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Dispersive approach to the axial anomaly and nonrenormalization theorem
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Anomalous triangle graphs for the divergence of the axial-vector current are studied using the
dispersive approach generalized for the case of higher orders of perturbation theory. The validity of
this procedure is proved up to the two-loop level. By direct calculation in the framework of dispersive
approach we have obtained that the two-loop axial-vector-vector (AVV) amplitude is equal to zero.
According to the Vainshtein’s theorem, the transversal part of the anomalous triangle is not renormalized
in the chiral limit. We generalize this theorem for the case of finite fermion mass in the triangle loop.
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I. INTRODUCTION

There is a class of electroweak contributions to the muon
g� 2 containing a fermion triangle along with a virtual
photon and Z boson as shown at Fig. 1 that is discussed in
[1–6]. For the determination of the muon anomalous elec-
tromagnetic moment we are interested in the Z� ! ��

transition in the presence of the external magnetic field
to first order in this field. In this approximation one may
consider the current j� as a source of a soft photon with
polarization vector e��k� and momentum k! 0. In such
kinematics, projection of the amplitude on e��k� contains
only two Lorentz-invariant structures

T���p2; m2� � T����k; p�e��k�jk!0

� wT�p
2; m2���p2 ~f�� � p�p

� ~f��

� p�p� ~f��� � wL�p2; m2�p�p� ~f��;

~f�� �
1
2"����f

��; f�� � k�e� � k�e�;

(1.1)

and can be viewed as a correlator of the axial and vector
currents in the external electromagnetic field with strength
tensor f��. The same expression appears while analyzing
the dominant contribution of light-by-light scattering to
g� 2.

Both structureswT andwL are transversal with respect to
vector current, but only the first structure is transversal
with respect to axial current while the second is longitudi-
nal. According to the classical papers by Rosenberg [7],
Adler [8], Bell and Jackiw [9] at the one-loop level the
invariant functions wL;T satisfy the relation

w�1�loop�
L �p2; m2� � 2w�1�loop�

T �p2; m2�: (1.2)

It was shown by A. I. Vainshtein [10] that there is the
symmetry of the triangle amplitude T��� under permuta-
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tion �$ � in the chiral limit. This symmetry preserves the
relation betweenwL andwT (1.2) for the casem � 0 in any
order of perturbation theory.

Moreover, according to the Adler-Bardeen theorem [11]
the anomalous longitudinal part of the triangle is not
renormalized in the chiral limit. It is worthy to note that
this statement implies an operator relation, while the ma-
trix elements get the corrections [12] due to anomalous
dimension of axial current. At the same time, the validity of
Adler-Bardeen theorem at the operator level allows to
express [13] these three-loop corrections [12] in terms of
earlier two-loop and even one-loop calculations of anoma-
lous divergencies.

To apply the Adler-Bardeen theorem to the problem in
question, one should recall that the axial anomaly is ex-
pressed only through the longitudinal part wL [8,9]

p�T���p2; m2 � 0� � p2wL�p2; m2 � 0�p� ~f�� � p� ~f��;

(1.3)

and its nonrenormalization leads to the fact that the one-
loop result w�1�loop�

L � 1=p2 does not get the perturbative
µ
FIG. 1. Effective Z��� coupling contributing to aEW� .
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FIG. 2. Anomalous triangle diagram.
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corrections from gluon exchanges in the higher orders [14].
Nonrenormalization of wL implies the same for wT :

wL�p
2; m2 � 0� � 2wT�p

2; m2 � 0�;

w�>1�loop�
L;T �p2; m2 � 0� � 0:

(1.4)

This nonrenormalization, in contrast with longitudinal
part, holds on only perturbatively and, seemingly, is not
directly related to the phenomenon of anomaly. More
general nonrenormalization theorems in perturbative
QCD were proved in [15].

It is very interesting to look at the phenomenon of
anomaly and perturbative nonrenormalizability of wL;T
using the dispersive approach [16]. In framework of this
approach anomaly becomes quite simple and represents
itself just as an obvious subtraction constant. As a result,
the two-photon matrix element of the axial-vector current
acquires a pole in the chiral limit so the anomaly appears as
a pure infrared effect. Detailed investigation of the one-
loop AVV triangle graph within such approach has been
performed earlier [17].

The language of dispersion relations allows us to extract
some new specific properties of the higher order correc-
tions to fermion triangles. Relation (1.2). in the context of
dispersive approach. emerges due to the universality of
anomaly when it appears in the dispersion relation in the
axial and vector channels. This resembles the mentioned
symmetry with respect to the permutation �$ �, ob-
served by A. I. Vainshtein. At the same time, here this
relation is entirely related to the anomaly phenomenon.

By direct analytical calculations of relevant form factors
in two-loop approximation taking into account symmetry
properties of the amplitude we obtained that the full two-
loop AVV amplitude is equal to zero for arbitrary fermion
masses. Nonanomalous Ward identity for imaginary parts
of form factors has been proven, which provides the cor-
rectness of dispersive approach usage at least in two-loop
approximation. We also make a suggestion that the dis-
persive approach is applicable in any order of perturbation
theory. Together with Adler-Bardeen theorem, immediate
consequence of such suggestion is that the Vainshtein’s
theorem is correct for nonzero fermion mass.

The paper is organized as follows. In Sec. II the dis-
persive approach to the anomaly is briefly described for
particular configurations of the external momenta in the
standard one-loop triangle graph following to [17]. The
Born approximation to Vainshtein theorem in the frame-
work of dispersive approach is interpreted as equality of
two expressions for axial anomaly and valid in the case of
finite fermion mass. In Sec. III the generalization of dis-
persion approach to the axial anomaly for higher orders of
perturbation is suggested. The two-loop radiative correc-
tions to anomalous triangle with arbitrary fermion masses
for the same kinematical configurations are considered in
the context of such an approach. We found that all two-
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loop form factors are zero, justifying the postulated gen-
eralization of dispersive approach and Vainshtein’s theo-
rem. Section IV contains some concluding remarks and
discussion of the higher orders of perturbation theory and
nonperturbative effects. The appendix contains some de-
tails of the two-loop calculations.
II. AXIAL ANOMALY AND
NONRENORMALIZATION THEOREM IN THE
FRAMEWORK OF DISPERSIVE APPROACH

We use the standard tensor representation of the VVA
triangle graph amplitude (Fig. 2) due originally to
Rosenberg [7]

T����k; p� � "����k
�F1 � "����p

�F2

� k�"����k�p�F3 � p�"����k�p�F4

� k�"����k
�p�F5 � p�"����k

�p�F6:

(2.1)

Here Fj � Fj�q
2; k2; p2; m2�; j � 1; :::; 6 are the

Lorentz-invariant form factors. The Bose symmetry of
the amplitude T����k; p� � T����p; k� is equivalent to

F1�k; p� � �F2�p; k�; F3�k; p� � �F6�p; k�;

F4�k; p� � �F5�p; k�:
(2.2)

The gauge invariance leads to the vector Ward identities
k�T��� � 0; p�T��� � 0 which in terms of form factors
-2
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gives

F1 � �kp�F3 � p2F4; F2 � k2F5 � �kp�F6: (2.3)

In one-loop approximation all form factors Fj may be
expressed in Feynman-parametric form. For relevant form
factors we have
034017
F3�k; p� � �
1

�2 I11�k; p�;

F4�k; p� �
1

�2 �I20�k; p� � I10�k; p�	;

(2.4)

where
Imn�k; p� �
Z 1

0
dx
Z 1�x

0
dy

xmyn

y�1� y�k2 � x�1� x�p2 � 2xy�kp� �m2 : (2.5)
Here Nc � 1 for simplicity. These integrals have the fol-
lowing symmetry properties

Imn�k; p� � Inm�p; k�: (2.6)

It is useful to observe that (2.2) together with (2.3) and (2.6)
implies

F6�k; p� � �F3�k; p�: (2.7)

It is well-known from the classic Adler paper [8] that the
accurate calculation of loop-momentum integrals at the
one-loop level leads to the anomalous axial-vector Ward
identity

q�T����k; p� � 2mT���k; p� �
1

2�2 "����k
�p�: (2.8)

The pseudotensor T�� may be written as

T���k; p� � G�k; p�"����k
�p�: (2.9)

In terms of form factors (2.8) reads

F2 � F1 � 2mG�
1

2�2 : (2.10)

According to the Adler-Bardeen theorem the axial
anomaly occurs only at one-loop level. So, relation (2.10)
for full form factors remains the same

F�tot�2 � F�tot�1 � 2mG�tot� �
1

2�2 : (2.11)

In the framework of dispersive approach we deal with
the imaginary parts of relevant form factors. We start with
the kinematical configuration of external momenta k2 �
0; p2 � 0 for particular case where q2 > 4m2 and p2 <
4m2: Then there is a cut for q2 2 �4m2;1� while there is
no such singularity with respect to variable p2. For the
form factors Fj; j � 1; . . . ; 6 and G, in any order of per-
turbation theory, one may write unsubtracted dispersion
relations with respect to q2

Fj�q2;p2; m2� �
1

�

Z 1
4m2

AAj �t;p
2; m2�

t� q2 dt;

G�q2;p2; m2� �
1

�

Z 1
4m2

BA�t;p2; m2�

t� q2 dt:

(2.12)
We use the notations Fj�q
2;p2; m2� 
 Fj�q

2; k2 �

0; p2; m2� and G�q2;p2; m2� 
 G�q2; k2 � 0; p2; m2� be-
low in the current section. The AAj and BA are the corre-
sponding imaginary parts, implying the cut with respect to
variable q2 � t; for example

AAj �q
2;p2;m2� �

Fj�q2� i";p2;m2��Fj�q2� i";p2;m2�

2i
:

The imaginary parts of the relevant form factors satisfy
nonanomalous Ward identities, because they do not contain
the linear divergences in the momentum integrals

�p2 � t�AA3 �t;p
2; m2� � p2AA4 �t;p

2; m2�

� 2mBA�t;p2; m2�: (2.13)

Using (2.12) and (2.13) one gets finally

F2�q2;p2; m2� � F1�q2;p2; m2� � 2mG�q2;p2; m2�

�
1

�

Z 1
4m2

AA3 �t;p
2; m2�dt: (2.14)

Comparing with (2.10) and taking into account (2.7), we
find that the occurrence of the axial anomaly at one-loop
level is equivalent to a ‘‘sum rule’’ [17]

Z 1
4m2

AA3 �t;p
2; m2�dt �

1

2�
: (2.15)

It is easy to evaluate the AA3 by taking the imaginary part
of the corresponding integral in (2.4) [17]

AA3 �q
2;p2; m2� �

1

2�
1

�q2 � p2�2

�
�p2R� 2m2 ln

1� R
1� R

�
;

R �
�
1�

4m2

q2

�
1=2
: (2.16)

By integration of this expression over q2 one can check the
relation (2.15).

In the preceding discussion we have employed disper-
sion relations with respect to variable q2 as these were
appropriate for considered kinematical region. Let us now
discuss another version of dispersive calculation of the
anomaly using the cuts with respect to p2. For this purpose
-3



R. S. PASECHNIK AND O. V. TERYAEV PHYSICAL REVIEW D 73, 034017 (2006)
we will consider another kinematical region p2 >
4m2; q2 < 4m2. Writing now instead of (2.12) unsubtracted
dispersion relations with respect to variable p2 � t for Fj
and G, we obtain

F2�q
2;p2; m2� � F1�q

2;p2; m2� � 2mG�q2;p2; m2�

�
1

�

Z 1
4m2
�AV4 �q

2; t; m2� � AV3 �q
2; t; m2�	dt:

The AVj and BV are the corresponding imaginary parts,
implying the cut with respect to variable p2 � t

AVj �q
2;p2;m2� �

Fj�q2;p2� i";m2��Fj�q2;p2� i";m2�

2i
:

Thus, to recover the standard one-loop anomaly (2.10)
taking into account (2.7) one has to show that

Z 1
4m2
�AV4 �q

2; t;m2� � AV3 �q
2; t;m2�	dt �

1

2�
; (2.17)

for an arbitrary m and for any considered value of q2:
A straightforward calculation at one-loop level using

(2.4) gives a result [17]

AV3 �q
2;p2; m2� �

1

2�
1

�p2 � q2�2

�
p2S� 2m2 ln

1� S
1� S

�
;

(2.18)

AV4 �q
2;p2; m2� �

1

2�
1

p2 � q2 S; S �
�
1�

4m2

p2

�
1=2
:

(2.19)

It was observed [17] that the integrands AV4 �q
2;p2; m2� �

AV3 �q
2;p2; m2� occurring in the sum rule (2.17) at one-loop

level are equal to the expression for AA3 �q
2;p2; m2� from

sum rule (2.15) with q2 and p2 being interchanged. As a
result we have

AV4 �q
2;p2; m2� � AA3 �p

2; q2; m2� � AV3 �q
2;p2; m2�:

(2.20)

Let us write the unsubtracted dispersion relations with
respect to q2 � t of the both sides of (2.20):

1

�

Z 1
4m2

AV4 �q
2; t;m2�

t� p2 dt �
1

�

Z 1
4m2

AA3 �t; q
2; m2�

t� p2 dt�
1

�

�
Z 1

4m2

AV3 �q
2; t; m2�

t� p2 dt:
034017
One can immediately get from this expression that

F4�q2;p2; m2� � F3�p2; q2;m2� � F3�q2;p2;m2�:

(2.21)

In the case with one soft k! 0 and one virtual photons
p2 � 0 we have q2 � �k� p�2 ’ p2. For this kinematics
one can obtain the expressions for the longitudinal and
transversal parts of amplitude T�� (1.1) in terms of
Rosenberg’s form factors

wL�p
2; m2� � F4�p

2;p2; m2�;

wT�p2; m2� � F4�p2;p2; m2� � F3�p2;p2; m2�:
(2.22)

The relation (1.2) between wT and wL in terms of form
factors

F4�p
2;p2; m2� � 2F3�p

2;p2;m2� (2.23)

immediately follows from (2.21) with q2 � p2.
In the framework of Vainshtein’s approach, the axial

anomaly is expressed only through the longitudinal part
of triangle wL in the chiral limit (1.3). Within the disper-
sive approach, we have two dispersive relations for axial
anomaly (2.15) and (2.17), including imaginary parts of
both structures wL and wT for arbitrary mass.

III. CALCULATION OF TWO-LOOP AXIAL
ANOMALY AND CHECK OF DISPERSIVE

APPROACH AND VAINSHTEIN’S THEOREM

We propose the generalization of dispersion approach to
the axial anomaly for any order of perturbation theory. We
suggest that the imaginary parts of the relevant form fac-
tors satisfy nonanomalous Ward identities for higher order
of perturbation theory as well. This implies that anomaly
will be also given by corresponding finite subtractions.

To check that, we will calculate the triangle diagram in
two-loop approximation. The results for QED and QCD
corrections differ only by the obvious color factor. We
consider the full amplitude of anomalous triangles
T�2�loop�
��� with all possible types of radiative corrections

shown at Fig. 3.
At first we construct four possible scalars from ampli-

tude T��� (2.1) in the particular kinematics k2 � 0; p2 �

0:

S1 
 T���k�"	��
k	p
 � �2�kp�2F2;

S2 
 T���p
�"	��
k	p
 � 2�kp�2F1;

S3 
 T���"���
k
 � 6�kp�F2 � 2�kp�2F4;

S4 
 T���"
���
p


� 6�kp�F1 � 2�kp�2F5 � 2�kp�2F3 � 6p2F2:

(3.1)

Together with vector Ward identities for form factors in the
-4



FIG. 3. Two-loop triangle diagrams.
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same kinematics

F1 � �kp�F3 � p
2F4; F2 � �kp�F6: (3.2)

We have the closed system of equations for all form factors
Fj � Fj�q

2; k2 � 0; p2; m2�; j � 1; . . . ; 6. Its solution is

F1 �
S2

2�kp�2
;

F2 � �
S1

2�kp�2
;

F3 �
�kp�S2 � p2�kp�S3 � 3p2S1

2�kp�4
;

F4 �
�kp�S3 � 3S1

2�kp�3
;

F5 �
S4�kp� � 2S2 � p

2S3

2�kp�3
;

F6 � �
S1

2�kp�3
:

(3.3)

In the framework of dispersive approach we are inter-
ested in calculation of imaginary parts of corresponding
form factors that is AA�2�loop�

j �q2; k2 � 0; p2; m2�, so let us
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calculate the imaginary parts of scalars Sn � Sn�q2; k2 �
0; p2; m2�; n � 1; . . . ; 4, for example, with respect to q2

�A
n �q2; k2 � 0; p2; m2� �

1

2i
�Sn�q2 � i"; k2 � 0; p2; m2�

� Sn�q2 � i"; k2 � 0; p2; m2�	:

We use the Pauli-Villars regularization with the parame-
ter M. After integration over loop momenta we have ob-
tained the expressions for �A�2�loop�

n �q2; k2 � 0; p2; m2� in
the form of Feynman-parametric integrals (see Appendix).
We drop all the terms with the imaginary parts with respect
to q2 which do not survive in the limit M ! 1:

The next step is to calculate the imaginary part of
Feynman-parametric integrals and to get the expressions
for �A�2�loop�

n �q2; k2 � 0; p2; m2� in explicit form before
taking off the regularization. We get the imaginary part
of each integrand, and then we integrate the �-functions
with complicated arguments analytically step by step.
After the second or third integration all Feynman-
parametric integrals in �A�2�loop�

n �q2; k2 � 0; p2; m2�
turned to zero, so

�A�2�loop�
n �q2; k2 � 0; p2; m2� 
 0; n � 1; . . . ; 4:

(3.4)
-5
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According to (3.3) we see that the imaginary parts of all
form factors with respect to q2 turned to zero in the con-
sidering kinematics

AA�2�loop�
j �q2; k2 � 0; p2; m2� 
 0; j � 1; . . . ; 6:

(3.5)

As a result the anomaly sum rule (2.15) preserves one-loop
form also at two-loop level.

The investigation of the Vainshtein’s theorem requires
the discontinuities of form factors with the respect to
variable p2 (or k2). Unsubtracted dispersion relations
(2.12) guarantee that all two-loop form factors F�2�loop�

j

are equal to zero

F�2�loop�j �q2; k2 � 0; p2; m2� 
 0; j � 1; :::; 6:

So, the full two-loop AVV amplitude in the considering
kinematics is equal to zero. Consequently, the discontinu-
ities with respect to p2 (or k2) are also zero

AV�2�loop�j �q2; k2 � 0; p2; m2� 
 0; j � 1; :::; 6;

and the anomaly sum rule (2.17) also preserves one-loop
form. This immediately leads to validity of Vainshtein’s
theorem with finite mass at two loops

wL�p2; m2� � 2wT�p2; m2�; w�2�loop�
L;T �p2; m2� � 0:

(3.6)

For completeness we also explicitly checked the correct-
ness of nonanomalous Ward identities for imaginary parts.
To do so we have considered the imaginary part of pseu-
doscalar form factor BA�2�loop��q2; k2; p2; m2� in the par-
ticular kinematics. By direct diagrammatic calculations of
the two-loop amplitude T�2�loop�

�� we found that

BA�2�loop��q2; k2 � 0; p2; m2� 
 0:

So, taking into account (3.5), the relation (2.13) does not
obtain the perturbative corrections in two-loop approxima-
tion.
IV. DISCUSSION

In our work the axial anomaly and Vainshtein’s non-
renormalization theorem are considered in the framework
of dispersive approach. We found that all two-loop contri-
034017
butions to form factors Fj�q
2; k2 � 0; p2; m2� and

G�q2; k2 � 0; p2; m2� are equal to zero for arbitrary fer-
mion mass. It allows us to prove the suggested general-
ization of dispersive approach to axial anomaly and to
expand the Vainshtein’s nonrenormalization theorem for
arbitrary fermion masses in the triangle loop.

Although we thus proved these properties only at two-
loop level, they are likely to be valid at any order of
perturbation theory. Indeed, the validity of nonanomalous
Ward identities for imaginary parts is due to the absence of
the linear divergencies and should hold at all loops. This,
together with Adler-Bardeen theorem, would result in
validity of anomaly sum rules. As soon as the corrections
to their integrands are zero in chiral limit due to
Vainshtein’s theorem, it is rather hard to imagine the
function which is nonzero for finite mass case, while its
integral is still zero. In turn, all other functions should be
also zero due to gauge invariance.

At the same time, the further studies of dispersive ap-
proach at higher orders and (especially) beyond perturba-
tive theory are of most interest. One should note here the
recent calculations in the framework of instanton model
[18] leading to the exponential, rather than power correc-
tions to Vainshtein’s theorem.

It seems that it is the nonlocality of this model, rather
than instanton specifics, that provides this exponential
behavior. In fact, it is analogous to the exponential falloff
of transverse momentum dependent parton distributions
whose coordinate description [19] bears similarity to the
vacuum nonlocal condensates. One should also recall an-
other observation and suggestion of [17], namely, that the
local vacuum condensates do not match the dispersive
description of axial anomaly and that the nonlocal con-
densates may improve the situation.
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APPENDIX

The imaginary parts of invariant scalars (3.1) are given
by the following Feynman-parametric integrals
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�A�2�loop�
1 � Discq2

�
M4

Z 1

0
da

Z 1�a

0
db

Z 1

0
dx
Z 1�x

0
dy�4�2�kp�X1 � p

2X2��x� 2y� 1�	 �M2
Z 1

0
da

Z 1�a

0
db

�
Z 1

0
dx
Z 1�x

0
dy��32y�kp�2 � 16xa�kp�p2 � 16b�kp�2 � 32m2y�kp� � 8�kp�p2 � 8m2yp2 � 16�kp�2

� 16x�kp�2 � 32ya�kp�p2 � 8x�kp�p2 � 32yb�kp�2 � 16xb�kp�2 � 16m2x�kp� � 16y�kp�p2

� 16a�kp�p2�X1 � �4yp4 � 8�kp�p2 � 16yap4 � 8xap4 � 8m2x�kp� � 8ap4 � 16m2p2 � 24m2yp2

� 16m2xp2 � 8y�kp�p2�X2 � �4p4 � 8x�kp�p2 � 4xp4 � 8m2p2 � 4yp4 � 8m2yp2 � 8m2xp2

� 8�kp�p2 � 8y�kp�p2�X3	 �
Z 1

0
da

Z 1�a

0
db

Z 1�a�b

0
dc
Z 1

0
dx
Z 1�x

0
dy��16�kp�2m2�2m2y� 2m2

� p2y� p2 � 2�kp��X2
4 � 32m4y�kp�2X2

5	 �
Z 1

0
da

Z 1�a

0
db

Z 1

0
dx
Z 1�x

0
dy�4m2��8y�kp�2 � 4xa�kp�p2

� 4b�kp�2 � 4m2y�kp� � 2�kp�p2 � 2m2yp2 � 4�kp�2 � 4x�kp�2 � 8ya�kp�p2 � 2x�kp�p2 � 8yb�kp�2

� 4xb�kp�2 � 2m2x�kp� � 4y�kp�p2 � 4a�kp�p2 � 2m2�kp��X1 � 4m2��yp4 � 2�kp�p2 � 4yap4

� 2xap4 � 2m2x�kp� � 2ap4 � 3m2p2 � 4m2yp2 � 3m2xp2 � 2y�kp�p2�X2 � 4m2��p4 � 2x�kp�p2

� xp4 � 2m2p2 � yp4 � 2m2yp2 � 2m2xp2 � 2�kp�p2 � 2y�kp�p2�X3	

�
; (A1)
�A�2�loop�
2 � Discq2

�
M4

Z 1

0
da

Z 1�a

0
db

Z 1

0
dx
Z 1�x

0
dy��4�2�kp�X1 � p2X2��x� 2y� 1�	 �M2

Z 1

0
da

Z 1�a

0
db

�
Z 1

0
dx
Z 1�x

0
dy���32y�kp�2 � 16�kp�2 � 16xa�kp�p2 � 8�kp�p2 � 16m2y�kp� � 16m2x�kp�

� 8x�kp�p2 � 16x�kp�2 � 16xb�kp�2 � 16b�kp�2 � 16y�kp�p2 � 32yb�kp�2 � 32ya�kp�p2

� 8m2p2 � 16m2�kp� � 16a�kp�p2�X1 � ��24y�kp�p2 � 16yap4 � 8�kp�p2 � 8m2xp2 � 8ap4 � 4xp4

� 8m2yp2 � 12yp4 � 8xap4�X2 � ��4p4 � 4xp4 � 8y�kp�p2 � 8m2yp2 � 4yp4 � 8m2xp2 � 8m2p2

� 8x�kp�p2 � 8�kp�p2�X3 � 8m2x�kp�X6	 �
Z 1

0
da

Z 1�a

0
db

Z 1�a�b

0
dc
Z 1

0
dx

�
Z 1�x

0
dy��16�kp�2m2��2�kp�y� 2m2 � 2�kp� � 2m2y� p2 � xp2�X2

4 � 16�kp�2m2�2m2 � 4m2y�X2
5	

�
Z 1

0
da

Z 1�a

0
db

Z 1

0
dx
Z 1�x

0
dy��4m2�4�kp�2 � 4x�kp�2 � 8y�kp�2 � 4xb�kp�2 � 2�kp�p2 � 2x�kp�p2

� 8yb�kp�2 � 4xa�kp�p2 � 8ya�kp�p2 � 4y�kp�p2 � 4a�kp�p2 � 2m2x�kp� � 2m2p2 � 2m2�kp�

� 4b�kp�2�X1 � 4m2��2ap4 � 4yap4 � 2�kp�p2 � 6y�kp�p2 �m2xp2 �m2p2 � xp4 � 3yp4

� 2xap4�X2 � 4m2��p4 � 2x�kp�p2 � xp4 � 2m2p2 � yp4 � 2m2yp2 � 2m2xp2 � 2�kp�p2

� 2y�kp�p2�X3 � 8m4x�kp�X6	

�
; (A2)
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�A�2�loop�
3 � Discq2

�
M4

Z 1

0
da

Z 1�a

0
db

Z 1

0
dx
Z 1�x

0
dy��8�X1 � X2��x� 2y� 1�	 �M2

Z 1

0
da

Z 1�a

0
db

Z 1

0
dx

�
Z 1�x

0
dy���32�kp�y� 32yb�kp� � 16xap2 � 32yap2 � 16p2y� 16x�kp� � 8p2 � 16m2x� 8xp2

� 16�kp� � 32m2y� 16m2 � 16b�kp� � 16ap2 � 16xb�kp��X1 � ��32�kp� � 8xp2 � 40p2y� 16m2x

� 16m2y� 16p2 � 16x�kp� � 16ap2 � 48�kp�y� 32yap2 � 16xap2�X2 � ��8p2y� 16m2x� 16m2y

� 16�kp�y� 8p2 � 16m2 � 16�kp��X3	 �
Z 1

0
da

Z 1�a

0
db

Z 1�a�b

0
dc
Z 1

0
dx

�
Z 1�x

0
dy�16m2�kp���2�kp�y� 4m2 � 4m2y� 4�kp� � 2p2 � 2p2y� xp2�X2

4 � 64m4y�kp�X2
5	

�
Z 1

0
da

Z 1�a

0
db

Z 1

0
dx
Z 1�x

0
dy��8m2��2x�kp� � 4�kp�y� 4yb�kp� � 4yap2 � 2p2y� p2 �m2x

� xp2 � 2�kp� � 2m2y� 3m2 � 2b�kp� � 2ap2 � 2xb�kp� � 2xap2�X1 � 8m2�5p2y� 2p2 �m2x

� xp2 �m2 � 4yap2 � 4�kp� � 2ap2 � 6�kp�y� 2xap2 � 2x�kp��X2 � 8m2�2m2x� 2m2 � 2m2y

� p2y� 2�kp� � 2�kp�y� p2�X3	

�
; (A3)
�A�2�loop�
4 � Discq2

�
M4

Z 1

0
da

Z 1�a

0
db

Z 1

0
dx
Z 1�x

0
dy�8��1� 2y� x�X1 � 8��1� y� x�X6	 �M2

Z 1

0
da

Z 1�a

0
db

�
Z 1

0
dx
Z 1�x

0
dy��24p2 � 16�kp� � 16x�kp� � 16m2 � 16b�kp� � 24xp2 � 32m2y� 32yb�kp�

� 32yap2 � 16ap2 � 16xap2 � 32p2y� 16m2x� 16xb�kp��X1 � 16yp2X2 � �8p
2y� 16m2x� 16�kp�

� 16m2 � 16�kp�y� 8p2 � 16m2y�X3 � ��16b�kp� � 16x�kp� � 16yb�kp� � 16xb�kp� � 16p2y� 16p2

� 32�kp� � 32�kp�y� 16m2x�X6	 �
Z 1

0
da

Z 1�a

0
db

Z 1�a�b

0
dc
Z 1

0
dx

�
Z 1�x

0
dy�8��6m2y�kp�p2 � 8m2�kp�p2 � 4y�kp�p4 � 8m4y�kp� � 2x�kp�p4 � 8m2�kp�2 � 4y�kp�2p2

� p6 � 2m2xp4 � 8m2y�kp�2 � 8m4�kp� � 8m4yp2 � 4�kp�p4 � 4�kp�2p2 � yp6 � xp6 � 6m2p4

� 4m2x�kp�p2 ��8m4p2 � 6m2yp4�X2
4 � 8��4m2y�kp�2 � 2m2�kp�p2 � 2m2yp4 � 8m4�kp� � 8m4yp2

� 4m2x�kp�p2 � 4m2x�kp�2 � 16m4y�kp� � 2m2y�kp�p2 � 4m2�kp�2�X2
5	 �

Z 1

0
da

Z 1�a

0
db

Z 1

0
dx

�
Z 1�x

0
dy�8m2��2�kp� � 2x�kp� � 3m2 � 2b�kp� � 3p2 � 2m2y� 4yb�kp� � 4yap2 � 2ap2 � 2xap2

� 4p2y�m2x� 2xb�kp� � 3xp2�X1 � 16m2yp2X2 � 8m2�2m2x� 2m2 � 2m2y� p2y� 2�kp�

� 2�kp�y� p2�X3 � 8m2��2xb�kp� � 2b�kp� � 2p2y�m2 �m2y� 2x�kp� �m2x� 4�kp� � 2yb�kp�

� 2p2 � 4�kp�y�X6	

�
; (A4)
where
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X1 � 1=��m2ya�m2yb�m2y�m2 � 2ab�kp� � p2a� p2a2�;

X2 � 1=�m2xa�m2xb�m2x�m2ya�m2yb�m2y�m2a�m2b� 2xya�kp� � 2xyb�kp� � 2xy�kp�

� p2xa� p2xb� p2x� p2x2a� p2x2b� p2x2 � p2a� p2a2�;

X3 � 1=�m2xa�m2xb�m2x�m2ya�m2yb�m2y�m2a�m2b� 2xya�kp� � 2xyb�kp� � 2xy�kp� � 2ab�kp�

� p2xa� p2xb� p2x� p2x2a� p2x2b� p2x2 � p2a� p2a2�;

X4 � 1=�m2xa�m2xb�m2xc�m2x�m2ya�m2yb�m2yc�m2y�m2a�m2b�m2c� 2xya�kp� � 2xyb�kp�

� 2xyc�kp� � 2xy�kp� � 2ac�kp� � p2xa� p2xb� p2xc��p2x� p2x2a� p2x2b� p2x2c� p2x2 � p2a

� p2a2�;

X5 � 1=��m2ya�m2yb�m2yc�m2y�m2 � 2ac�kp� � p2a� p2a2�;

X6 � 1=�2xy�kp� � 2xyb�kp� � 2xya�kp� �m2b�m2a�m2y�m2yb�m2ya�m2x�m2xb�m2xa� p2x

� p2xb� p2xa� p2x2 � p2x2b� p2x2a�: (A5)
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