestimate the quark mass
that is dynamically generated by a substantial amount. The
absolute size of this effect is approximately the same for all
quark masses we have investigated, so the relative size
becomes smaller for heavier quarks. Exactly as expected
heavier quarks fit on finite volumes most readily, but here
we have deduced the size of the volume effects for all
masses.

Another interesting effect occurs for small momenta: the
quark mass function in the chiral limit is actually larger
than the one for the smallest nonzero current quark mass.
This effect has also been observed directly from the
quenched staggered lattice data [32]. The effect is more
pronounced for the staggered quarks, as can be seen by
comparing the two diagrams of Fig. 6 at small quark
masses. There we show the quark mass function at a given
momentum, MIR: � M�p2 � 0:0924 GeV2�, plotted as a
function of the current quark mass. Apart from small
quantitative differences, the qualitative behavior of
MIR�m� is similar for both fermion formulations. On the
compact manifold, one observes a (small) volume depen-
dence for 2< L< 3 fm, which becomes negligible for
L> 3 fm. However, even then one is still far away from
-7
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FIG. 5 (color online). The results for quark mass function M and the wave function Zf from Dyson-Schwinger equations in the
continuum compared with the same lattice data as in Fig. 4 (staggered quarks in the upper panel, overlap quarks in the lower panel).
Also shown is the chiral limit (dashed curves).
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the infinite volume results. This remaining difference
stems from the Yang-Mills sector of the theory: the differ-
ence there between the torus and infinite volume results (cf.
Fig. 3) has a direct impact on the effective interaction in the
quark-SDE and therefore on the results for the quark
propagator. The size of this effect depends on the contin-
uum value of the exponent � [cf. Eq. (14)], which is closely
related to the quality of the approximation of the ghost-
gluon-vertex in the ghost and gluon SDEs. There are
indications that the ‘‘true‘‘ exponent � may be closer to
� � 0:5 and therefore closer to the current lattice data than
our value � � 0:596 [23,24,33]. Thus we regard our result
as an upper limit for the effects that depend upon the
volume.

C. A critical volume for chiral perturbation theory

As discussed above, dynamical chiral symmetry break-
ing alone cannot occur on a finite volume. A nonvanishing
current quark mass satisfying the condition
0.8 1.0 1.2 1.4 1.6 1.8 2.0
L [fm]

0

20

40
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80

M
(p

=
1G
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) [

M
eV

]

overlap
staggered

FIG. 7. The quark mass function for an up/down quark at a
given momentum p � 1 GeV plotted as a function of the box
length.
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Vmjh �qqij 	 � (23)

has to be present as a ‘‘seed’’ to trigger dynamical mass
generation and the formation of a chiral condensate. Chiral
perturbation theory, on the other hand, is built upon the
chiral limit and therefore can only be applied on volumes
large enough such that very small quark masses are fea-
sible. The corresponding condition, discussed above, is

L	
1

2f�

 1 fm: (24)

We will now give an estimate of how large L has to be in
practice. To this end we employ a current quark mass of the
order of a typical up/down-quark mass, M�p2 �
2:9 GeV2� � 10 MeV , and determine the mass function
M�p2� at p2 � 1 GeV from solutions on tori with different
volumes by linearly interpolating on the corresponding
momentum grids. The result is plotted in Fig. 7. We clearly
see that the quark mass function grows rapidly in the range
1:0< L< 1:6 fm signaling the onset of dynamical chiral
symmetry breaking. Above L � 1:6 fm, a plateau is
reached. This picture does not change when we extract
the mass function M�p2� at smaller momenta p2 or when
we employ even smaller quark masses. Thus a safe value
for L should be at least

L
PT ’ 1:6 fm: (25)

This is a surprisingly small value in light of the condition
Eq. (23) and so provides some justification for extending
chiral perturbation theory to rather small volumes.
V. PROPERTIES OF QUARKS AND PIONS IN THE
INFINITE VOLUME/CONTINUUM LIMIT

A. The chiral condensate

Having studied the volume dependence of the quark
propagator in some detail, we now focus on R4 and inves-
tigate the quark/meson sector employing our effective
-9
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interaction which has been fixed by the lattice input. From
the quark propagator S
 in the chiral limit, we can deter-
mine the value of the (renormalization point dependent)
chiral condensate using

�h �qqi��2�: � Z2��2�Zm��2�NctrD
Z d4q

�2��4
S
�q;�2�;

(26)

where the trace is over Dirac indices. Its value is conven-
iently determined at a large renormalization scale, con-
verted to the renormalization point independent chiral
condensate and then run down to � � 2 GeV employing
the quenched scale �MS

QCD � 0:225�21� MeV [34]. We then
obtain the values

�h �qqiMSoverlap��
2� � �252:6� 5:0 MeV�3;

� h �qqiMSstaggered��
2� � �253:0� 5:0 MeV�3;

(27)

which are in very good agreement with each other. The
error given is an estimate of combined numerical and scale
uncertainties. It is a quite interesting and satisfying result
that the continuum chiral limit quark propagators of the
staggered and overlap fermions agree very well with each
other. It is furthermore interesting to compare our value for
the chiral condensate with recent results using other meth-
ods on the lattice. Gimenez et al. [35] find the value �265�
27 MeV�3 from an operator product expansion employing
an O�a�-improved quenched Wilson action. Wennekers
and Wittig [36] quote �285� 9 MeV�3, determined from
a quenched overlap action. Both values are in fair agree-
ment with each other and with our result. McNeile [37]
recently obtained the value �259� 27 MeV�3 from a chiral
Lagrangian with parameters fixed by lattice data employ-
ing Nf � 2� 1 staggered sea quarks, thus indicating that
unquenching effects in the chiral condensate may be small.
This is in excellent agreement with the prediction in the
SDE/BSE-approach [17,21].

B. On the analytical properties of the quark propagator

The analytic properties of the quark propagator can in
part be read off from the corresponding Schwinger func-
tion

��t� �
Z
d3x

Z d4p

�2��4
exp�ip � x��S;V�p

2�; (28)

where �S;V are the scalar and the vector parts, respectively,
of the dressed quark propagator. (This method has a long
history, see e.g. [38– 44] and references therein).
According to the Osterwalder-Schrader axioms of
Euclidean field theory [45], this function has to be positive
to allow for asymptotic states in the physical sector of the
state space of QCD. Conversely, positivity violations in the
Schwinger function show that the corresponding asymp-
totic states (if present) belong to the unphysical part of the
034029
state space. Thus positivity violations constitute a suffi-
cient condition for confinement. Our results for the
Schwinger function of the chiral limit quark propagator
in the staggered and overlap formalisms are shown in
Fig. 8. The Schwinger functions of the two formulations
agree extremely well and are indistinguishable in the plot.
Let us first discuss the result obtained with our simple
vertex construction involving only the vector part �� of
the vertex. The cusp at t � 6:76 GeV�1 � 1:33 fm indi-
cates a node in the Schwinger function corresponding to
positivity violations at a scale in rough agreement with the
size of hadrons. An excellent fit to the Schwinger function
is obtained using the form [46]

��t� � b0 exp��b1t� cos�b2t� b3�; (29)

which corresponds to a pair of complex conjugate poles of
the propagator in the timelike momentum plane. These
poles correspond to a ‘‘quark mass’’ given by m � b1 �
ib2, which in our case is m � 516�20� � i428�20� MeV.
Taken at face value this means that the lattice quark propa-
gator is confined (this is also the conclusion drawn by
Bhagwat et al. [14]). However, there is a caveat: it has
been shown in Ref. [44] that the presence of a sufficiently
strong scalar part in the quark-gluon vertex can have a
strong influence on the analytic structure of the solution of
the quark-SDE. Indeed if we employ the Ball-Chiu con-
struction, Eq. (22), instead of �� we obtain an exponen-
tially decaying Schwinger function denoted by the dash-
dotted line in Fig. 8. Such a function corresponds to a
positive definite quark propagator with a pole on the real
axis at m � 632�20� � i0�2� MeV (within numerical ac-
curacy). This shows that the analytic structure of the quark
-10



TABLE III. Results for the renormalized current up/down
quark mass, the mass of the pion and the pion decay constant
employing the quark-gluon interaction fitted to the lattice data.
The evolution of the quark mass has been performed using
�MS

QCD � 0:225�21� MeV [34].

m��2 GeV

MS
(MeV) M�(MeV) f�(MeV)

staggered 4:1� 0:3 138.4 83.5
overlap 4:1� 0:3 138.7 84.3
experiment � � � 138.5 92.4
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propagator depends strongly on the details of the structure
of the quark-gluon vertex and one cannot make definite
statements from fitted interactions alone. First attempts on
the lattice [47] as well as in the SDE/BSE approach [48–
50] have been made to study the tensor structure of the
quark-gluon vertex in more detail. Still, more effort is
needed before definitive conclusions about the analytic
structure of the quark propagator are in sight.

C. Pion mass and decay constant from the lattice
interaction

Finally, we have determined the mass and the decay
constant of the pion employing the effective quark-gluon
interaction fitted to the lattice data. The pion is described
by the homogeneous Bethe-Salpeter equation (BSE)

�����p;P� �
Z d4k

�2��4
K��;���p; k;P�


 �S�k���
��k;P�S�k����� (30)

where

���p;P� � �5�E
��p;P� � {P6 F��p;P� � { 6pG��p;P�

� �P6 ; 6p�H��p;P��; (31)

is the Bethe-Salpeter amplitude of the pion, K is the Bethe-
Salpeter kernel and the momenta k� � k� �P and k� �
k� ��� 1�P are such that the total momentum P � k� �
k�. All physical results are independent of the momentum
partitioning parameter � � �0; 1�. The crucial link between
the meson bound states and their quark and gluon constit-
uents is provided by the axial vector Ward-Takahashi
identity. It relates the quark self energy to the quark-quark
interaction kernel in the BSE and thereby guarantees the
Goldstone nature of the pions and kaons [51,52]. In our
case the kernel is given by

K��;���p; k;P� ! ������


������t���k�Z2
Z�k��1�k��2�k��3�k�

k2 ;

(32)

where t�� is a transverse projector in momentum space and
the flavor content of the kernel has been suppressed. To
determine the pion mass and wave functions we explicitly
solve the quark-SDE in the complex momentum plane,
thereby providing the necessary input for the BSE. The
BSE is then solved as an eigenvalue equation for eigen-
value one, which provides the wave functions and the pole
mass of the pion (all technical details of such a calculation
are discussed in detail in Ref. [17]). From the (normalized)
wave function the pion decay constant is fixed by

f��
3

M2 Trd
Z d4k

�2��4
���k;�P�S�k�P=2��5P6 �k�P=2�:

(33)
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Our results for the pion mass, the corresponding renor-
malized current quark mass in theMS-scheme and the pion
decay constant are given in Table III. The current quark
mass has been determined from the quark-SDE at a large
renormalization point, converted into the MS-scheme and
subsequently evolved to � � 2 GeV employing the same
scale as for the chiral condensate, �MS

QCD � 0:225�21� MeV

[34]. The errors given in Table III are an estimate of
numerical and scale uncertainties. The resulting current
quark mass is in the ballpark of the values quoted by the
particle data group [53].

Probably the most interesting observable is the pion
decay constant, which directly reflects the deficiency of
the quenched lattice calculation compared with the real
world. Both lattice formulations underestimate the experi-
mental value by roughly 10%. This margin is much smaller
than the 30% estimated in Ref. [14], where finite volume
effects were not taken into account.

VI. SUMMARY

In summary, we have investigated the properties of a
quenched lattice-QCD quark propagator from staggered
quarks [12] and from an overlap quark action [13] in
Landau gauge. We employed a coupled set of Schwinger-
Dyson equations for the ghost, gluon and quark propaga-
tors on compact manifolds and in the infinite volume/
continuum limit to study finite volume effects in the propa-
gators and to determine some aspects of dynamical chiral
symmetry breaking on a torus. We constructed a model for
the quark-gluon vertex such that two sets of staggered and
overlap lattice quark propagators are reproduced by the
quark gap equation on their respective manifolds.

Comparing results on different volumes with the infinite
volume/continuum limit, we found sizeable quantitative
but not qualitative differences at small momenta. The
continuum mass functions approach finite values at vanish-
ing momentum which are substantially larger than antici-
pated from the lattice data alone. Thus lattice simulations
may underestimate the amount of dynamical quark mass
generation in the infrared by as much as 100 MeV. The
absolute size of this effect is approximately the same for all
quark masses we have investigated, so the relative size
becomes smaller for heavier quarks. As a by-product of
-11
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this investigation we observed that the bare quark masses
in the staggered and overlap formulations are related by a
simple multiplicative factor. No additional additive correc-
tions were necessary, which is a signal that taste symmetry
violations in the staggered action used in Ref. [12] are
negligible [30].

We also assessed the effects of small volumes on dy-
namical chiral symmetry breaking. Employing a fixed
small current quark mass we decreased the volume of the
box until we found clear signals of chiral symmetry resto-
ration. These signals occur at the surprisingly small box
length of

L ’ 1:6 fm; (34)

which constitutes a minimal box size below which chiral
perturbation theory cannot safely be applied.

With the quark-gluon interaction fixed by the lattice
data, we then determined the properties of the quark
propagator and pions in the infinite volume/continuum
limit. We found a chiral condensate of

jh �qqij2 GeV
MS

� �253� 5 MeV�3 (35)

which compares favorably with values determined with
other methods on the lattice. Unfortunately nothing can
be said about the analytic structure of the quark propagator.
We showed, that the method of fitting a quark-gluon inter-
action to lattice propagator data is not sufficient to pin
down the relative strength of the various tensor compo-
nents of the vertex, which in turn are necessary to derive
reliable statements on the analytic structure of the quark
034029
propagator. Finally, we have determined the pion mass and
decay constant employing a rainbow-ladder truncation of
the Bethe-Salpeter equation, which incorporates the fitted
interaction. We obtained the renormalized up/down quark
masses

m2 GeV
MS

� 4:1� 0:3 MeV; (36)

which are in the ballpark of the values given in the particle
data book [53]. The pion decay constant is roughly 10%
smaller than the experimental value. This indicates that
quenching effects in the light meson sector are not too large
in agreement with previous findings [17].

We have shown how the SDE/BSE approach, once
matched to lattice results on finite volumes with appropri-
ate manifolds, can reliably determine infinite volume/con-
tinuum predictions for all quark masses, including those of
the real world close to the chiral limit: a limit not directly
accessible on the lattice.
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