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Monte Carlo simulation of the Sivers effect in high-energy proton-proton collisions

Andrea Bianconi*
Dipartimento di Chimica e Fisica per l’Ingegneria e per i Materiali, Università di Brescia, I-25123 Brescia, Italy,
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We present Monte Carlo simulations of the Sivers effect in the polarized Drell-Yan pp" ! ����X
process at the center-of-mass energy

���
s
p
� 200 GeV reachable at the Relativistic Heavy-Ion Collider

(RHIC) of BNL. We use two different parametrizations for the Sivers function, one deduced from the
analysis of semi-inclusive deep-inelastic scattering (SIDIS) data at much lower energies, and another one
constrained by the RHIC data for the pp" ! �X process at the same energy. For a given luminosity of
1032 cm�2 s�1, we explore the necessary conditions to reach a statistical accuracy that allows one to
extract unambiguous information on the structure of the Sivers function. In particular, we consider the
feasibility of the test on its predicted universality property of changing sign when switching from SIDIS to
Drell-Yan processes.
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I. INTRODUCTION

Azimuthal asymmetries in hard collisions involving
(polarized) hadrons represent a formidable test ground
for quantum chromodynamics (QCD) in the nonperturba-
tive regime. For almost 30 years, data have been collected
for hadron-hadron collisions, and recently also for semi-
inclusive ��-hadron processes in the regime of deep-
inelastic scattering (DIS). Large asymmetries were ob-
served in the azimuthal distribution of final-state products
(with respect to the normal to the production plane), par-
ticularly when flipping the transverse polarization of one
hadron involved in the initial or final state: the so-called
single-spin asymmetries (SSA). Examples of such SSA are
found for the pp! �"X process [1] at forward rapidity,
for the pp" ! �X process [2–5] again at forward rapidity,
and for the semi-inclusive hadron production ��A" ! �X,
where A is the proton [6–9] or the deuteron [10]. Apart
from the last one, in all other cases SSA up to 40% were
detected which were totally unexpected, since they cannot
be easily accommodated in a consistent manner within the
perturbative QCD in the collinear massless approximation
[11]; moreover, they seem to persist also at higher energies
typical of the collider regime [3–5], which also contradicts
QCD expectations. The same conclusion holds also for
unpolarized Drell-Yan experiments at high energy like
�A! ����X [12–15], with A � p; d;W, and �pp!
����X [15], where the violation of the Lam-Tung sum
rule strongly supports the conjecture to go beyond the
collinear approximation [14].
address: andrea.bianconi@bs.infn.it
address: marco.radici@pv.infn.it

06=73(3)=034018(14)$23.00 034018
All of these puzzling measurements have triggered an
intense theoretical activity, particularly about the idea that
intrinsic transverse momenta of partons, together with
transverse spin degrees of freedom, could be responsible
for the observed asymmetries. Transverse-momentum de-
pendent (TMD) parton distributions and fragmentation
functions have been introduced and linked to measurable
asymmetries in the leading-twist cross sections of semi-
inclusive DIS (SIDIS), Drell-Yan process, semi-inclusive
hadron-hadron collision, and e�e� annihilation [16–25].
As for parton distributions, the prototype of such TMD
functions is the Sivers function [20], which has a probabi-
listic interpretation: it describes how the distribution of
unpolarized quarks is distorted by the transverse polariza-
tion of the parent hadron. Using the notations recom-
mended in Ref. [26], the Sivers function f?1T can be
extracted by measuring the so-called Sivers effect in
hadron-hadron collisions or SIDIS processes, i.e. an asym-
metric distribution of the final-state products in the azimu-
thal angle defined by the mixed product pT � P � ST ,
where P is the nucleon momentum and pT;ST are the
transverse components of the parton momentum and of
the nucleon spin with respect to the direction of P in the
infinite momentum frame. Time-reversal invariance would
forbid such correlation if there were no initial/final-state
interactions in the considered collision/SIDIS process, re-
spectively. Therefore, f?1T is conventionally named a
‘‘naive time-reversal-odd’’ distribution. The interactions
must imply an interference between different helicity states
of the target nucleon [27,28]; consequently, the correlation
between pT and ST is possible only for a nonvanishing
orbital angular momentum of the partons. Then, extraction
of f?1T from data allows one to study the orbital motion of
-1 © 2006 The American Physical Society
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1For the experimental setup of a collider like RHIC, the
hadronic c.m. frame, i.e. the collision frame, coincides with
the laboratory frame.
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hidden confined partons; better, it contains information on
their spatial distribution [29], and it offers a natural link
between microscopic properties of confined elementary
constituents and hadronic measurable quantities, such as
the nucleon anomalous magnetic moment [30].

In QCD, the necessary interactions can be naturally
identified with the multiple exchange of soft gluons con-
tained in the gauge link operator, which grants the color-
gauge-invariant definition of TMD distributions [31,32].
However, the whole picture relies on the proof of a suitable
factorization theorem at small transverse momenta for the
process at hand. At present, QCD factorization proofs have
been established for e�e� annihilations [17], for Drell-Yan
processes [19], and, more recently, for SIDIS processes
[33,34], including also naive T-odd contributions. The
related universality of TMD functions has been carefully
discussed in Refs. [31,33,35]. It turns out that the Sivers
function displays the very interesting property of changing
sign when going from the SIDIS to the Drell-Yan process,
due to a peculiar feature of its gauge link operator under the
time-reversal operation [31]. This interesting prediction
has stimulated intense experimental and phenomenological
activities to link the Sivers effect recently measured at
HERMES [7,8] with processes happening at RHIC, where
data are being taken for polarized pp collisions [4]. In
particular, three different parametrizations of f?1T [36–38]
have been extracted from the HERMES data (and found
compatible also with the recent COMPASS data [10]), and
have been used then to make predictions for SSA at RHIC
(see also the more recent analysis of Ref. [39]; for a
comparison among the various approaches, see also
Ref. [40]).

In view of the foreseen upgrade of RHIC detector and
luminosity (RHIC II), we will consider here the specific
Drell-Yan process pp" ! ����X. The leading-twist po-
larized part of the cross section contains two terms that
produce interesting SSA with azimuthal distinct behaviors
[41]. In a previous paper [42], we analyzed the term
weighted by sin����S�, with � and �S the azimuthal
orientations of the final lepton plane and of the proton
polarization with respect to the reaction plane; it leads to
the extraction of another interesting naive T-odd TMD
distribution, the Boer-Mulders h?1 , which is most likely
responsible for the above-mentioned violation of the Lam-
Tung sum rule [41]. In Ref. [42], we considered the Drell-
Yan process �pp" ! ����X at the kinematics of interest
for the High Energy Storage Ring (HESR) project at GSI
[43,44] and we numerically simulated the SSA with a
Monte Carlo in order to explore the minimal conditions
required for an unambiguous extraction of h?1 . Here, we
follow the same approach to isolate the other term
weighted by sin����S�, which contains the convolution
of f?1T with the standard unpolarized parton distribution f1.
The Monte Carlo will be applied to the pp" ! ����X
process at

���
s
p
� 200 GeV at the RHIC II luminosity (at
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least 1032 cm�2 s�1). The SSA will be numerically simu-
lated using as input both the parametrization of Ref. [36]
and a new high-energy parametrization of f?1T constrained
by recent RHIC data on SSA for the pp" ! �X process at
the same

���
s
p
� 200 GeV [4]. The goal is to explore the

sensitivity of the simulated asymmetry to different input
parametrizations, as well as to directly verify, within the
reached statistical accuracy, the predicted sign change of
the Sivers function between SIDIS and Drell-Yan [31].

In Sec. II, the general formalism and details of the
numerical simulation are briefly reviewed. In Sec. III, we
discuss the input parametrizations. In Sec. IV, results are
presented. Finally, in Sec. V some conclusions are drawn.
II. THEORETICAL FRAMEWORK AND
NUMERICAL SIMULATIONS

In a Drell-Yan process, a lepton with momentum k1 and
an antilepton with momentum k2 (with k2

1�2� 	 0) are pro-
duced from the collision of two hadrons with momentum
P1, mass M1, spin S1, and P2;M2; S2, respectively (with
P2

1�2� � M2
1�2�, S

2
1�2� � �1, P1�2� � S1�2� � 0). The square

energy available in the hadronic center-of-mass (c.m.)
frame1 is s � �P1 � P2�

2 and the invariant mass of the
final lepton pair is given by the timelike momentum trans-
fer q2 
 M2 � �k1 � k2�

2. In the kinematical regime
where M2; s! 1, while keeping the ratio 0 � � �
M2=s � 1 limited, the lepton pair can be assumed to be
produced from the elementary annihilation of a parton and
an antiparton with momenta p1 and p2, respectively. If P�1
and P�2 are the dominant light-cone components of hadron
momenta in this regime, then the partons are approxi-
mately collinear with the parent hadrons and carry the
light-cone momentum fractions 0 � x1 � p�1 =P

�
1 , x2 �

p�2 =P
�
2 � 1, with q� � p�1 , q� � p�2 by momentum con-

servation [41]. As already anticipated in Sec. I, a key issue
is the extraction of TMD parton distributions; this requires
the cross section to be kept differential in the transverse
momentum of the final lepton pair, qT , which is bounded
by the momentum conservation qT � p1T � p2T to each
intrinsic transverse components piT of the parton momen-
tum pi with respect to the direction defined by the corre-
sponding hadron 3-momentum Pi. If qT � 0, the
annihilation direction is not known. Hence, it is convenient
to select the so-called Collins-Soper frame [45] described
in Fig. 1, where [41]

t̂ �
q
Q
; ẑ �

x1P1

Q
�
x2P2

Q
; ĥ �

qT
jqT j

: (1)

The lepton plane is defined by the spatial component of
ẑ, namely, the indicated ẑ, and the direction of emission of
-2
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FIG. 1 (color online). The Collins-Soper frame.
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the final lepton pair, which forms an angle � with ẑ as
034018
shown in Fig. 1. The hadronic plane is determined by ẑ
itself and ĥ, and it contains the hadronic 3-momenta
P1;P2. The azimuthal angles lie in a plane perpendicular
to ẑ and containing ĥ. In particular, by�;�Si ;we mean the
angles of ĥ;SiT (i � 1; 2) with respect to the lepton plane,
respectively. The cross section will be kept differential also
in the solid angle for the lepton production, i.e. d� �
2dyd�, where the invariant y � k�1 =q

� reduces to �1�
cos��=2 in the Collins-Soper frame [41].

The full expression of the leading-twist differential cross
section for the H1H

"
2 ! l�l�X process can then be written

as [41]
d�
d�dx1dx2dqT

�
d�o

d�dx1dx2dqT
�

d��"

d�dx1dx2dqT

�
�2

3Q2

X
f

e2
f

�
A�y�F �ff1 �H1�f

f
1 �H2��B�y�cos2�F

�
�2ĥ �p1Tĥ �p2T�p1T �p2T�

h?f1 �H1�h
?f
1 �H2�

M1M2

��

�
�2

3Q2 jS2T j
X
f

e2
f

�
A�y�sin����S2

�F

�
ĥ �p2T

ff1�H1�f
?f
1T
�H2�

M2

�

�B�y�sin����S2
�F

�
ĥ �p1T

h?f1 �H1�h
f
1�H2�

M1

�
�B�y�sin�3���S2

�F

�
�4ĥ �p1T�ĥ �p2T�

2

�2ĥ �p2Tp1T �p2T� ĥ �p1Tp
2
2T�
h?f1 �H1�h

?f
1T �H2�

2M1M2
2

��
; (2)
where � is the fine structure constant, ef is the charge of
the parton with flavor f, and

A�y� � �12� y� y
2� �

cm 1
4�1� cos2��

B�y� � y�1� y� �
cm 1

4sin2�:
(3)

The TMD functions ff1 �H�; h
?f
1 �H�, describe the distribu-

tions of unpolarized and transversely polarized partons in
an unpolarized hadron H, respectively, while
f?f1T �H�; h

?f
1T �H�, have a similar interpretation but for trans-

versely polarized hadronsH". The transversity hf1 describes
transversely polarized partons in transversely polarized
hadrons. Each one of these distributions for a parton f is
convoluted with its antiparton partner �f according to

F �DFf1 �H1�DF
f
2 �H2�


Z
dp1Tdp2T	�p1T�p2T�qT�

��DF1�x1;p1T ; �f=H1�

�DF2�x2;p2T ;f=H"2���f$ �f�:

(4)

In previous papers, we analyzed the SSA generated by
the azimuthal dependences cos2� and sin����S2

� in
Eq. (2) [42], as well as the double-polarized Drell-Yan
process [46]. A combined measurement of these SSA
allows one to completely determine the unknown trans-
versity h1 and Boer-Mulders function h?1 , which could be
responsible for the well-known violation of the Lam-Tung
sum rule [41] in unpolarized Drell-Yan data [12–14] (see
also Ref. [47], and references therein, for a recent discus-
sion on a parallel with QCD vacuum effects). We set up a
Monte Carlo simulation of Drell-Yan processes involving
unpolarized antiproton beams and transversely polarized
protons for various kinematic scenarios at the HESR at
GSI, namely, for 30< s< 200 GeV2 with an antiproton
beam energy of 15 GeV and the so-called asymmetric
collider mode (proton beams of 3 GeV) or fixed target
mode (proton fixed targets). Special focus was put on the
range 4<M< 9 GeV for the lepton invariant mass, since
it does not overlap with the charmonium and bottonium
resonances (where the elementary annihilation does not
necessarily proceed through a simple intermediate virtual
photon) and higher-twist corrections should be suppressed
justifying the simple approach of Eq. (2) based on the
parton model [42]. Here, we will concentrate on the term
weighted by sin����S2

� in Eq. (2) forH1 � p andH"2 �
p", and we will consider the related SSA at

���
s
p
� 200 GeV

reachable at RHIC [48]. Most of the technical details of the
simulation are mutuated from our previous works; hence,
we will heavily refer to Refs. [42,46] in the following.

The Monte Carlo events have been generated by the
following cross section [42]:
-3
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d�
d�dx1dx2dqT

� K
1

s
A�qT; x1; x2;M�F�x1; x2�

�
X4

i�1

ci�qT; x1; x2�Si��;�;�S2
�: (5)

It means that in Eq. (2) we assume a factorized transverse-
momentum dependence in each parton distribution such as
to break the convolution F , leading to the product AF. The
function A is parametrized as [42]

A�qT; x1; x2;M� �
5 a
b �
qT
b 
a�1

�1� �qTb �
a6

; (6)

where a�xF;M�, b�xF;M�, are parametric polynomials
given in Appendix A of Ref. [14] with xF � x1 � x2 and
qT � jqT j (see also the more recent Ref. [49]). It is nor-
malized as Z

dqTA�qT; x1; x2;M� � 1: (7)

Actually, the Drell-Yan events studied in Ref. [14] were
produced for�� p collisions; however, the same analysis,
repeated for �p� p and p� p collisions [15], gives a
similar distribution for qT not very close to 0 and not
much larger than 3 GeV=c. Here, we will adopt two differ-
ent cuts on qT depending on the input parametrization for
the Sivers function f?1T (see Sec. III), namely 1< qT < 3
and 0:1< qT < 2 GeV=c. Anyway, the average transverse
momentum turns out to be hqTi> 1 GeV=c, i.e. much
bigger than parton intrinsic transverse momenta induced
by confinement.

The latter observation implies that sizable QCD correc-
tions affect the simple parton model picture of Eq. (2).
Their influence on the qT distribution is effectively con-
tained in the phenomenological parametrization of Eq. (6).
However, there are also other well-known corrections [50]
coming from the resummation of leading logarithms at any
order in the strong coupling constant �s, and from the
inclusion of diagrams at first order in �s involving the �qq
fusion or the q� Compton mechanisms. The first group,
usually named leading-log approximation (LLA), introdu-
ces a logarithmic dependence on the scale M2 inside the
various parameters entering the parton distributions [51]
contained in Eq. (5), such that it would determine their
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution. However, the range of M values here explored is
close to the one of Refs. [14,15], where the parametrization
of A, F, and ci in Eq. (5) was deduced assuming
M-independent parton distributions. Moreover, as it will
be shown in Sec. IV, most of the events concentrate around
the average hxi 	 0:1, where the effects of evolution are
almost vanishing. Therefore, similarly to Refs. [42,46] we
take

F�x1;x2��
�2

12Q2

X
f

e2
ff

f
1 �x1; �f=H1�f

f
1 �x2;f=H2��� �f$f�;

(8)
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which represents the azimuthally symmetric unpolarized
part of Eq. (2) that has been factorized out for convenience.
As previously stressed, the unpolarized distribution ff1�x�
for various flavors f � u; d; s, is parametrized as in
Ref. [15].

The second group of QCD corrections is named next-to-
leading-log approximation (NLLA), and it is responsible
for the well-known K factor in Eq. (5). The K factor is
roughly independent on xF and M2 but it can grow with���
�
p

; it also depends on the chosen normalization of the
parton distributions (for a detailed analysis in this context,
see Ref. [15]). It is a large correction, typically a multi-
plicative factor in the range 1:5–2:5. Here, we will conven-
tionally assume the same value 2.5 adopted in our previous
simulations. But we stress that in an azimuthal asymmetry
the corrections to the cross sections in the numerator and in
the denominator should compensate each other. This is
certainly true for each elementary contribution to the am-
plitude for SSA, but it is much less obvious for the ratio of
full differential cross sections. Indeed, the smooth depen-
dence of the SSA on NLLA corrections has been confirmed
for fully polarized Drell-Yan processes at RHIC c.m.
square energies [52].

The whole solid angle ��;�� of the final lepton pair in
the Collins-Soper frame is randomly distributed in each
variable. The explicit form for sorting the angular distri-
bution in the Monte Carlo is [42,46]

X4

i�1

ci�qT; x1; x2�Si��;�;�S2
� � 1� cos2��


�x1; x2; qT�
2

� sin2� cos2�

� jS2T jc4�qT; x1; x2�

� S4��;�;�S2
�: (9)

If quarks were massless, the virtual photon would be only
transversely polarized and the angular dependence would
be described by the functions c1 � S1 � 1 and c2 � 1,
S2 � cos2�. Violations of such azimuthal symmetry in-
duced by the function c3 




2 are due to the longitudinal

polarization of the virtual photon and to the fact that quarks
have an intrinsic transverse-momentum distribution, lead-
ing to the explicit violation of the so-called Lam-Tung sum
rule [14]. QCD corrections influence 
, which in principle
depends also on M2 (see Appendix A of Ref. [14]).
Azimuthal cos2� asymmetries induced by 
 were simu-
lated in Ref. [42] using the simple parametrization of
Ref. [41] and testing it against the previous measurement
of Ref. [14].

The last term in Eq. (9) corresponds to the polarized part
of the cross section (2). Since we want to single out just the
Sivers contribution, we assume that

S4��;�;�S2
� � �1� cos2�� sin����S2

�: (10)

Recalling that in Eq. (5) the azimuthally symmetric unpo-
-4
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larized part A�qT; x1; x2;M�F�x1; x2� of the cross section
has been factorized out, the corresponding coefficient c4 in
Eq. (9) in principle reads

c4�qT;x1;x2��S2T

P
f
e2
fF �ĥ �p2T

ff1 �x1;p1T �f
?f
1T �x2;p2T �

M2


P
f
e2
fF �f

f
1�x1;p1T�f

f
1 �x2;p2T�

; (11)

where the complete dependence of the involved TMD
parton distributions has been made explicit. In Sec. III,
we will discuss two different parametrizations for the x and
pT dependence of these distributions which allow to cal-
culate the convolutions and determine c4.

Following Refs. [42,46], the SSA corresponding to the
Sivers effect is constructed by dividing the event sample in
two groups, one for positive values of sin����S2

� (U)
and another one for negative values (D), and taking the
ratio �U�D�=�U�D�. Data are accumulated only in the
x2 bin, i.e. they are summed over in x1, �, and in qT with
the discussed cutoffs. Contrary to Refs. [42,46], no cutoff
has been applied to the � distribution because S4 in
Eq. (10) contains the term 1� cos2�. Statistical errors
for �U�D�=�U�D� are obtained by making 10 indepen-
dent repetitions of the simulation for each individual case,
and then calculating for each x2 bin the average asymmetry
value and the variance. We checked that 10 repetitions are a
reasonable threshold to have stable numbers, since the
results do not change significantly when increasing the
number of repetitions beyond 6. In a real experiment, the
SSA would be extracted by taking the ratio between proper
differences and sums of cross sections for the four possible
combinations with the azimuthal angles ��;��S2

, in
order to reduce systematic errors. In the Monte Carlo
simulation, for each �S2

we can simply build the SSA in
the � angle. In an ideal experiment, the two situations
would be equivalent. It is worth noting that, while �S2

is
fixed in the lab frame, in the Collins-Soper frame of Fig. 1
it is variable, since the ĥ axis is directed along qT=qT;
hence, a random distribution in �S2

must be initially
extracted in the Monte Carlo.

III. PARAMETRIZATIONS OF THE SIVERS
FUNCTION

In our previous papers [42,46], the strategy of the nu-
merical simulation was based on making guesses for the
input x and pT dependence of the parton distributions, and
034018
on trying to determine the minimum number of events
required to discriminate various SSA produced by very
different input guesses. In fact, this would be equivalent
to state that in this case some analytic information on the
structure of these TMD parton distributions could be ex-
tracted from the SSA measurement.

As for the Sivers effect, the situation is different because
recently the HERMES collaboration has released new SSA
data for the SIDIS process on transversely polarized pro-
tons [8], which substantially increase the precision of the
previous data set [7]. As a consequence, three different
parametrizations of f?1T [36–38] have been extracted from
this data set and found compatible also with the recent
COMPASS data [10]. Moreover, a recent preprint appeared
which usefully illustrates the differences among the vari-
ous approaches [40]. At the same time, new data have been
collected at RHIC [4,5] on SSA in the pp" ! �X process
that confirm the observation of large asymmetries at for-
ward rapidity of the pion also at the high-energy collider
regime (

���
s
p
� 200 GeV). Despite this class of hadron-

hadron collisions is power suppressed and factorization
was established in terms of higher-twist correlation opera-
tors [53], still the SSA receives a contribution from the
leading-twist convolution f1 � f?1T �D1, where D1 de-
scribes the fragmentation of an unpolarized quark into
the detected �. Therefore, analogously to the analysis of
Ref. [54] at lower energy [2], we believe that the measured
SSA in pp" ! �X processes at

���
s
p
� 200 GeV should

indirectly constrain the parametrization of f?1T and, con-
sequently, the ‘‘strength’’ of the Sivers effect when these
data are ideally interpreted as completely driven by the
above convolution.

In our Monte Carlo simulation, we consider two differ-
ent parametrizations for f?1T : the one elaborated in
Ref. [36] and based on the new HERMES [8] and
COMPASS [10] data, where the pT dependence is driven
by the hp2

Ti extracted in a model dependent way from the
azimuthal asymmetry of the unpolarized SIDIS cross sec-
tion (Cahn effect); a new high-energy parametrization in-
spired to the one of Ref. [37] but with a specific pT
dependence constrained by the pp" ! �X data at

���
s
p
�

200 GeV.
A. The parametrization of Ref. [36]

Keeping in mind the commonly adopted conventions
[26], the expression used in Ref. [36] is
f?f1T �x;pT� � �
M2

2pT
�Nff=p" �x;pT� � �2Nf

�af � bf�af�bf

a
af
f b

bf
f

xaf �1� x�bf
M2M0

p2
T �M

2
0

ff1 �x;pT�

� �2Nf
1

�hp2
Ti

�af � bf�af�bf

a
af
f b

bf
f

xaf �1� x�bf
M2M0

p2
T �M

2
0

e�p
2
T=hp

2
T iff1�x�; (12)
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TABLE I. Parameters for the Sivers distribution from
Ref. [36].

Quark up Quark down

Nu 0:32� 0:11 Nd �1:0� 0:12
au 0:29� 0:35 ad 1:16� 0:47
bu 0:53� 3:58 bd 3:77� 2:59
M2

0 0:32� 0:25 �GeV=c�2
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where M2 is the mass of the polarized proton, pT 
 jpTj,
and hp2

Ti � 0:25 �GeV=c�2 is deduced by assuming a
Gaussian form for the pT dependence of f1 in order to
reproduce the azimuthal angular dependence of the SIDIS
2In Eq. (14), the factor in front of the flavor-dependent term
should read 1=18 because of the symmetry operation in the
denominator of Eq. (13). However, as it is shown in Sec. IVA,
the SSA is not suppressed only in the �x1 < 0:1; x2 > 0:1� region
of the phase space, which corresponds to take the dominant part
of just the first term in the denominator of Eq. (13).
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unpolarized cross section (Cahn effect). The parameters
M0 and Nf; af; bf, with f � u; d are extracted by fitting
the recent HERMES [8] and COMPASS [10] data with a
final �2 per degree of freedom of 1.06 (the negligible
contribution of antiquarks in the minimization procedure
has been traded off for a better precision). They are listed in
Table I.

Following the prediction about a sign change of f?1T
when going from a SIDIS process (as for the HERMES
analysis) to a Drell-Yan process (as it is considered here),
we insert the opposite of Eq. (12) inside Eq. (11), including
the Gaussian parametrization for f1�x;pT�. The integrals
upon the transverse momenta can be evaluated following
the steps in Sec. VI of Ref. [41]. The net result is
c4 � jS2Tj
4M0qT
q2
T � 4M2

0

P
f
e2
fNf

�af�bf�
af�bf

a
af
f b

bf
f

f1�x1; �f=p�x
af
2 �1� x2�

bff1�x2; f=p"�

P
f
e2
ff1�x1; �f=p�ff1 �x2; f=p� � �1$ 2�

: (13)
We further simplify this expression by replacing the flavor-
dependent product of parton distributions with an average
product hf1�x1�ihf1�x2�i both in the numerator and in the
denominator, in order to reduce the statistical noise related
to the parametrization of f1�x�. The final expression of c4

for pp" collisions, that numerically simulates the Sivers
effect in our Monte Carlo, becomes2

c4 � jS2Tj
4M0qT
q2
T � 4M2

0

1

9

�
8Nu
�au � bu�

au�bu

aauu b
bu
u

xau2 �1� x2�
bu

� Nd
�ad � bd�ad�bd

aadd b
bd
d

xad2 �1� x2�
bd

�
: (14)

As it is evident from previous formulas, the parametri-
zation (12) is put in a very convenient form that easily fits
the asymmetry term c4 in our Monte Carlo. However, the
sometimes poor resolution in determining the parameters
forced us to select only the central values in Table I in order
to produce meaningful numerical simulations. The sensi-
tivity of the parameters to the HERMES results for the
Sivers effect reflects in a more important relative weight of
the d quark over the u one in the valence x range, with
opposite signs for the corresponding normalization
Nf; f � u; d. As it will be shown in Sec. IV, this has two
main consequences on the simulation: small SSA are ob-
tained for the pp" ! ����X process in the valence x
range, where the �dd annihilation occurs less frequently
than the �uu one; a significant minimum number of events
is necessary in the sample to reduce the statistical error
bars and make the asymmetry not compatible with zero.
From Table I, the au parameter is much smaller than 1.
This means that in Eq. (14) the u-quark term dominates at
small x2, leading to a persistence of the Sivers effect even
below the valence x range. This feature is potentially very
relevant at RHIC kinematics, where hxi 	 0:01. Therefore,
for this parametrization we have produced also a specific
simulation a small x2 with a finer binning �x2, as it will be
shown in Sec. IV. The flavor-independent Lorentzian shape
in the pT dependence of Eq. (12) produces a maximum
asymmetry for qT 	 1 GeV=c and a rapid decrease for
larger values. Consequently, transverse momenta are se-
lected in the range 0:1< qT < 2 GeV=c, because for larger
cutoffs the asymmetry is diluted.

B. A new high-energy parametrization

As already mentioned above, this new parametrization is
inspired to the one of Ref. [37]. There, it was assumed that
the transverse momentum of the detected pion in the SIDIS
process was entirely due to the transverse-momentum de-
pendence in the Sivers function. No transverse momenta
are contributed by other terms in the factorization formula.
In this perspective, this approach can be considered as a
limiting case of the approach of Ref. [38], based on
Gaussian Ansätze for the pT dependence both in the dis-
tribution and fragmentation functions (see Ref. [40] for a
more detailed discussion). In Ref. [37], no further assump-
tion was made but the pT distribution was integrated out.
As a result, the SSA for the Sivers effect in SIDIS was
expressed in terms of ‘‘1

2 -moments’’ of the Sivers function,
which were parametrized in terms of the u-quark distribu-
tion fu1 �x� and flavor-dependent normalizations Su; Sd, to
be determined by a fit to the new HERMES data [8]. Also
-6
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in this case the normalizations turn out to have opposite
sign, and the �2 per degree of freedom is 1.2. The recent
COMPASS data [10] were not included in the fit, but a
direct comparison shows a qualitative good agreement.

Here, we retain the x dependence of this approach, but
we introduce a different flavor-dependent normalization
and an explicit pT dependence that are bound to the shape
of the recent RHIC data on pp" ! �X at

���
s
p
� 200 GeV

[4]. The expression adopted is

f?f1T �x;pT� � Nfx�1� x�
M2p2

0pT

�p2
T �

p2
0

4 �
2
ff1 �x;pT�

� Nfx�1� x�
M2p

2
0pT

�p2
T �

p2
0

4 �
2

�
1

�hp2
Ti
e�p

2
T=hp

2
T iff1 �x�; (15)

where p0 � 2 GeV=c. Following the same arguments of
the previous section, we get

c4 � jS2T jx2�1� x2�

�
2p0qT
q2
T � p

2
0

�
2

�

P
f
e2
fNff1�x1; �f=p�f1�x2; f=p"�

P
f
e2
ff1�x1; �f=p�ff1 �x2; f=p� � �1$ 2�

: (16)

Again, we can further simplify the expression introducing
the flavor average product hf1�x1�ihf1�x2�i, which leads to3

c4 � jS2Tjx2�1� x2�

�
2p0qT
q2
T � p

2
0

�
2 8Nu � Nd

9
: (17)

The qT shape is different from Eq. (14) and the peak
position is shifted at much larger values. This is in agree-
ment with a similar analysis of the azimuthal asymmetry of
the unpolarized Drell-Yan data (the violation of the Lam-
Tung sum rule [41]). But, more specifically, it is induced by
the observed xF � qT correlation in the RHIC data for
pp" ! �X, when it is assumed that the SSA is entirely
due to the Sivers mechanism; this suggests that the maxi-
mum asymmetry is reached in the upper valence region
such that xF � x2 	 hqTi=5 [4]. We have conveniently
modified the cutoffs such that for this parametrization the
sampled distribution is 1< qT < 3 GeV=c. In this case,
the peak asymmetry is reached for x2 	 0:5 (see Sec. IV).
Finally, the flavor dependence of the normalization is kept
as simple as in Ref. [38], namely Nu � �Nd � 0:7. The
sign, positive for u quark and negative for the d, already
takes into account the predicted sign change of f?1T from
Drell-Yan to SIDIS, where the opposite flavor dependence
of the sign was obtained [36–38].
3An argument similar to the one in the previous footnote about
Eq. (14) applies also here to Eq. (17).
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IV. RESULTS OF THE MONTE CARLO
SIMULATIONS

In this section, we present results for Monte Carlo
simulations of the Sivers effect in the Drell-Yan process
pp" ! ����X using input from Secs. III A and III B. The
goal is to explore the sensitivity of the simulated asymme-
try to different input parametrizations (i.e. to the input
theoretical uncertainty), as well as to directly verify, within
the reached statistical accuracy, the predicted sign change
of the Sivers function between SIDIS and Drell-Yan [31].
The collision is considered at the c.m. energy

���
s
p
�

200 GeV, at which RHIC is presently taking data. We
use a conservative dilution factor 0.5 for the proton polar-
ization, even if a foreseen upgrade of the superconducting
Siberian snake will allow RHIC to run in the future with
stable 70% transverse polarization [55]. We select two
different ranges for the lepton invariant mass: 4<M< 9
and 12<M< 40 GeV. In this way, we avoid overlaps
with the resonance regions of the �cc and �bb quarkonium
systems. At the same time, the theoretical analysis based
on the leading-twist cross section (2) should be well estab-
lished, since higher-twist effects can be classified accord-
ing to powers of Mp=M, where Mp is the proton mass.
Moreover, at

���
s
p
� 200 GeV also the QCD corrections

beyond tree level should be suppressed, which justifies
the approximations described in Sec. II. In the Monte
Carlo, the events are sorted according to the cross section
(5), supplemented by Eqs. (6)–(8), while the asymmetry
related to the Sivers effect is simulated by Eqs. (9), (10),
(14), and (17). In particular, the events are divided in two
groups, one for positive values (U) of sin����S2

� in
Eq. (10), and another one for negative values (D), and
taking the ratio �U�D�=�U�D�. Data are accumulated
only in the x2 bins of the polarized proton, i.e. they are
summed over in the x1 bins for the unpolarized proton, in
the transverse momentum qT of the muon pair and in their
zenithal orientation �. Proper cuts are applied to the qT
distribution according to the different input parametriza-
tion of the Sivers function: for the case of Sec. III A, 0:1<
qT < 2 GeV=c; for the case of Sec. III B, 1< qT <
3 GeV=c. In this way, the ratio between the absolute sizes
of the asymmetry and the statistical errors is optimized for
each choice. The resulting hqTi is 	1:8 GeV=c, in fair
agreement with the one experimentally explored at RHIC
[4]. Contrary to Refs. [42,46], there is no need to introduce
cuts in the � distribution because of the �1� cos2�� term in
Eq. (10). We have considered two initial different samples
of 20 000 and 100 000 events. Statistical errors for �U�
D�=�U�D� are obtained by making 10 independent rep-
etitions of the simulation for each individual case, and then
calculating for each x2 bin the average asymmetry value
and the variance. We checked that 10 repetitions are a
reasonable threshold to have stable numbers, since the
results do not change significantly when increasing the
number of repetitions beyond 6.
-7
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A. Properties of the phase space

In Fig. 2, the scatter plot (in the fractional momenta
x1 
 x0; x2 
 x; of the annihilating partons) for 120 000
events of Drell-Yan muon pairs produced by proton-proton
collisions at

���
s
p
� 200 GeV, is shown. The data are di-

vided in two different bands, corresponding to two differ-
ent ranges in the muon pair invariant mass:
4<M< 9 GeV for the lower band and 12<M<
40 GeV for the upper one. In fact, hyperboles x1x2 �
const are selected by fixed values of � � x1x2 � M2=s.
Since the elementary annihilation is assumed to proceed
through a virtual photon, the cross section contains a term
1=M2 	 1=� which populates the phase space at low val-
ues, while the upper right corner of Fig. 2 for �! 1 is
basically empty (also because the parton distributions van-
ish for x1=2 ! 1). Therefore, within each band events tend
to accumulate to the lowest possible M in the considered
range, which means that they try to align along the hyper-
bole with lowest possible values of x1 and x2. Moreover,
for the same reason the lower band is much more dense
than the other one: 95% of the events correspond to the 4<
M< 9 GeV range. This is why we consider also this case,
because the much higher statistics can be traded for the
questionable neglect of higher-twist contributions with
respect to the higher 12<M< 40 GeV range.

The scatter plot of Fig. 2 contains two main differences
with respect to our previous analysis of Ref. [42] for the
GSI setup, where the �pp" ! ����X process was consid-
  x’
0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

x

FIG. 2. The scatter plot for 120 000 events of Drell-Yan muon
pairs produced by proton-proton collisions at

���
s
p
� 200 GeV.

The two bands in which data are grouped correspond to two
different ranges in the muon invariant mass: 4<M< 9 GeV for
the lower band, 12<M< 40 GeV for the upper one.
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ered at
���
s
p
� 14 GeV. First of all, here the c.m. energy is

higher by 1 order of magnitude, which means that x1=2

values lower by 1 order of magnitude are explored, typi-
cally hx1=2i 	 0:01. Secondly, this is emphasized by the
fact that in pp collisions at least one of the two annihilating
partons comes from the proton sea distribution, which is
peaked at very low x values. The importance of parton
momenta below the valence region is potentially relevant
to the theoretical models. We already mentioned in
Sec. III A that the parametrization of Eq. (12) leads to a
persistence of the Sivers effect in this range, contrary to the
other one of Eq. (15). Anyway, both choices lead to a
vanishing effect for x2 ! 0. The dominance of the low
x2 portion of phase space is evident in the histograms for
the event distributions displayed in Sec. IV, where the first
bin �0; 0:1 contains more than 50% of events on average.
We can also estimate the expected position of the peak
density, assuming that the bidimensional event distribution
N�x1; x2� is dominated by the 1=� factor associated to the
elementary �qq fusion into a virtual photon. In this case,
N�x1; x2� � 1=�x1x2� for � >M2

min=s, and 0 otherwise.
Consequently, the x1-integrated distribution has the form
log�x2s=M2

min�=x2 and reaches its peak value for
log�x2s=M2

min� � 1, i.e. for x2 � eM2
min=s � 3M2

min=s	

0:01 for
���
s
p
� 200 GeV and Mmin � 12 GeV, in agree-

ment with the average values produced by the Monte
Carlo. Elsewhere, the integrated distribution behaves like
1=x2, as it can visually be checked in the histograms of
Sec. IV.

The 1=� mechanism in the random generation can arti-
ficially suppress the asymmetry irrespective of the size of
the Sivers function itself. In fact, let us consider the 12<
M< 40 GeV range, which has a lower event rate; we
distinguish four different slices of phase space:
(i) x
-8
1; x2 > 0:1: this part covers 99% of the phase
space, but it contains only 0.5% of the total number
of events; it corresponds to higher M values (M>
20 GeV) and it is suppressed by the 1=M2 mecha-
nism; moreover, in F�x1; x2� of Eq. (8) the annihi-
lating antiquark with flavor �f is picked up from the
sea distribution of one of the two protons at large x;
(ii) x
1; x2 < 0:1: this part covers <1% of the phase
space, but it contains 20% of the events; in fact, it
corresponds to lower M values (emphasized by the
1=M2 mechanism) and F�x1; x2� is dominated by
the sea distributions in both protons, which are
enhanced at small x; however, the SSA is sup-
pressed because f?1T=f1 ! 0 for x2 ! 0;
(iii) x
1 > 0:1; x2 < 0:1: this part covers again <1% of
the phase space, but it contains 40% of the events; it
is less favored by the 1=M2 mechanism with re-
spect to the previous case, butF�x1; x2� contains the
term f1�x1; f=p�f1�x2; �f=p�, which is dominant in
this slice of phase space; however, for the very
same reason the SSA is suppressed because it is
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approximately driven by f?1T�x2�=f1�x2; �f=p� ! 0
for x2 ! 0;
(iv) x
1 < 0:1; x2 > 0:1: all previous arguments apply
also here upon the x1 $ x2 exchange but for the
SSA, which is driven by f?1T�x2�=f1�x2; f=p� and,
therefore, it is not suppressed for x2 > 0:1.
In summary, irrespective of the size of the Sivers function,
the magnitude of the corresponding SSA is suppressed in
all parts of phase space but in the region x1 < 0:1; x2 > 0:1,
dominated by the sea partons of the unpolarized proton and
by the valence partons of the polarized one. Elsewhere, the
1=M2 mechanism induces a dominance of the sea partons,
which acts as an effective dilution factor leading to a waste
of 	50% of the total number of events.

B. Total cross section and event rates

Using Eq. (8) with the parametrization for the parton
distributions from Ref. [15], from our Monte Carlo we
deduce a total cross section �pp � 0:1 nb for the pp!
����X process at

���
s
p
� 200 GeV and with invariant

masses in the range 12<M< 40 GeV, while we get
�pp � 1:2 nb for the lower 4<M< 9 GeV range. The
results are quite sensitive to the parametrization of the
parton distributions. We have recalculated the total cross
sections with the more recent next-to-next-to-leading-
order (NNLO) analysis of Ref. [56] and we get 0.4 and
7 nb, respectively. When changing parametrizations and,
consequently, normalizations, we had to readjust the K
factor accordingly; in order to reproduce the measured
cross section at

���
s
p
� 16 GeV [14], we had to reduce it

by 50%. It means that nowK � 1 and the QCD corrections
are mostly contained in the NNLO parametrization of the
parton distributions. The sensitivity (and the related uncer-
tainty) of this analysis to the input are sizable, but do not
alter the order of magnitude of the result. Since our goal is
to estimate event rates by multiplying �pp with a given
luminosity, we are confident that the results are realistic
and reliable. For RHIC, a luminosity of 1032 cm�2 s�1 or
higher is foreseen [48]. This means, for example, that at
least 250 000 Drell-Yan events/month (and up to 7 times
more) could be collected with this luminosity and muon
pair invariant masses in the 4<M< 9 GeV range. A list
of the combinations here explored is given in Table II (for a
more comprehensive analysis see Ref. [57]).
II. Total cross sections for Drell-Yan pp collisions at
0 GeV and for various invariant masses of the muon

the given luminosity 1032 cm�2 s�1.

om M (GeV) �pp (nb) Rates (events/month)

] 4–9 1.2 2:5� 105

] 12–40 0.1 2:5� 104

] 4–9 7 1:5� 106

] 12–40 0.4 105
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It is also interesting to compare with the antiproton-
proton Drell-Yan collision. In general, we expect that the
lower the hxi, the more the cross sections are dominated by
sea parton distributions, the closer the ratio � �pp=�pp
approaches 1. By updating our previous results [42] at
the present energy and vice versa, we get

� �pp

�pp
�
���
s
p
� 200; 4<M< 9� � 2

� �pp

�pp
�
���
s
p
� 200; 12<M< 40� � 4

� �pp

�pp
�
���
s
p
� 14; 4<M< 9� � 40:

(18)

There are two ways to lower the range of x or, equivalently,
�: decreasing the invariant mass M, or increasing the c.m.
energy

���
s
p

. Indeed, the results show that for this trend the
ratio approaches 1. When increasing

���
s
p

at a given M
range, for example, the depletion of the ratio implies also
that �pp increases. This curious result of an increasing
cross section with energy can be explained by recalling that
a shift to smaller x1; x2; makes F�x1; x2� in Eq. (8) domi-
nated by the sea parton distributions, which are large at
very small parton momenta.

C. Single-spin asymmetries

In Fig. 3, the sample of 20 000 Drell-Yan events for the
pp" ! ����X reaction at

���
s
p
� 200 GeV is displayed

for muon invariant mass in the 12<M< 40 GeV range.
Results are reported in x2 bins excluding the upper bound-
ary x2 > 0:8, which is scarcely or not at all populated,
according to the upper band in Fig. 2. Events are accumu-
lated according to Eq. (17) based on the parametrization
(15) of the Sivers function; consequently, the transverse-
momentum distribution is constrained by 1< qT <
3 GeV=c. In the upper panel, for each bin two groups of
events are stored, one corresponding to positive values of
sin����S2

� in Eq. (10) (represented by the darker histo-
gram), and one for negative values (superimposed lighter
histogram). In the lower panel, the asymmetry �U�
D�=�U�D� is shown between the positive �U� and nega-
tive �D� values. Average values of the asymmetry and
(statistical) error bars are obtained by 10 independent
repetitions of the simulation. The upward triangles indicate
the results assuming a positive normalization for the quark
u in Eq. (15), which already takes into account the pre-
dicted sign change of f?1T from Drell-Yan to SIDIS [31]
with respect to recent parametrizations of SIDIS data [36–
38]. For the sake of comparison, the squares illustrate the
opposite results that one would obtain ignoring such a
prediction.

From the upper panel of Fig. 3, we deduce that the
assumed elementary �qq! �� mechanism indeed popu-
lates the phase space for the lowest possible �, with more
than 50% of the events in the 0< x2 < 0:1 bin, leaving a
-9
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FIG. 4 (color online). Same as in Fig. 3 but considering
100 000 events using the parametrization of Eq. (12) and 0:1<
qT < 2 GeV=c (see text). Lower panel: upward triangles for
Nu > 0 in Eq. (14), squares for Nu < 0.
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FIG. 3 (color online). The sample of 20 000 Drell-Yan events
for the pp" ! ����X reaction at

���
s
p
� 200 GeV, 12<M<

40 GeV, and 1< qT < 3 GeV=c, using the parametrization of
Eq. (15) (see text). Upper panel: for each bin in the parton
momentum x2 inside p", the darker histogram collects events
with positive sin����S2

� �U�, the superimposed lighter histo-
gram collects the negative ones �D�. Lower panel: the asymme-
try �U�D�=�U�D�; upward triangles for Nu > 0 in Eq. (15)
correspond to a sign change in the Sivers function from SIDIS to
Drell-Yan processes; squares for Nu < 0. Statistical error bars
from 10 independent repetitions of the simulation. Continuous
lines are drawn to guide the eye.
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	1=x2 distribution outside. In the lower panel, correspond-
ingly, the error bars are small for x2 < 0:5 and allow for a
clean reconstruction of the asymmetry shape and, more
importantly, for a conclusive test of the predicted sign
change in f?1T . With the considered sample of 20 000
events, the same conclusion is not possible using the
parametrization of Eq. (12), because the asymmetry pro-
duced by Eq. (14) is too small. More quantitatively, half of
the displayed error bar represents the variance �A�x2� for
the asymmetry A � �U�D�=�U�D� in each x2 bin. The
results in the lower panel of Fig. 3 can be approximated by
the relation �A � 0:05x2. The asymmetry is statistically
not compatible with zero if A�x2�> �A � 0:05x2 for the
considered x2 range. With 20 000 events, this condition is
fulfilled only by the parametrization (15), but not by the
one in Eq. (12). Finally, from Table II we deduce that a
034018
hypothetical experiment in these kinematic conditions
should run from one week to, at most, almost one month
in order to reach the indicated statistical error bars.

In Fig. 4, we consider the same kinematic conditions of
the previous Fig. 3 but with a sample of 100 000 events,
which would require at least one month of running time, or
four months in the most disfavored conditions. We employ
the parametrization of Eq. (12). We recall that the qT
distribution is now integrated in the range 0:1< qT <
2 GeV=c with a resulting lower hq2

Ti (see Sec. III A).
Notations in the figure are the same as in Fig. 3. In
particular, in the lower panel upward triangles identify
the results from Eq. (14) withNu > 0 from Table I; squared
points refer to the opposite choice. Therefore, we conclude
that the parametrization (12) demands for a much higher
statistics in order to get a clear nonvanishing shape, be-
cause it produces an overall smaller asymmetry. Still, a
definite answer is possible about the sign change prediction
of f?1T if the statistical sample meets the required
conditions.

In Fig. 5, we show just the histogram of collected
100 000 events in the same conditions and notations as
-10
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FIG. 6 (color online). The asymmetry �U�D�=�U�D� cor-
responding to the histograms of Fig. 5, where U identifies the
darker histograms and D the superimposed lighter ones (see
text). Upward triangles for the parametrization of Eq. (15) with
Nu > 0; squares for Nu < 0. Open upward triangles for the
parametrization of Eq. (12) with Nu > 0; open squares for Nu <
0.
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before but for the lower 4<M< 9 GeV range. From
Table II, we note that the necessary running time is 2–3
times shorter than the one for collecting 20 000 events at
the higher 12<M< 40 GeV range, depending on the
parametrization chosen for f1. Again, this is due to the
already mentioned 1=� factor of the elementary �qq! ��

mechanism, which privileges lower �. For the very same
reason, an even larger portion of events (77%) is contained
in the first 0< x2 < 0:1 bin, while the remaining 23% is
distributed for x2 > 0:1 approximately as 1=x2.

In Fig. 6, we plot the spin asymmetries corresponding to
the histograms of Fig. 5. Notations are the following.
Upward triangles correspond to the histograms in the left
panel of Fig. 5, i.e. to the parametrization of Eq. (15); the
flavor-dependent normalization is Nu > 0, according to the
properties of f?1T as it is extracted from SIDIS data. The
corresponding choiceNu < 0 is represented by the squares.
The open upward triangles and squares show the results for
the other parametrization Eq. (12). The accumulation of
events for very low x2 values, which is evident in Fig. 5,
here reflects in very tiny error bars for the same bins,
allowing one to clearly distinguish the two different pa-
rametrizations for 0< x2 & 0:5. In this range, a measure-
ment of the Sivers effect for invariant masses as low as
4<M< 9 GeV allows one to reduce the theoretical un-
certainties in a very few days of running time (from 2 to 12,
depending on the parametrization of the unpolarized parton
distributions). Moreover, and most important, in the same
x2 range the statistical accuracy is sufficient to directly test
the predicted sign change of f?1T [31], irrespective of the
uncertainty in the theoretical input.

For 0:5 & x2, the width of the error bars does not always
allow for such analysis, since the variance grows approxi-
0
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10000

15000

20000

25000

30000

35000

40000

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FIG. 5 (color online). The sample of 100 000 Drell-Yan events
for the same reaction in the same conditions and notations as in
Fig. 3 but for 4<M< 9 GeV. Left panel: parametrization of
Eq. (15); right panel: parametrization of Eq. (12) (see text).
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mately as �A � 0:04x2. We already noted that for 12<
M< 40 GeV approximately half of the 20 000 events lie in
the valence range 0:1< x2 < 0:7 (see the upper panel in
Fig. 3), while for 4<M< 9 GeV 23 000 events out of
100 000 are found in the same range (see Fig. 5). If we
assume that the size of the error bars is proportional to
1=

����
N
p

, with N the number of events, then, in the valence
region for a given parametrization, the size of the error bars
for the higher M range should approximately scale as�������������

23=10
p

� 1:5 with respect to the one for the lower M
range. It is easy to check from the upward triangles in
Figs. 3 and 6 that for the parametrization (15) indeed this
approximate relation is verified. But from Table II, we
deduce also that, in the same running time necessary to
collect 20 000 events at 12<M< 40 GeV, it is possible to
collect 200 000–300 000 events at 4<M< 9 GeV, de-
pending on the chosen parametrization. In the valence
range, this means 46 000–70 000 events (the 23% of the
total, as before), which induces a reduction factor 2–2:5 in
the size of the error bars. Therefore, we can put a sort of
‘‘normalization’’ for the approximate behavior of the size
of the variance, by guessing that

�A�x2� � 0:05x2

��������������
20 000

N

s
12<M< 40 GeV

0:1< x2 < 0:7

(19)

�A�x2� � 0:04x2

�����������������
100 000

N

s
4<M< 9 GeV

0:1< x2 < 0:7:

(20)
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For the lowest 0< x2 < 0:1 bin the coefficient is 0.008 and
0.004, respectively, and the scale factor in the size of the
error bars gets amplified.

In Fig. 7, we show a finer binning of the range 0< x2 <
0:2 for the asymmetry obtained with the parametrization
(12) for 100 000 events in the 4<M< 9 GeV case. It is a
closer view of the very tiny error bars of open upward
triangles and squares in Fig. 6. This is a peculiar feature of
this parametrization, which emphasizes the role of very
low x2 through the parameters in Table I, as discussed in
Sec. III A.
V. CONCLUSIONS

In this paper, we have concentrated on the investigation
of the spin structure of the proton using the single-
polarized Drell-Yan process pp" ! ����X. At leading
twist, the cross section contains several terms that lead to
an asymmetric distribution of the final muon pair in its
azimuthal angle � with respect to the production plane. In
previous papers [42,46], we considered those terms involv-
ing the transversity distribution h1 and the Boer-Mulders
function h?1 [41], which is believed to be responsible for
0
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
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−0.02
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0.02

0.04

0.06

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

FIG. 7 (color online). The asymmetry corresponding to the
open upward triangles and open squares in Fig. 6 is shown in
the 0< x2 < 0:2 range with a finer binning.
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the very well-known violation of the Lam-Tung sum rule in
the unpolarized Drell-Yan data [12–14]. There, we set up a
Monte Carlo to numerically simulate (polarized)
antiproton-proton Drell-Yan collisions to study the best
kinematic conditions for the HESR at GSI [43,44] that
allow one to extract unambiguous information on the target
parton distributions.

Here, we have followed the same approach to isolate the
contribution of the term involving the Sivers function f?1T ,
a ‘‘naive T-odd’’ TMD partonic density that describes how
the distribution of unpolarized quarks is distorted by the
transverse polarization of the parent hadron. As such, f?1T
contains unsuppressed information on the orbital motion of
hidden confined partons; better, it contains information on
their spatial distribution [29], and it offers a natural link
between microscopic properties of confined elementary
constituents and hadronic measurable quantities, such as
the nucleon anomalous magnetic moment [30].
Factorization theorems for TMD distribution and fragmen-
tation functions indicate that f?1T is universal modulo a sign
change (when switching from the SIDIS to the Drell-Yan
process), due to a peculiar feature under the time-reversal
operation of the gauge link operator required to make its
definition color-gauge invariant [31].

Recently, very precise data for SSA involving f?1T (the
Sivers effect) have been obtained for the SIDIS process on
transversely polarized protons [8]. This allowed for more
realistic parametrizations of f?1T [36–38], that have been
used then to make predictions for SSA in proton-proton
collisions at RHIC (for a comparison among the various
approaches, see also Ref. [40]).

Here, we have numerically simulated the Sivers effect
for the pp" ! ����X process at

���
s
p
� 200 GeV includ-

ing the foreseen upgrade in the RHIC luminosity (RHIC
II). The goal is to explore the sensitivity of the simulated
asymmetry to different input parametrizations, as well as to
directly verify, within the reached statistical accuracy, the
predicted sign change in the universality properties of the
Sivers function. Therefore, we have employed the parame-
trization of Ref. [36] and a new high-energy parametriza-
tion of f?1T , whose flavor-dependent normalization and pT
distribution are constrained by recent RHIC data on SSA
for the pp" ! �X process at

���
s
p
� 200 GeV [4]. The main

difference is that the former, fitted to the SIDIS data of
Ref. [8], displays an emphasized relative importance of the
unfavored d quark, and it gives an average transverse
momentum hqTi of the lepton pair much lower than the
latter. Consistently, we have built spin asymmetries by
integrating the qT distribution with adequate cutoffs,
namely 0:1< qT < 2 GeV=c for the former parametriza-
tion, and 1< qT < 3 GeV=c for the latter. Results have
been presented as binned in the parton momenta x2 of the
polarized proton, i.e. by integrating also upon the antipar-
ton partner momenta x1 and the zenithal muon pair distri-
bution � with no further cuts.
-12
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Sorted events are divided in two groups, corresponding
to opposite azimuthal orientations of the muon pair with
respect to the reaction plane (conventionally indicated with
U and D), and the asymmetry �U�D�=�U�D� has been
considered. Two different samples of 20 000 and 100 000
events have been selected, and statistical errors for �U�
D�=�U�D� have been obtained by making 10 indepen-
dent repetitions of the simulation for each individual case
and, then, calculating for each x2 bin the average asym-
metry and the variance. We have considered two different
ranges of muon pair invariant mass, namely 4<M<
9 GeV and 12<M< 40 GeV. In this way, we avoid over-
laps with the resonance regions of the �cc and �bb quark-
onium systems, and we can safely assume that the
elementary annihilation proceeds through the �qq! ��

mechanism. In particular, the Monte Carlo is based on
the corresponding leading-twist cross section. In the higher
mass range, this theoretical analysis appears well estab-
lished, since higher twists may be suppressed as Mp=M,
whereMp is the proton mass. More questionable is the case
of the lowerM range, but this uncertainty can be traded for
the much higher statistics that can be reached because of
the 1=M2 contribution of the �� propagator. Indeed, ap-
proximately 95% of the events fall in the 4<M< 9 GeV
range with a significant reduction of the running time
necessary to reach a predefined statistical accuracy.

More generally, a very small portion of the phase space,
corresponding to the lowest possible values of � � x1x2 �
M2=s, contains most of the events, also because of the high
c.m. square energy s; typically, hx1=2i 	 0:01. This is em-
phasized by the fact that in pp collisions at least one of the
two annihilating partons comes from the proton sea distri-
bution, which is peaked at very low x values. The impor-
tance of parton momenta below the valence region is
potentially relevant to the theoretical models. In our case,
it turns out that the parametrization of Ref. [36] gives small
asymmetries because the emphasized unfavored �dd anni-
hilation is statistically suppressed. As a consequence, in
the 12<M< 40 GeV range 20 000 events are not suffi-
cient to produce a Sivers effect that is not statistically
consistent with zero. On the contrary, with the high-energy
parametrization described in this paper this analysis is
034018
possible in the range 0< x2 & 0:5, and a direct test of
the ‘‘universal’’ sign change of f?1T can be unambiguously
performed.

A more favorable situation is encountered with lower M
values, say in the 4<M< 9 GeV range. The much higher
statistics significantly reduces the error bars and allows for
a very short running time, typically as short as a few days to
collect the 100 000 events simulated here at the foreseen
luminosity of 1032 cm�2 s�1, irrespectively of the choice
of input parametrizations for f?1T . Moreover, we observe
that in the 0< x2 & 0:5 range the two choices give two
clearly distinct asymmetries, and for each case the results
with opposite signs in the Sivers function can be unambig-
uously separated. Remarkably, we stress that this analysis
holds also at very low x2 values, typically as low as 0.01,
which are relevant at RHIC.

In conclusion, at the foreseen luminosity of
1032 cm�2 s�1 (RHIC II) and with a dilution factor 0.5,
in a few days RHIC can collect 100 000 Drell-Yan events
for the process pp" ! ����X at

���
s
p
� 200 GeV and

with muon pair invariant masses in the 4<M< 9 GeV
range. From the measured Sivers effect, it should be pos-
sible to extract information on the x structure of the Sivers
function in the 0< x & 0:5 range, particularly also at very
low x	 0:01, as well as to test its universal sign change
predicted in Ref. [31]. At higher M values, like 12<M<
40 GeV, the situation is theoretically more favorable be-
cause the higher twists are suppressed as 1=M. However,
the lower density in the phase space makes the running
time much longer. It is still possible to perform the pre-
vious analysis with 100 000 events and to come to the same
conclusions, but at the price of taking data for some
months. With a reduced sample, e.g. of 20 000 events,
this time is shortened to a few weeks, but our analysis
was possible for only one of the chosen parametrizations,
the other one giving results compatible with zero.
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