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Generalized Breit-Wigner expressions describing both single and coupled scalar resonances are derived
by combining chiral symmetry and unitarization. Bare scalar propagators are dressed by two-pion loops,
results are analytical, and there is little model dependence, since no form factors are used. In the single
resonance case, two free coupling parameters are present, which allow flexible descriptions of masses,
widths, and pole positions. The usual K-matrix unitarization procedure is recovered as an approximation.
When two resonances are present, intermediate pion loops give rise to a coupled channel problem and
there is no simple relationship between the unitarized amplitude and Breit-Wigner expressions for
individual resonances. Eventually, we approximate and generalize our results and give friendly expres-
sions that can be used in the parametrization of scalar resonances in data analyses.

DOI: 10.1103/PhysRevD.73.034028 PACS numbers: 13.75.Lb, 11.80.Cr, 11.30.Rd
I. INTRODUCTION

An important feature of quantum chromodynamics
(QCD), the basic theoretical framework for hadronic pro-
cesses, is the prediction of a nontrivial vacuum. At low
energies, this vacuum is dominated by quark-antiquark
condensates and allows for gentle excitations, such as
pions, kaons or etas. These pseudo-Goldstone bosons are
highly collective states, which can be neatly perceived by
experiment, since their quantum numbers are different
from those of the vacuum and a clear contrast is possible.

The situation is much more complex in the case of
scalar-isoscalar mesons, which have proved to be the
most elusive states in low-energy hadron physics. At
present, after decades of research, one still is not sure as
how to classify them into multiplets or what their quark and
gluon contents are [1]. On the empirical side, one also finds
important uncertainties in masses, widths, or even in the
very existence of some states.

The interest in the scalar sector was revived recently by
evidences provided by the E791 Fermilab experiment of
resonances with low masses and large widths in the decays
D� ! �������� [2] and D�s ! �K������ [3]. The
former finding was confirmed in a number of other reac-
tions: D0 ! K0

s ��
���� [4–6], �! ������� [7],

J= ! !������ [8], and B� ! �������� [9]. The
extraction of information from experiments of this kind
is rather involved and normally relies on expressions for
resonance widths and amplitudes taken from theory. As a
consequence, empirical values for masses and coupling
constants depend heavily on the theoretical input used in
data analyses. For instance, in Ref. [8], the same data set
yields the central values �M�;��� � �384; 458� MeV,
[442, 346] MeV, and [559, 566] MeV, for different theo-
retical expressions used in the analyses.
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At present, the fact is well established that, at low
energies, the problems associated with the non-Abelian
structure of QCD can be reliably circumvented by means
of effective theories. These theories mimic QCD and, in
order to be really effective, they must be Poincaré invariant
and possess approximate either SU�2� � SU�2� or SU�3� �
SU�3� symmetries, broken by the small Goldstone boson
masses.

The motivation for the present work is to discuss the role
of chiral symmetry in the production of scalar resonances
at low energies and to derive theoretically sound expres-
sions which may be useful in data analyses. An important
dynamical aspect of this problem is that resonances with
the same quantum numbers can couple through intermedi-
ate states containing two pseudoscalar particles. So, they
correspond to the diagonal components of a complex sys-
tem and the parameters of a light and broad resonance can
be strongly influenced by the existence of heavier partners.
Therefore we also pay some attention to resonance cou-
pling in the framework of chiral symmetry. For the sake of
simplicity, we restrict ourselves to the SU�2� sector.

About ten years ago, Törnqvist [10] discussed both
chiral symmetry and resonance couplings in this problem.
In his work, the symmetry was enforced by imposing that a
background of undisclosed origin should partially cancel
pion loop contributions obtained by means of the unita-
rized quark model, so as to yield the Adler zero of the pion-
pion amplitude. The corresponding resonance width for
S-wave pions reads

��s� � ��2s��2�

������������������
s� 4�2

p
���
s
p e��s�M

2
r �=4�2

; (1)

where � and � are free parameters and � and Mr are the
pion and resonance masses. This prescription is widely
used [8,11] and has the merit of including the chiral factor
�2s��2�, which makes the width small at low energies.
As we discuss in the sequence, effective Lagrangians allow
this factor to be reproduced in a natural way and, at the
-1 © 2006 The American Physical Society
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same time, give rise to more general expressions, which
include other forms of s-dependence. Another advantage
of a Lagrangian framework is that it allows the unambig-
uous separation between resonance and background con-
tributions to the unitarized amplitude. The latter do not
include contact terms as in Ref. [10] and are given by just t
and u channel singularities [12]. Hence, at the end, there
are no large nonresonating backgrounds and the risk of
double counting is eliminated.

Our paper is organized as follows. In Sec. II, we review
the main features of both linear �-model and nonlinear
chiral descriptions of tree �� amplitudes. These results
allow one to derive a unitarized amplitude for the single
resonance case, in Sec. III, which corresponds to a chiral
version of the usual Breit-Wigner formula. This is done by
resumming a Dyson series in the s-channel and the result is
more general than that derived by means of K-matrix
unitarization, due to the inclusion of pion off-shell effects.
In Sec. IV, we extend the discussion to the case of two
resonances and argue that the description of this system by
means of two independent Breit-Wigners is very incon-
venient. Finally, in Sec. V, we summarize our results and
give a simple expression that can be applied in data analy-
ses. We have tried to make this section as self-contained as
possible, so that it could be read directly by those people
not interested in technical aspects of the calculation. There
are also four appendices devoted to technical details.
II. CHIRAL SYMMETRY

The intense activity on chiral perturbation theory per-
formed in the last 20 years has made clear the convenience
of working with nonlinear realizations of the symmetry. On
the other hand, when dealing with scalar resonances, one
may be tempted to employ the old and well-known linear
�-model. The advantage of the former is that it is more
general and incorporates all the possible freedom compat-
ible with the symmetry. On the other hand, it is nonrenor-
malizable and one has to resort to order-by-order
renormalization in order to deal with this difficulty. The
less general linear model is not affected by this problem.

In order to establish the notation, in this section we
review some well-known results for low-energy �� scat-
tering. Quite generally, the amplitude T�� for the process
�a�p��b�q� ! �c�p0��d�q0� can be written as [13]

T�� � �ab�cdA�s; t; u� � �ac�bdA�t; u; s�

� �ad�bcA�u; s; t�; (2)

with s � �p� q�2, t � �p� p0�2, and u � �p� q0�2. A
resonance has a well-defined isospin and one uses the
decomposition

T�� � T0�s; t�P0 � T1�s; t�P1 � T2�s; t�P2; (3)

where PI is the projection operator into the channel with
034028
total isospin I and the amplitudes TI are given by

T0�s; t� � 3A�s; t; u� � A�t; u; s� � A�u; s; t�;

T1�s; t� � A�t; u; s� � A�u; s; t�;

T2�s; t� � A�t; u; s� � A�u; s; t�:

(4)

In the framework of chiral symmetry, the inclusion of
resonances must be performed in such a way as to preserve
the low-energy theorem for �� scattering, which ensures
that the functions A�s; t; u� must have the form [14]

A�s; t; u� �
s��2

f2
�
� 	 	 	 ; (5)

where � and f� are the pion mass and decay constant and
the ellipsis indicates higher order contributions.

When a scalar-isoscalar resonance is present, the tree-
level amplitude for �� scattering is given by the four
diagrams of Fig. 1, irrespective of whether the symmetry
is implemented linearly or not. We begin by considering
the linear �-model, described by the Lagrangian

L� �
1

2
�@��@��� @�� 	 @��� �

m2

2
��2 � �2�

�
	
4
��2 � �2�2 � c�: (6)

Denoting by s the fluctuations of the scalar field and
using � � f� � s, one finds, at tree level,

�2 � m2 � 	f2
�; c � �2f�; M2

� � 2	f2
� ��2;

(7)

M� being the s mass. The �� scattering amplitude is

At�s; t; u� � �2	�
4	2f2

�

s�M2
�
�
s��2

f2
�
�
�s��2�2

f2
��s�M

2
��
;

(8)

where the subscript t stands for tree. The contributions on
the right-hand side proportional to 	 and 	2 arise, respec-
tively, from the four-pion vertex and one of the resonance
terms in Fig. 1 and are not isolately compatible with the
low-energy theorem. However, consistency becomes ex-
plicit when they are added together, since M2

� 
 �2 � s.
This result shows that, in the linear model, the resonance
and the nonresonating background must always be treated
in the same footing, for the sake of preserving chiral
symmetry.

In the alternative approach, the scalar field f couples to
pion fields�, which behave nonlinearly under chiral trans-
formations [15]. This field f is now assumed to be a true
chiral scalar, invariant under both vector and axial trans-
formations, and should not be confused with �, the chiral
partner of the pion in the linear �-model. The effective
Lagrangian for this system is written as [16]
-2



FIG. 1. Tree amplitude Tt; dashed and thin wavy lines represent pions and a scalar resonance.
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L �
1

2
�@�f@

�f�M2
�f

2� �
1

2

�
1� cs

f
f�

�
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������������������
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������������������
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� ��

2
q

�

��2f�

�
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f�

�
�
������������������
f2
� ��

2
q

� f��; (9)

where the dimensionless constants cs and cb represent,
respectively, the scalar-pion couplings that preserve and
break chiral symmetry.

The evaluation of the diagrams of Fig. 1 then yields

At�s; t; u� �
s��2

f2
�
�
�css=2� �cs � cb��2�2

f2
��s�M2

��
; (10)

where, as before, the two terms are due, respectively, to the
four-pion vertex and to the resonance. In this case, how-
ever, each contribution conforms independently with the
low-energy theorem. The former gives rise to the leading
term of Eq. (5) and the latter corresponds to a higher order
correction. We note that, for cs � 2 and cb � 1, one re-
covers the result from the linear �-model, given by Eq. (8).
Results from the nonlinear Lagrangian are more general,
since they hold for any choices of the parameters cs and cb.
On the other hand, they are not renormalizable, because the
coupling constant cs=f� carries a negative dimension.
Denoting by q���

���
s
p

the low-energy scale, one learns
from Eqs. (8) and (10) that the O�q2� leading term is
unique whereas the other contributions are O�q4� and
model dependent. It is important to note that, in order to
preserve this chiral hierarchy, the parameters cs and cb
cannot be too large: they must be smaller than M�=�.

Using results (2), (3), and (10) and projecting into the
S-wave channel, we find the following scalar-isoscalar
tree-level �� amplitude [17]:

Tt �
2s��2

f2
�

�
3�css=2� �cs � cb��

2�2

f2
��s�M

2
��

�
B�s�

f2
�
; (11)
FIG. 2. Tree amplitude Tt; the thick wavy line represents the
amplitude Tt, given by Eq. (13).
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where the first term implements the low-energy theorem,
the second one describes the resonance, and the last func-
tion is a nonresonating background, given by

B�s� �
�
c2
s

4
�s� 2M2

�� � cs�cs � 2cb��2

�
2�csM

2
�=2� �cs � cb��

2�2

s� 4�2 ln
�
1�

s� 4�2

M2
�

��
:

(12)

This background receives contributions from t and u
channels only and, as the resonance term, it is O�q4�.
With future purposes in mind, we rewrite Eq. (11) in a
compact form, as

Tt � �
�2

s�M2
�
; (13)

with

�2�s� � ��2s��2��M2
� � s� � 
�=f2

�; (14)


�s� � 3�css=2� �cs � cb��2�2 � B�M2
� � s�: (15)

In evaluating the effects of pion loops, it is useful to
associate diagrams directly with Eq. (13). We do this by
reexpressing the �� amplitude of Fig. 1 as in Fig. 2, where
the thick wavy line now includes contributions from the
four-pion contact interaction, the full s-channel resonance,
and t and u exchanges. The function ��s� implements the
effective couplings at the vertices.
III. SINGLE RESONANCE AMPLITUDE

Quite generally, the unitarization procedure allows one
to extend the range of validity of an amplitude calculated
by means of field theory. In the case of the�� amplitude, it
also provides an alternative formulation to the usual chiral
perturbation theory [18]. In order to unitarize the ��
amplitude, we consider iterated contributions from a single
loop. In this approximation, the dressed propagator is
determined by the three diagrams shown in Fig. 3(a). The
last of them corresponds to a composite Dyson series and
includes all possible iterations of the �� tree amplitude, as
represented in Fig. 3(b). In the sequence we concentrate on
the unitarized elastic �� scattering amplitude and leave a
discussion of the dressed resonance propagator to
Appendix C.
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FIG. 4 (color online). The functions T�s� are �� amplitudes;
the first term of Eq. (11) corresponds to the leading order (dash-
dotted) curve, the full equation is represented by the tree
(dashed) curve, Eq. (20) with �cs � 2; cb � 1� gives rise to the
unitarized �-model (continuous) curve and the resonance (dot-
ted) curve is derived by iterating just the term proportional to 	2

in Eq. (8) and then adding that proportional to 	.

FIG. 3. Full resonance propagator (a) and s-channel unitarized �� amplitude (b).
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The one-loop contribution to the �� scattering ampli-
tude is given by

T1�s� � Tt����Tt; (16)

where the function

��s� � �
1

32�2 �L��1� (17)

contains an infinite constant �1 and a finite component
L�s�, which can be evaluated analytically and is given in
Appendix A.

In the linear �-model, singularities introduced by loops
can be removed consistently. The renormalization of the
�-model was discussed by Lee and collaborators [17,19],
reviewed in a pedagogical way in Ref. [20], and adapted to
this problem in Appendix B. This procedure entitles one to
replace �1 in Eq. (16) by a yet undetermined constant c.
Denoting by �� this new function and by �R and I its real and
imaginary parts, the usual self-energy insertion is written
as

���s� � �2� �R� iI�: (18)

Considering all possible iterations of the two-pion loop,
we construct the full s-channel �� amplitude given in
Fig. 3(b). This geometrical series can be summed and
one finds

�T�s� �
Tt

1� ��Tt
: (19)

This result can be reexpressed by defining a running
mass M and a width � such that

�T�s� � �
�2

s�M2 � iM��
; (20)

with M2�s� � M2
� � �2 �R and M���s� � �2I. We fix the

constant c by imposing that the pole of �T occurs at the
physical mass M�, which corresponds to the condition
�R�M2

�� � 0! c � �<L�M2
��. The running mass and

width become

M2�s� � M2
� � ��2s��2��M2

� � s� � 
�

� � �R�s� � �R�M2
���=f2

�; (21)

��s� � ��2s��2��M2
� � s� � 
�

�

������������������
s� 4�2

p
32�f2

�M�
���
s
p ��s� 4�2�; (22)
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with 
�s� given by Eq. (15). The signature of chiral sym-
metry in this problem is the factor �2s��2�=f2

� within
square brackets, which implements the low-energy theo-
rem and is due to the use of Eq. (11) as the main building
block in the calculation. This is the only O�q2� term and it
dominates at low energies. On the other hand, as s ap-
proaches M2

�, the relative importance of the various con-
tributions changes and the model dependent factor
proportional to 
 dominates. These results correspond to
the most general expression possible for the running mass
and width dictated by chiral symmetry. The latter is to be
compared with Eq. (1). The presence of the parameters cs
and cb allows for a wide variety of forms for the width. In
particular, when cs � 0, one can expect a resonance with a
rather low intensity. As far as the background is concerned,
its importance cannot be large at low energies, since it is
O�q4� and does not contribute at the resonance pole.

In Fig. 4, we explore the interplay between chiral sym-
metry and resonance in the function jT�s�j2. For the sake of
using a round number, the scalar mass was fixed at M� �������

12
p

�� 485 MeV. The first term of Eq. (11) yields the
leading order curve, an unbound parabola which blows up
at large energies. The inclusion of the remaining two terms
in that amplitude gives rise to the tree curve. The unitarized
�-model curve, given by Eq. (20) with �cs � 2; cb � 1�, is
-4



TABLE III. Some masses, widths, and coupling parameters
which reproduce the pole at

���
s
p
� �454:73� i290:25� MeV

[21].

M� (MeV) �� (MeV) cs cb

331.76 365.93 0.590 12
403.77 333.58 0.594 10
688.22 757.10 1.150 8

TABLE II. Some empirical masses and widths reproduced by
choices of coupling parameters.

Reference M� (MeV) �� (MeV) cs cb

[8] 384 458 4.68 1
[8] 442 346 2.81 1
[2] 478 324 2.28 1
[8] 559 566 2.24 1

TABLE I. Relation between masses and widths in the linear
�-model.

M� (MeV) 350 400 450 500 550 600 650 700 750 800 850

� (MeV) 63 121 201 304 432 589 778 1000 1258 1555 1894

100

200

300

400

(cs=2, cb=2)

(cs=0, cb=2)

Γ(
M

eV
)

 

σ-linear
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obtained by iterating the tree amplitude by means of two-
pion loops. Finally, the resonance curve is derived by
iterating just the term proportional to 	2 in Eq. (8) and
then adding that proportional to 	. Inspecting this figure,
one learns that the proper implementation of chiral sym-
metry in this problem ensures that the leading order, tree
and unitarized �-model curves stay very close together at
low energies. We have exemplified this kind of behavior in
the case of the �-model, but it holds for other choices of
the parameters �cs; cb� as well. As far as the resonance
curve is concerned, chiral symmetry is badly violated,
since it does not tend to the leading order one when s!
0, as predicted by the low-energy theorem. The reason for
this kind of deviation can be traced to the fact that loop
contributions become rather large when one iterates just
the term proportional to 	2 in Eq. (8).

The free parameters �cs; cb� in Eqs. (21) and (22) allow a
rather flexible relationship between mass and width, which
is exemplified in Tables I, II, and III. Predictions for the
choice �cs � 2; cb � 1�, corresponding to the�-model, are
given in Table I. In Table II, we show that empirical values
quoted in the literature can be easily encompassed by
suitable choices of the free parameters. Finally, Table III
is related to the recent analysis of elastic �� scattering in
the framework of chiral perturbation theory, produced by
Colangelo, Gasser, and Leutwyler [21]. In their work, one
finds a precise expression for the isoscalar S-wave phase
shift, valid for energies below 1 GeV and given by1

tan�0
0 �

������������������
s� 4�2

p
���
s
p �a� bs=�2 � cs2=�4 � ds3=�6�

�
4�2 � s0

s� s0
; (23)

where a � �6:051� 10�2, b � 7:291� 10�2, c �
�6:08� 10�4, d � �2:2� 10�5, and s0 � �846 MeV�2.
The corresponding scattering amplitude is given by
Eq. (20), with �2 � 32��so � 4�2��a� bs=�2 �

cs2=�4 � ds3=�6� and ��s� � �2
������������������
s� 4�2

p
=32�M�

���
s
p

.
The resonance parameters are M� � 846 MeV and
��M�� � 532 MeV, whereas the denominator of the scat-
tering amplitude vanishes at

���
s
p
� �454:73�

i290:25� MeV. In this channel, as pointed out in
Ref. [21], physical parameters are very different from the
pole position due to the strong s dependence in the nu-
merator of Eq. (23), manifest in the fact that the parameters
a and b are comparable.2 This important feature is inherent
to the isoscalar channel, since the resonance, which is a
nonleading chiral effect, must always coexist with a strong
1This is Eq. (17.2) of Ref. [21], translated into our notation.
2As an exercise, we eliminated the strong s dependence by

making b � c � d � 0 in Eq. (23), adopted the value a � 0:220
prescribed in Ref. [21] and found the physical parameters M� �
846:00 MeV, ��M�� � 156:65 MeV, and the pole position at���
s
p
� �849:08� i78:23� MeV.
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polynomial variation in s, required by the low-energy
chiral behavior. A discussion of this problem in the frame-
work of the linear �-model can be found in Ref. [22]. In
Table III, we show a sample of parameters that reproduce
the

���
s
p

pole quoted above [21].
In Fig. 5 we compare the behavior of the widths as given

by Eqs. (1) and (22). The parameter � of the former was
tuned so that ��M�� is the same in both cases, whereas
� � 700 MeV [11]. We also include a curve representing
0 4 8 12 16
0

s(µ2)

FIG. 5 (color online). Behavior of the resonance width. The
full and dashed curves were, respectively, obtained from Eqs. (1)
and (22), for the choices of parameters indicated explicitly,
whereas the dotted curve corresponds to Eq. (24).
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the function

��s� �
3�M2

� ��
2�2

32�f2
�

������������������
s� 4�2

p
M�

���
s
p ��s� 4�2�; (24)

which is obtained by unitarizing just the term proportional
to 	2 in Eq. (8), a procedure which is not compatible with
chiral symmetry. The scalar mass was fixed at M� �������

12
p

� and three choices were used for the parameters
�cs; cb�, which control the value of ��M��. Results are
sensitive to the free parameters in Eq. (22) and, although
both forms of the width are compatible with chiral sym-
metry, differences at low energies may be large.

A straightforward alternative for unitarizing amplitudes
is based on the so-called K-matrix formalism [23]. In the
scalar-isoscalar channel, the nonrelativistic kernel K is
related to the relativistic tree amplitude by

K�s� �
Tt

16�
���
s
p (25)

and its on-shell iteration yields the scattering amplitude

f � K=�1� iqK�; (26)

where q �
��������������������
s=4��2

p
is the center of mass momentum.

Using qK � tan�, one finds the usual phase shift parame-
trization for f. The relativistic counterpart of (26) has the
form of Eq. (20) with M! M�. This is expected since, as
it is well known, K-matrix unitarization gives rise to a
width, but does not renormalize the mass. In Fig. 6, we
compare the functions j �T�s�j2 unitarized by either two-pion
intermediate states or the K-matrix, for a choice of the
parameters �cs; cb�. The figure shows that the great flexi-
bility of the nonlinear model, which has two free parame-
ters, allows for a wide variation in the form of the
amplitude without destroying the compatibility with chiral
symmetry. We also note that the K-matrix unitarization
does give rise to reasonable approximations, at a rather low
0 10 20 30
0

5000

10000

15000

20000

(Cs=.5, cb=4) 

(cs=3, cb=1)

(cs=2, cb=1)

|T
(s

)|2

s(µµµµ2)

FIG. 6 (color online). Amplitudes unitarized by means of two-
pion loops (continuous lines) and K-matrix (dashed lines) for the
choices of parameters �cs; cb� indicated explicitly.
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algebraic cost. On the other hand, the comparison between
full and dashed curves indicates that loop corrections to the
resonance mass may be important at low energies.

In Fig. 7 we display the behavior of the function j �T�s�j2

for the parameters given in Eq. (23), which summarize
experimental results [21] and yield M� � 846 MeV, to-
gether with the corresponding prediction from the linear
�-model, unitarized by two loop intermediate states. One
notes that the linear model overestimates results in the
region s <M2

�, whereas a crude visual fit can be obtained
using �cs � 1:10; cb � 0:55� in the nonlinear interaction.
This suggests that data tends to favor the latter.

IV. TWO-RESONANCE AMPLITUDE

The linear �-model can be generalized so as to encom-
pass two resonances. The extension to the three flavor case
has been reviewed in Ref. [24] and applied to the study of
scalar mesons in Ref. [23]. As we show in Appendix D, this
generalization can also be performed by introducing a
second scalar-isoscalar field �, which is assumed to be a
chiral scalar, without further commitments concerning its
physical nature. This allows it to be compatible with any
kind of structures outside the SU�2� sector such as, for
instance, s�s or glueball states.

The tree amplitude for �� scattering for two resonances
� and � is represented by the diagrams of Fig. 8 and given
by Eq. (D9) of Appendix D. It reads

At�s; t; u� �
s��2

f2
�
� cos2�

�s��2�2

f2
��s�M2

��

� sin2�
�s��2�2

f2
��s�M

2
��
; (27)

where � is a mixing angle, which can be treated as a free
parameter. This result corresponds to a generalization of
Eq. (8) and is consistent, as it must be, with the low-energy
-6



FIG. 8. Tree amplitude for coupled resonances; dashed, wavy, and zigzag lines represent pions, and resonances � and �,
respectively.
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theorem. The implications of Eq. (27) can be understood
by noting that, in the large M� limit, the comparison of
Eqs. (10) and (27) motivates a class of departures repre-
sented by parameters of the form cs � 2cb � 2 cos�,
which is exemplified in Fig. 9. It is interesting to note
that, in this case, the coupling with a heavier partner works
towards the reduction of the �� width of particle � by a
factor proportional to cos�2. Therefore such a coupling is
not instrumental in explaining the nature of a possible
broad low-energy resonance.

As in the single resonance case, it is convenient to
explore the greater freedom of the nonlinear model. One
possibility is to assume that the �� amplitudes calculated
by means of chiral perturbation theory already contain the
mechanisms that give rise to the resonance pole [25]. In the
framework of quantum field theory, it is more convenient to
treat the resonances as explicit degrees of freedom and
write the amplitude as

At�s; t; u� � At��s; t; u� � At��s; t; u�

�
s��2

f2
�
�
�c�s �s=2��2� � c�b�

2�2

f2
��s�M2

��

�
�c�s �s=2��2� � c�b�

2�2

f2
��s�M2

��
: (28)
0 10 20 30
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15000

θθθθ = 450

θθθθ = 30o

θθθθ = 15o

θθθθ = 0o

M2

|T
(s

)|2

s(µµµµ2)

FIG. 9 (color online). Low-energy behavior of jT�s�j2 in the
generalized linear �-model, for a resonance of mass 485 MeV
coupled to a heavier one, as a function of the mixing angle.
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This yields a tree scalar-isoscalar amplitude of the form

Tt � Tt� � Tt� � �
�2
�

s�M2
�
�

�2
�

s�M2
�

; (29)

where

�2
i �s� � ��2s��

2��M2
i � s�=2� 
i�=f

2
�; (30)

and the model dependent functions 
i�s� are obtained by
using the parameters specific to each resonance in Eq. (15).
The functions �2

i play the role of effective couplings and,
in the evaluation of the unitarized amplitude, it is useful to
express Tt as in Fig. 10, where and thick wavy and zigzag
lines represent Tt� and Tt�, respectively.

In the case of two scalar resonances � and �, which can
couple through a two-pion intermediate state, one has to
consider the four two-point functions displayed in
Fig. 11(a). The structures of these functions are indicated
in Fig. 11(b) and depend on the full elastic �� amplitude.

As in the single resonance case, the �� amplitude is
obtained by iterating Tt. The single loop term reads

T‘�s� � �Tt� � Tt�������Tt� � Tt��; (31)

where � is given by Eq. (17) and contains a divergence
that needs to be removed by renormalization. In the linear
�-model, the same formal manipulations used in
Appendix B allow counterterms to be generated in the
two-resonance Lagrangian, and the regularized version of
T‘ reads

�T ‘�s� �
X�
i��

X�
j��

Tti�� ��ij�Ttj; (32)
FIG. 10. Tree amplitude Tt; thick wavy and zigzag lines rep-
resent the full contribution of scalar resonances � and � to the
�� amplitude.
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FIG. 11. Coupled resonance propagators (a) and their dynamical structures (b); dashed, wavy, and zigzag lines represent pions and
scalar resonances � and �, respectively.
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with

�� ij�s� � �
1

32�2 �L� cij�: (33)

We denote by �Rij and I the real and imaginary parts of
��ij and assume that the same kind of counterterms can be

used for a minimal regularization in the nonlinear case.
The iteration of this amplitude to all orders gives rise to

the structure shown in Fig. 12(a), which contains four
subamplitudes, denoted by �Tij. In order to construct these
functions, we first evaluate the sum of all two-pion loops
involving a single resonance, represented by the black
blobs, and recover the result given in Eq. (20). We then
assemble all possible combinations of these results, as in
Figs. 12(b) and 12(c), and find the diagonal and off-
diagonal amplitudes, given by

�T ���s� �
��2

��s�M
2
� � �

2
��

�R�� � iI��

D� iGI
; (34)

�T ���s� �
��2

��
2
��

�R�� � iI�

D� iGI
; (35)

with
FIG. 12. Coupled resonance contribution to the �� amplitude (a
meaning of the thick wavy and zigzag lines is given in Fig. 10 and
involving a single resonance.

034028
D�s� � �s�M2
� � �

2
�

�R����s�M
2
� � �

2
�

�R���

� �2
��2

��
�R���2; (36)

G�s� � ��2
��s�M2

�� � �
2
��s�M

2
��

� �2
��2

b�
�R�� � �R�� � 2 �R���: (37)

The expression for �T�� is obtained by making ��$ ��
in Eq. (34). The evaluation of the full s-channel ��
amplitude, Fig. 12(a), produces

�T�s� �
G

D� iGI
: (38)

In order to determine the counterterms cij in Eq. (33),
one needs three conditions. One of them is obtained by
imposing that the resonances decouple at their poles and
corresponds to � �R�� � �R�� � 2 �R��� � 0. The function
G�s� then becomes proportional to the tree amplitude and
the unitarized amplitude can be written as

�T�s� �
Tt�s�

�D=�s�M2
���s�M2

��� � iTt�s�I
: (39)

This shows that the zeroes of �T�s� and Tt�s� coincide,
enforcing the idea that ’’a zero in the partial wave ampli-
), which contains diagonal (b) and off-diagonal terms (c). The
the large black blobs indicate the sum of all pion loop diagrams
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tude in the physical region remains a zero after unitarization,’’ put forward by Törnqvist [10]. The other two conditions are
obtained by making D�M2

�� � D�M2
�� � 0 and yield

c�� � ���
2
��M

2
��<L�M

2
�� � �

2
��M

2
��<L�M

2
�� � �

2
��M

2
���c�� � c����=��

2
��M

2
�� � �

2
��M

2
���;

c�� � ���2
��M2

��<L�M
2
�� � �2

��M
2
��<L�M2

�� � �
2
��M2

���c�� � c����=��
2
��M2

�� � �
2
��M

2
���;

c�� � c�� �
64�2�M2

� �M
2
��

�2
��M

2
�� � �

2
��M

2
��

8><
>:

����������������������������������������������������������������������������������������������
1�
��2

��M2
�� � �

2
��M

2
���<�L�M2

�� � L�M
2
���

16�2�M2
� �M

2
��

vuut � 1

9>=
>;:

(40)

These results determine completely Eq. (38). Its meaning becomes more transparent when it is rewritten as

�T�s� � �
�2
��s�M

2
�� � �

2
��s�M

2
��

�s�M2
���s�M2

�� � i��s�M
2
��M��� � �s�M

2
��M����

; (41)

where the running masses are given by

M 2
�;��s� �

1
2fM

2
� � �2

�
�R�� �M2

� � �
2
�

�R�� 

��������������������������������������������������������������������������������������������������������������������
�M2

� � �2
�

�R�� �M2
� � �

2
�

�R���2 � �2
��2

��
�R�� � �R���2

q
g (42)
and the functions ��;��s� are obtained by using the pa-
rameters suited to each resonance in Eq. (22).

This result is the two-resonance version of Eq. (20). It
was obtained by means of standard techniques from quan-
tum field theory, which prescribe that one should first
combine the tree-level contributions from the two reso-
nances, as in Eq. (29) and then evaluate loop corrections. A
consequence of loop dynamics is that the resonances be-
come interwoven, as it happens in typical coupled channel
problems. This feature is especially prominent in the re-
034028
sults for the running masses, but still persists when one
works in the K-matrix approximation, which corresponds
to the replacement M�;��s� ! M�;�. In particular, there is
no simple relationship between Eq. (41) and Breit-Wigner
expressions for individual resonances.

On the other hand, the assumption that resonances be-
have independently is usual in analyses of empirical data
[2,3] and is implemented by means of adjustable complex
coefficients. In order to see the problem with such a
procedure, let us consider the equation
�T�s� � �
C�e

i���2
�

�s�M2
�� � iM���

�
C�e

i���2
�

�s�M2
�� � iM���

� �
�2
��s�M

2
�� � �

2
��s�M

2
��

�s�M2
���s�M2

�� � i��s�M
2
��M��� � �s�M2

��M����
;

(43)
which realizes this idea in the K-matrix approximation. By
imposing it to be valid, the free parameters C�;� and ��;�
can be easily determined. However, these solutions will
depend strongly on the variable s, and it will be extremely
difficult to determine their form directly from empirical
data. This makes the procedure of adding individual Breit-
Wigner structures for resonances with the same quantum
numbers to be rather inconvenient in data analyses. The
same can be said of treatments based on phase shifts and
nonrelativistic quantum mechanics [26].
V. SUMMARY

In this work we have shown how chiral symmetry and
unitarization can be combined in order to produce general-
izations of the usual Breit-Wigner expression for describ-
ing both single and coupled scalar resonances. The
motivation for deriving or results was the feeling that the
wealth of data on scalar resonances produced by several
experimental facilities around the world are not being
adequately interpreted in the low-energy region.

Chiral symmetry.—At present, the most reliable theo-
retical methods for implementing QCD at low energies rely
on chiral symmetry. This symmetry is especially suited for
describing processes involving pions and has been success-
fully applied to a rather large sample of physical problems
[27]. Resonances manifest themselves as poles in the sec-
ond Riemann sheet of scattering amplitudes and chiral
symmetry is essential in explaining [21] how the scalar
parameters �M�;��=2� ’ �846; 265� MeV can be compat-
ible with a pole position at

���
s
p
’ �455� i290� MeV. In the

case of scalar resonances, which couple strongly to pions, a
failure to incorporate chiral symmetry into data analyses
cannot be theoretically justified.

Unitarization.—In the framework of quantum field the-
ory, the pole structure associated with a resonance can be
generated by assuming that it has a definite mass in the
Lagrangian and then turning on the interaction that allows
-9
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it to decay. In the case of a scalar resonance, this gives rise
to a dressed propagator constructed by summing all the
iterations of the bare propagator and two-pion loops. The
advantage of this procedure is that there is little model
dependence: one does not use form factors and the loop
contribution is given by a compact analytical expression,
which is real below threshold and complex afterwards.
This kind of dynamical unitarization gives rise both to a
width and a running mass.

Single resonance.—In Sec. III we have constructed a
chiral Breit-Wigner suited for a single scalar resonance
[Eqs. (20)–(22)], with the following properties:
(i) a
t low energies, it reproduces (Fig. 4) the theorem
derived by Weinberg [14] for �� scattering;
(ii) i
t is compatible with a rather general nonlinear
realization of chiral symmetry, which involves
two free parameters, and incorporates the linear
�-model as a particular case;
(iii) t
he only constraint on these parameters is that they
must be smaller than M�=�;
(iv) t
he presence of two free parameters allows a rather
flexible description of masses, widths, and pole
positions;
(v) r
esults form the usualK-matrix unitarization can be
recovered as reasonable approximation (Fig. 6),
when the running mass is replaced by that of the
resonance.
We are aware that complicated expressions are not
useful in data analyses. Therefore we simplify our results
from Sec. III and propose the following chiral Breit-
Wigner expression as a trial function:

�T�s� � �
�2

s�M2 � iM�
; (44)

with

��s� � �2

������������������
s� 4�2

p
32�M

���
s
p ��s� 4�2�: (45)

��s� � f�2s��2��M2 � s�

� 3�css=2� �cs � cb��2�2g=f2
�: (46)

It incorporates the essential features of chiral symmetry
and M, cs, and cb can be treated as adjustable parameters.
This function generalizes that produced by Törnqvist [10]
about ten years ago, which corresponds to using �2�s� �
��2s��2�, where � is a free constant.

Two resonances.—The coupling of two resonances with
the same quantum numbers was discussed in Sec. IV and
we have restated within a Lagrangian framework several
results derived in Ref. [10], namely, that:
(i) b
oth the �-linear and nonlinear chiral models can
be extended in order to include more than one
resonance;
034028
(ii) d
-10
ynamical unitarization by means of quantum field
theory techniques corresponds to first combining
tree-level resonance amplitudes and subsequently
evaluating loop corrections;
(iii) t
his procedure ensures that a zero in the tree am-
plitude remains a zero after unitarization;
(iv) i
n the coupled channel problem, there is no simple
relationship between the unitarized amplitude and
Breit-Wigner expressions for individual
resonances;
(v) t
he price to be paid for representing each resonance
by a Breit-Wigner is a very high one, since one will
have to deal with coefficients and phases that de-
pend strongly on the variable s.
In the two-resonance case, the following trial function
can be used:

�T�s��

�
�2
��s�M2

����
2
��s�M

2
��

�s�M2
���s�M2

��� i��s�M
2
��M�����s�M2

��M����
;

(47)

where ��;� and ��;� are obtained by using the parameters
suited for each resonance in Eqs. (45) and (46).
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APPENDIX A: LOOP INTEGRAL

The function L�s�, which determines the self-energy
associated with a s-channel loop, Eq. (17), is given by

0 � s < 4�2 ! L�s� � �2

������������������
4�2 � s

p
���
s
p tan�1

� ���
s
p

������������������
4�2 � s

p
�
;

(A1)

4�2 � s! L�s�

�

������������������
s� 4�2

p
���
s
p

�
ln
� ���
s
p
�

������������������
s� 4�2

p
���
s
p
�

������������������
s� 4�2

p
�
� i�

�
: (A2)

Its behavior is displayed in Fig. 13, where it is possible
to notice a cusp at s � 4�2. As discussed in Sec. III, the
renormalization procedure introduces a constant c into
Eq. (17), which becomes

���s� � �
1

32�2 �L� c�: (A3)

As a consequence, the form of the function �R�s�, de-
scribing off-shell effects in pion loops, can be inferred
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FIG. 13. Function L�s�, which determines the self-energy as-
sociated with the loop.
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directly from Fig. 13, by shifting vertically its real part by
c.

APPENDIX B: RENORMALIZATION

In order to keep only the essential features of the prob-
lem, one notes that the dynamical scalar mass can be cut
along a �� loop, whereas the pion mass can be cut along a
�� loop. As the latter is heavier, we assume that changes
in the pion mass can be neglected at the energy scale one is
working at. The lifting of this restriction is straightforward,
but would require a considerable increase in the algebraic
effort. Since at one-loop level the wave function renormal-
ization is finite [20], the elimination of �1 from Eq. (17) is
performed by making m! m0 and 	! 	0 in Eq. (6) and
rewriting it as

L� �
1

2
�@��@

��� @�� 	 @
��� �

m2

2
��2 � �2�

�
	
4
��2 � �2�2 � f��2��

�m
2
��2 � �2�

�
�	
4
��2 � �2�2; (B1)

with �m � m2
0 �m

2 and �	 � 	0 � 	. Expanding �
around f�, using the condition �m � �f2

��	 associated
with the constancy of �2 and noting that tadpoles do not
contribute by construction [20], one finds

L �
1

2
�@�f@�f�M2

�f2� �
1

2
�@�� 	 @����2�2�

� 	f�f�2 � 	�4 � 	 	 	 � �	�f2
�f2 � f�f�2

� �4=4� 	 	 	�: (B2)
FIG. 14. Counterterm

034028
This result gives rise to the counterterm diagrams shown
in Fig. 14, which allow the factor �1 in Eq. (17) to be
killed by a suitable choice of �	. We are then entitled to
replace �1 in Eq. (17) by a finite constant c.
APPENDIX C: SCALAR PROPAGATOR

The full scalar propagator is given in Fig. 3 and can be
evaluated using the results of Sec. III. It reads

���s� �
1

s�M2
� � iM���

; (C1)

where

M 2
��s� � �2 �

f2
��M

2
� ��

2��f2
� � �M

2
� ��

2� �R�

�f2
� � �M

2
� ��

2� �R�2 � �M2
� ��

2�2I2 ;

M����s� � �
f2
��M

2
� ��

2�2I

�f2
� � �M

2
� ��

2� �R�2 � �M2
� ��

2�2I2 :

(C2)

Comparing this result with Eqs. (21) and (22), we note
that �T and the propagator �� yield definitions for the
resonance mass and width which correspond to different
prescriptions for the determination of the renormalization
parameter c.
APPENDIX D: EXTENDED �-MODEL

In order to include another resonance in the linear
�-model, one introduces a second scalar-isoscalar field
�, which is assumed to be a chiral scalar. The fact that
this new field is invariant under both isospin and axial
SU�2� � SU�2� transformations allows its physical content
to be compatible with structures outside the SU�2� sector
such as, for instance, s�s or glueball states.

Renormalizability is preserved by avoiding couplings
with negative dimensions and two new chiral invariant
terms are added to the L� of Eq. (6), which becomes

L �� � L� �
1
2�@��@

���M2
��

2� � g���2 � �2�;

(D1)

whereM� is the �mass and g is a coupling constant. When
the � is reexpressed in terms of the fluctuation f, the new
interaction Lagrangian gives rise to a contribution linear in
�, indicating that this field also has a classical component,
structure for T1�s�.
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denoted by e. Writing � � f� � f and � � e� 
, we find

L�� � ���m2=2� ge�f2
� � 	f4

�=4� cf�� � ���m2

� 2ge�f� � 	f3
� � c�f�

1
2�@�� 	 @

��

� �m2 � 2ge� 	f2
���

2� � 1
2�@�f@

�f� �m2

� 2ge� 3	f2
��f2� � �	f�f�f2 � �2� � 	�4=4

� 	 	 	� � ��M2
�e� gf

2
��
�

1
2�@�
@

�
�M2
�


2�

� g
�f2 � �2� � 2gf�f
: (D2)

The conditions ���m2 � 2ge�f� � 	f
3
� � c� � 0 and

��M2
�e� gf

2
�� � 0 for the free parameters allow the

elimination of the linear terms in f and 
. The � and �
masses are

�2 � m2 � 2ge� 	f2
�; M2

� � �2 � 2	f2
�: (D3)

The last term in Eq. (D2) corresponds to a mass mixing,
which is eliminated by introducing new fields � and �,
given by

� � cos�f� sin�
; � � � sin�f� cos�
; (D4)

and choosing the angle � such that tan2� � 4gf�=�M
2
� �

M2
��. This yields

cos 2�M2
� � sin2�M2

� � M2
�;

sin2�M2
� � cos2�M2

� � M2
�;

(D5)
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and the Lagrangian becomes

L�� �
1
2�@�� 	 @

����2�2� � 1
2�@��@

���M2
��2�

� 1
2�@��@

���M2
��

2� � f��	��� 	����2

� 	�4=4� 	 	 	 ; (D6)

where the coupling constants 	�, 	�, and 	 are completely
determined by the masses and mixing angle as

	� � cos��M2
� ��2�=2f2

�;

	� � � sin��M2
� ��

2�=2f2
�;

(D7)

	 � �cos2��M2
� ��2� � sin2��M2

� ��
2��=2f2

�: (D8)

The tree amplitude for �� scattering is given by the
diagrams of Fig. 8 and reads

At�s; t; u� � �2	�
4	2

�f
2
�

s�M2
�
�

4	2
�f

2
�

s�M2
�

�
s��2

f2
�
� cos2�

�s��2�2

f2
��s�M

2
��

� sin2�
�s��2�2

f2
��s�M2

��
: (D9)

This result generalizes Eq. (8) and is consistent with the
low-energy theorem.
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