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We examine the color SU(3) dynamics of q4 �q system, i.e. of the pentaquark. First we study this system
in the model with two-body interaction proportional to the color charges. We construct the potential
matrix and show (1) Confinement: the color singlet q �q potential energy rises infinitely with the separation
distance, (2) Stability: All colorless states’ energies are bounded from below, (3) Color singlet clustering:
the pentaquark color-singlet state Hamiltonian turns into a sum of a three-quark (baryon) and a quark-
antiquark (meson) cluster Hamiltonian, in the limit of asymptotically large separations. We evaluate the
four excitation eigenfrequencies of pentaquarks in the harmonic oscillator two-body confining potential
and the ground states’ dependence on the quark-antiquark mass ratio. We show that the pentaquark is
unlikely to bind even with a top antiquark, in contrast to tetraquarks.
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1We were (mis)led to believe that M. Rosina was the first (and
only) to have published the conjecture and partial proof of this
result; consequently we referred to it as Rosina’s conjecture in
the second paper of Ref. [7]. It turns out that the Orsay group
published the complete proof [2] some five years before Rosina
and many other authors had partial proofs much earlier, see [8];
we shall henceforth call it the Orsay positivity theorem.
I. INTRODUCTION

Irrespective of the exotic ���1540� resonance’s exis-
tence or nonexistence, multiquarks deserve a serious theo-
retical study. The pentaquark (q4 �q), i.e., the system that is
made up of four quarks and one antiquark is the second
simplest example of a multiquark, right after the well-
studied tetraquark [1–3]. It can be in one of three linearly
independent, mutually orthogonal color singlet states: one
that is the direct product of two ordinary color singlets (one
baryon and one meson q �q), which we shall call the
‘‘asymptotic baryon-meson’’ state, and two others that
are overall singlet combinations of two (distinct) color
octets, which we call ‘‘hidden color’’ confined pentaquark
states. The pentaquark interaction potential in color space
is generally unknown: even so-called ‘‘dynamical’’ penta-
quark calculations [4] have used some oversimplified (es-
sentially Abelian Lorentz scalar interaction) Ansätze for
the color dependence.

The color SU(3) Yang-Mills (‘‘gauge’’) field dynamics,
also known as quantum chromodynamics (QCD), has been
proposed as the solution to all of the quark dynamical
problems. The QCD equations of motion are nonlinear
and strongly coupled, so no exact solution has been found
to date. In the following we shall use only QCD’s exact
(‘‘unbroken’’) color SU(3) symmetry, which ought to be
beyond doubt, to constrain and/or predict the properties of
the mathematically allowed dynamical pentaquark states.
Thus all of our conclusions must also hold in QCD, though
we shall not attempt to derive them explictly.

Rather than try to solve QCD, we shall use the so-called
Fi � Fj two-quark potential model [1,5,6], which is unique
in that it has the following beneficial properties: (0) It is
globally color SU(3) symmetric; (1) Confinement: the
color singlet q �q potential energy rises infinitely with the
separation distance, (2) Stability: All color-singlets’ ener-
gies are bounded from below, as assured by the positivity
06=73(3)=034014(9)$23.00 034014
(Orsay) theorem [2],1 (3) Color singlet clustering: In the
limit of asymptotically large separations, the pentaquark
‘‘asymptotic color-singlet state’’ Hamiltonian turns into
the sum of a three-quark (baryon) and a quark-antiquark
(meson) cluster Hamiltonian [5,8].

This is important because even so-called dynamical
calculations of pentaquark spectra have relied on very
simple Ansätze for the color dependence of the quark-
quark interaction, viz. equal strength of all quark-quark
and quark-antiquark interactions. This assumption is
equivalent to a Lorentz scalar, color independent
(Abelian) interaction, which we shall explicitly rule out
in our analysis below.

Importance of these deliberations lies in their conse-
quences for the spectra of pentaquarks: they determine
(a) the energy of the first orbital angular momentum ex-
cited state; and (b) the effective strength of the hyperfine
interaction, which determine the detailed flavor-spin split-
tings of pentaquarks.

We shall not concern ourselves much with these HF
interactions here other than to point out that they are
invariably of short range (they are usually proportional to
a Dirac delta function) and hence their expectation values
are sensitive to the wave function at the origin: The HFI-
induced mass/energy shift in a harmonic oscillator con-
fined nucleon is proportional to I � h�j��r1 � r2�j�i �

�mq!=
�������
2�
p

�3=2, where mq is the constituent quark mass

and ! �
������������
k=mq

q
is the oscillator frequency of the pair of

quarks. As the average color factor of the two-body force
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in pentaquarks equals only one quarter of that in mesons,
one should therefore expect an average decrease in the HFI
matrix elements in pentaquarks, as compared to that in
mesons, inversely proportional to the ratio
�Imeson=Ipentaq�� �!meson=!pentaq�

3=2�43=4’2:83, thus re-
ducing the naive schematic approximation predictions of
the HFI mass shifts up to 3 times on the average, and
perhaps even more in special cases. Thus we see that the
color structure of the pentaquark and the two-quark con-
fining interaction play a vital role in moving towards a
reliable prediction of pentaquark spectra.

There is another potentially important application of
these ideas, viz. to the unusually small decay width of the
��: If the �� is created in one of the ‘‘nonasymptotic’’
color-singlet states, as is allowed by color SU(3) conser-
vation, then its decay into a nucleon and a kaon is strongly
supressed/forbidden and may proceed only through two-
gluon/glueball intermediate states.

This paper falls into four sections. After the
Introduction, in Sec. II we give a reminder of the basic
facts regarding the Fi � Fj model and the q4 �q system’s color
SU�3� wave functions. Then in Sec. III we examine the
predictions of the (standard) Fi � Fj model of quark inter-
actions for pentaquarks. Finally, in Sec. IV we draw our
conclusions.
2The constant term � has an interesting role: it effectively
changes the total mass of the hadron (or the gravitational mass of
the constituent quark, but not its inertial mass!) in different color
states. For example a negative � lowers the color singlet q �q
mass and increases the color octet one; and similarly for q3

states.
3One can also construct three-body color exchange operators

from SU(3) invariant products of three-quark color charge ma-
trices [10].
II. PRELIMINARIES

A. The color exchange, or Fi � Fj interaction

Now, the so-called Fi � Fj color dependent two-quark
interaction

Vij � �Fi � Fj�vij; (1)

leads to a mixing of the color singlet states without break-
ing of the color SU(3) symmetry. In applications of this
model there were basically two schools: (a) the MIT bag
model [6], which dealt (mostly schematically) with con-
sequences of the Breit interaction, Eq. (4), between rela-
tivistic quarks confined in a spherical bag; and (b) the
nonrelativistic constituent quark model , which assumes a
confining two-body potential vconf:

12 , usually a harmonic
oscillator, or a linearly rising potential

�vconf:
12 �

� k
2 �r1 � r2�

2

�jr1 � r2j
; (2)

where k � m!2. The ‘‘realistic’’ potential consists of the
linear � Coulomb � constant � Breit (see below) terms
[9]

�vreal:
12 � �

�C
r12
� �r12 ��� vBreit

12 ; (3)

where �C is the strong fine structure constant and

vBreit
12 � �

2�S�
3m1m2

~�1 � ~�2��r1 � r2�: (4)
034014
Note the overall minus sign that cancels the negative sign
of the color factor in the color singlet q �q, and the �3 diquark
state.2

The (quantum mechanical) mixing of distinct color sin-
glets (see Sec. II C below) is due to the fact that the color
factor Fi � Fj is a part of the i$ j two-quark color ex-
change operator PCij.

3 That does not mean that color SU�3�
symmetry is broken, however.

The color exchange nature of the confining interaction,
however, is not enough for a full description of hadron
spectra: one must also have simultaneously color- (or
flavor-) and spin-dependent forces, such as the Fermi-
Breit force Eq. (4).

Now remember that the color-dependent two-body con-
fining potential has its strength reduced by a factor of 2 as
one goes from the q �q system to the color 3 q2 substate of
the q3 nucleon. This ratio changes to 1:4, on the average, in
pentaquarks. The precise value depends on the color state
the pentaquark is in.

As ! ’ k1=2, where k is the oscillator spring constant,
we would expect �!meson=!nucleon� ’ �kmeson=knucleon�

1=2 ’���
2
p
� 1:41 for mesons and ordinary three-quark baryons,

but the three-body nature (reduced mass effects for the
three-body Jacobi coordinates) of the baryon changes this
to �!meson=!nucleon� ’ �4=3�1=2 �

������������
1:333
p

’ 1:155, in
good agreement with experiment (the fitted values yield
�!meson=!nucleon� � 550=450 ’ 1:22 for this ratio), see
Ref. [11]. Similarly, for pentaquarks we expect
�!meson=!pentaq� ’ �kmeson=kpentaq�

1=2 ’
���
4
p
� 2, and/or

�!nucleon=!pentaq� ’ �knucleon=kpentaq�
1=2 ’

���
2
p
� 1:41.

B. C conjugation and the Lorentz scalar vs vector
potentials

As both the Lorentz scalar and the Lorentz vector two-
body interactions reduce to the same form in the (lowest
order) nonrelativistic limit, the distinction between them
may seem an academic point. That is indeed so for inter-
actions solely between quarks, or solely between anti-
quarks, but when it comes to quark-antiquark
interactions, the vector and scalar interactions differ by
an overall sign, i.e., if one is attractive, the other is repul-
sive. That is a consequence of the opposite C conjugation
properties of Lorentz scalars and Lorentz vectors. This
leads to opposite signs in q �q potentials: For scalar vertices
-2
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FIG. 1. Pauli allowed color singlet pentaquark states in the
harmonic oscillator potential. The excitation energies @!�,
where � � �; �; �; � denotes the eigenmodes of the pentaquark
(not necessarily identical to the Jacobi coordinates of five
particles) depends on the color singlet state the pentaquark is
in. The numbers denote the dimensions of the SUFS�6� irreduc-
ible representations allowed by the Pauli principle in the corre-
sponding state, see Ref. [13].

COLOR SU(3) SYMMETRY, CONFINEMENT,. . . PHYSICAL REVIEW D 73, 034014 (2006)
�C 12 �

�
�F1 � �F2
�F1 � �F2

; (5)

whereas, for the vector ones,

�C 12 �

�
F1 � �F2
�F1 � �F2

; (6)

where the antiquark color factor is defined by

�F a � �1
2�

aT � �1
2�

a�: (7)

Therefore, of course, the difference cannot be seen in
systems made up entirely of (constituent) quarks, such as
baryons. Nor can it be seen in the q �q system alone, because
the sign of this interaction can always be changed to agree
with experiment. It is only in the tetra- and pentaquark
systems that the distinction between Lorentz scalar and
Lorentz vector interactions leads to dramatic differences.

We shall show that Lorentz scalar confining potentials
are not allowed in this scenario: they lead to unstable color
singlet states. Note that this is more than an academic
point: The Breit interaction is a standard part of the (higher
order in v=c) nonrelativistic reduction of the Lorentz vec-
tor two-body potential, i.e. of the one-gluon exchange
potential, but not of the Lorentz scalar one. Another stan-
dard part of the (higher order in v=c) nonrelativistic re-
duction of the Lorentz vector two-body potential is the
spin-orbit potential, which, however does not feature
prominently in hadron spectra. The idea of a purely
Lorentz scalar confining two-body potential as a remedy
for the phenomenological spin-orbit problem has been
tossed around for well over two decades [3] and is still
being revived on occasion, see Ref. [12], despite this
glaring defect.

C. q4 �q color singlet states, their mixing and crossing
(quark exchange) channels

In the q4 �q system, there are three linearly independent
and mutually orthogonal color singlets. One can label them
by their symmetry properties under the interchange of the
four quark indices; for example: one state (j�312634

�35i is
antisymmetric in the first two indices and symmetric in the
third and fourth indices, another state j612

�334
�35i) is sym-

metric in the first two indices and antisymmetric in the
third and fourth indices, and the third one is antisymmetric
in the first two and the third and fourth indices (j�312334

�35i).
This basis is unsuitable, however, for the description of
asymptotic states—the baryon and the meson.

The asymptotic ‘‘baryon-meson’’ color singlet state is a
linear combination of two of the three states:

j1123145i �

���
2

3

s
j�312634

�35i �
1���
3
p j�312

�334
�35i: (8)

The indices 1, 2, 3, 4 and 5 denote all the other quantum
numbers, such as flavor and spin, of the four quarks and the
antiquark, respectively. Clearly there are two other linearly
034014
independent color singlet states, the

j8�123845i �
1���
3
p j�312634

�35i �

���
2

3

s
j�312

�334
�35i; (9)

that is orthogonal to the first one, as well as the

j8�123845i � j612
�334

�35i; (10)

that is orthogonal to the first two. Hence it should be clear
that there is nothing special about the state j1123145i, in the
subsequent developments; one may equally well use the
states

j1124135i � �

���
2

3

s
j�312634

�35i �
1���
3
p j�312

�334
�35i (11)

j8�124835i �
1���
3
p j�312634

�35i �

���
2

3

s
j�312

�334
�35i (12)

j8�124835i � j612
�334

�35i: (13)

Moreover, it should be clear that the whole procedure can
be repeated with the first pair of quark indices replaced by
the second pair and with the Pauli basis states suitably
replaced:

j1134125i �

���
2

3

s
j612

�334
�35i �

1���
3
p j�312

�334
�35i (14)

j8�134825i �
1���
3
p j612

�334
�35i �

���
2

3

s
j�312

�334
�35i; (15)

j8�134825i � j�312634
�35i: (16)
-3
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The Pauli principle holds only for identical particles, i.e., it
antisymmetrizes only the four quarks, but not the q �q pairs.
For this reason, the (‘‘unphysical’’) basis spanned by states
j�312634

�35i, j612
�634

�35i, and j�312334
�35i is better suited to the

application of the Pauli principle than the (‘‘physical’’)
asymptotic basis. The linear independence and orthogonal-
ity of the three color singlet states, however, provides an
additional constraint, even on the q �q pairs to which the
Pauli principle does not apply. Thus, the combination of
the color singlet requirement and the Pauli principle leads
to flavor-spin selection rules determining the pentaquark
spectra, Fig. 1, for an explanation see Ref. [13].

Proper asymptotic behavior of the q4 �q system imposes
an additional ‘‘clustering’’ condition on its Hamiltonian.

D. Color singlet clustering in the q4 �q system

Technically, in the pentaquark case color singlet cluster-
ing4 means that one color singlet state (the ‘‘baryon-
meson’’ one) should be able to reach asymptotically large
separations, or equivalently that the corresponding poten-
tial should approach the sum of the potentials in the two
4This property also goes by the name of ‘‘ color saturation’’,
for historical reasons, named after similarities with the saturation
of the nucleon interactions.

034014
separate color singlets, i.e., in the baryon and the meson, in
the limit of asymptotically large separations of the two
clusters’ center-of-masses �R � j�Rj � j 1

3 �

�r1 � r2 � r3� �
1
2 �r4 � r5�j ! 1:

lim
�R!1

hVi11 	 lim
�R!1

h1123145jVj1123145i

� h1123jVj1123i � h145jVj145i: (17)

In order to verify color singlet clustering Eq. (17) in QCD,
one needs to know the precise form of the 2-, 3-, 4- and 5-
body potentials. That is (still) impossible at this stage, both
empirically and theoretically.5 Below we look only at the
Fi � Fj model, which obeys color singlet clustering/satura-
tion exactly.

III. THE COLOR EXCHANGE, OR Fi � Fj
INTERACTION IN THE q4 �q SYSTEM

A. The q4 �q Hamiltonian in the Pauli basis

We define the color space interaction matrix in the
‘‘Pauli basis’’ as follows:
VPauli �
h�312634

�35jVj�312634
�35i h�312634

�35jVj�312
�334

�35i h�312634
�35jVj612

�334
�35i

h�312
�334

�35jVj�312634
�35i h�312

�334
�35jVj�312

�334
�35i h�312

�334
�35jVj612

�334
�35i

h612
�334

�35jVj�312634
�35i h612

�334
�35jVj�312

�334
�35i h612

�334
�35jVj612

�334
�35i

0
B@

1
CA: (18)
We find the following color singlet diagonal and off-
diagonal potentials in the q4 �q system with Lorentz vector
two-body interactions

h�312634
�35jVj�312634

�35i � �
5
12�v13 � v14 � v23 � v24�

� 1
3��2v12 � v34�

� 1
6�v15 � v25 � 5�v35 � v45��

(19)

h�312634
�35jVj�312

�334
�35i �

v13 � v14 � v23 � v24

2
���
2
p

�
�v35 � v45���

2
p (20)

h�312634
�35jVj612

�334
�35i �

1
4
�v13 � v14 � v23 � v24

� v15 � v25 � v35 � v45�

(21)

h�312
�334

�35jVj�312
�334

�35i � �
1
6�v13 � v14 � v23 � v24�

� 2
3�v12 � v34�

� 1
3�v15 � v25 � v35 � v45� (22)
h�312
�334

�35jVj612
�334

�35i �
�v13 � v14 � v23 � v24

2
���
2
p

�
�v15 � v25���

2
p (23)
h612
�334

�35jVj612
�334

�35i � �
5
12�v13 � v14 � v23 � v24�

� 1
3�v12 � 2v34� �

1
6
�5�v15

� v25� � v35 � v45�: (24)

Equations (19)–(24) are direct analogons of the tetraquark
equations of motion first derived in Ref. [1]. Only Eq. (22)
has also been derived by Okiharu et al. [14].

To obtain the Lorentz scalar interaction potentials,
merely flip the sign of all the q �q terms in the above results,
i.e., vi5 ! �vi5.

B. Asymptotic bases

Identities (8)–(10) are summarized by the (basis) trans-
formation matrix
5In Ref. [7] we made some Ansätze for the two- and three-
quark potentials, and constrained them by the requirements of
confinement, stability and proper color ordering in the q �q and q3

systems. The general case will not be discussed here.

-4
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L123 � L�1
124 �

1��
3
p

��
2
3

q
0

�
��
2
3

q
1��
3
p 0

0 0 1

0
BBB@

1
CCCA; (25)

and similarly for Eqs. (11)–(13)

L124 � L�1
123 �

1��
3
p �

��
2
3

q
0��

2
3

q
1��
3
p 0

0 0 1

0
BBB@

1
CCCA; (26)

and

L234 � L�1
134 �

1 0 0

0 1��
3
p

��
2
3

q
0 �

��
2
3

q
1��
3
p

0
BB@

1
CCA; (27)

and

L134 � L�1
234 �

1 0 0

0 1��
3
p �

��
2
3

q
0

��
2
3

q
1��
3
p

0
BB@

1
CCA; (28)

which describe the remaining two asymptotic channels.
The color singlet potential matrices in the asymptotic bases
read

V�123��45� � L123VPauliL�1
123 V�124��35� � L124VPauliL�1

124

V�234��15� � L234VPauliL
�1
234 V�134��25� � L134VPauliL

�1
134:

(29)
C. Color singlet clustering in the q4 �q system

Now use Eq. (25) to find

hVi11 � h1123145jVj1123145i � �

�
2
3

P3
i<j vij �

4
3v45

�
� h1123jV2�bj1123i � h145jV2�bj145i; (30)

which proves that in this channel the two color singlet
clusters move freely (‘‘cluster’’) at all distances, not just
asymptotically, in this model. The factors�2=3 and�4=3
are just the values of the color factor Fi � �Fj, for (i; j �
1; 2; 3) and (i � 4; j � 5), in their respective color singlet
states. Together with the overall minus sign in the confin-
ing potential Eq. (2) this yields positive confining two-
body potentials for the q3 and q �q cluster, with no restoring
force in the two cluster relative coordinate.

Similarly, the two ‘‘hidden color’’ states

hVi8%8 � h8
%
123845jVj8

%
123824i

� �1
3�2v12 � v34� �

1
12�v13 � v23� �

7
12�v14 � v24�

� 1
6�v15 � v25 � v45 � 7v35� (31)
034014
hVi8�8 � h8�123845jVj8�123824i � h612
�334

�35jVj612
�334

�35i

� � 5
12�v13 � v14 � v23 � v24� �

1
3�v12 � 2v34�

� 1
6
5�v15 � v25� � v35 � v45�; (32)

are permanently confined, i.e., they cannot decay into the
baryon and meson color singlet state (without simulta-
neous emission of at least two gluons) even if their energy
is higher than that of the asymptotic state. This fact (se-
lection rule) directly affects the observability of these new
states. We shall not discuss these states here, but hope to
return to their study elsewhere.

D. Pentaquark chromo-harmonic Hamiltonian

For this purpose it is best to use the center-of-mass and
the relative (Jacobi) coordinates, defined by

r % �
1���
2
p �r1 � r2� (33)

r � �
1���
6
p �r1 � r2 � 2r3� (34)

r � �
1

2
���
3
p �r1 � r2 � r3 � 3r4� (35)

r � �
1

2
���
5
p �r1 � r2 � r3 � r4 � 4r5� (36)

R �
1���
5
p �r1 � r2 � r3 � r4 � r5�: (37)

Because of translational invariance, the complete potential
matrix is independent of the center-of-mass coordinate R.

1. Pauli basis

Thus we find the following (vector) potentials (we set
k � 1 for simplicity)

h�312634
�35jVj�312634

�35i �
5

6
r�2 � r�2 �

5

6
r�2 �

1

2

���
5

3

s
r�r�

�
2

3
r�2 �

���
5

6

s
r� � r� �

���
2
p

3
r� � r�

(38)

h�312
�334

�35jVj�312
�334

�35i �
2

3
r�2 � r�2 �

���
2
p

3
r� � r�

�
5

6
�r�2 � r�2� (39)
-5
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h612
�334

�35jVj612
�334

�35i � r�2 �
r�2

2
�

���
5

6

s
r� � r� �

5

6
r�2

�
1

2

���
5

3

s
r� � r� � r�2 (40)

h�312634
�35jVj�312

�334
�35i �

�1

3
���
2
p �r�2 � r�2� � r�

�

�
�1

2

���
5

3

s
r� �

r�
6

�
�

���
5

6

s
r�r�

(41)
034014
h�312634
�35jVj612

�334
�35i �

r�2

24
�

r�2

8
�

���
1

6

s
r� � r� �

1

4

���
5

3

s
r�

� r� �
r�2

12
�

1

2
���
3
p r�

�

�
r� �

���
5

2

s
r� �

r����
6
p

�
(42)

h�312
�334

�35jVj612
�334

�35i �
1���
6
p r� � r� �

1

2
r�

�

� ���
5
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r� �
r����

3
p

�
: (43)
2. Eigenfrequencies and eigenmodes of pentaquarks

(1) j�312634
�35i
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�35jVj�312634
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���
2
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������
46
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p

s
r����

6
p

�
2

(44)

Note the presence of a large (�11�
������
46
p
�=12) and a small eigenvalue (�11�

������
46
p
�=12). This state is confined and

orthogonal to the asymptotic state. It cannot decay into a meson and baryon (in this model and NR approximation).
Experimental production and observation of such states is an open problem.

(2) j�312
�334

�35i Similarly for the second state:

h�312
�334
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�

1���
3
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���
2

3

s
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�
2
�

1

2

� ���
2

3

s
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1���
3
p r�

�
2
> 0 (45)

(3) j612
�334

�35i Finally the third state is analogous to the first one
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2

3
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�
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������
46
p
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� ������������������
1�

1������
46
p

s
r����

3
p �

������������������
1�

1������
46
p

s
r����

2
p

�

������������������
1�

1������
46
p

s
r����

6
p

�
2
�

11�
������
46
p

12

� ������������������
1�

1������
46
p

s
r����

3
p �

������������������
1�

1������
46
p

s
r����

2
p �

������������������
1�

1������
46
p

s
r����

6
p

�
2
:

(46)
The eigenvalues of this potential are equivalent to those of
Eq. (44), but two of the three eigenmodes are different.

From Eqs. (44)–(46), one can convince oneself that all
three diagonal color singlet potentials are positive semi-
definite (remember that the Orsay positivity theorem holds
only for diagonal terms) in all four Jacobi coordinates, i.e.
they confine in all four relative motions.

In the asymptotic bases, some of the diagonal potential
matrix elements may be independent of one or more linear
combinations of Jacobi coordinates, however. These
‘‘zero-modes’’ indicate free motion, i.e., possibility of
reaching asymptotically large separations in the respective
relative coordinate; they are a consequence of the color
singlet clustering, or of the color saturation property.

3. Physical consequences

The oscillator eigenfrequencies !1;2;3;4 in the three color
singlet states are not determined merely by the eigenvalues
of the potential matrix, but also by the reduced masses of
the corresponding eigenmodes. The standard normalized
Jacobi coordinates Eqs. (33)–(36) are rather convenient in
this regard, as all four have the same reduced massm equal
to the constituent quark massmq, in the limit of good flavor
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SU(3) symmetry. The only proviso is that the eigenmodes
must be normalized as well, which is fulfilled here. The
frequencies are tabulated in Table I and the corresponding
ground state energies in

Ej�312
�334

�35i
�

3

2
�!� �!� �!� �!��

�
3

2

�
1�

���
5

3

s
� 2

���
2
p � ����

k
m

s
(47)

Ej�312634
�35i
� Ej612

�334
�35i
�

3

2
�!� �!� �!� �!��

�
3

2

�
1�

���
2
p
�

���������������������
11�

������
46
p

6

s
�

���������������������
11�

������
46
p

6

s � ����
k
m

s

(48)

Ej1123145i
�

3

2
�2!nucleon �!meson� �

3

2

� ���
8

3

s
� 2

���
2
p � ����

k
m

s
:

(49)

Compare these results with !2
meson � 8k=3m ’ 2:67k=m,

!2
nucleon � 2k=m and note that the largest and the lowest

pentaquark oscillator frequencies/excitation energies
bracket the meson and nucleon ones !2

meson < 
�11�������
46
p
�=6��k=m� � 2:96k=m and !2

nucleon > 
�11�������
46
p
�=6��k=m� � 0:70k=m. Note that the degeneracy is

completely lifted in states j�312634
�35i and j612

�334
�35i,

whereas there is one doubly degenerate level in the
j�312

�334
�35i state.

Importance of these deliberations lies in their conse-
quences for the spectra of pentaquarks: they determine
the energy of the first orbital angular momentum excited
state. Many models of the �� assume even parity, i.e. a P-
wave state, in spite of its low mass. This could be explained
by the low excitation energies of the � mode in the first
two, and the � modes in the first and third states. Now use
!meson � 550 MeV, or !nucleon � 450 MeV to find !� �
282 MeV, or !� � 266 MeV, respectively. Note, more-
over, that (in the equal mass limit and with HO potential)
both pentaquark ground states’ energies lie above the
asymptotic baryon-meson system’s: Ej�312

�334
�35i
>

Ej�312634
�35i
>Ej1123145i

: This is a consequence of the concav-
ity of the energy as a function of the (reduced) mass in the
harmonic oscillator potential and may change in a more
TABLE I. The pentaquark (excitation) eigen-energy spectrum
in the chromo-harmonic oscillator model.

State !2
1 !2

2 !2
3 !2

4

j�312634
�35i

k
m

2k
m

11�
����
46
p

6
k
m

11�
����
46
p

6
k
m

j�312
�334

�35i
k
m

2k
m

5k
3m

2k
m

j612
�334

�35i
2k
m

k
m

11�
����
46
p

6
k
m

11�
����
46
p

6
k
m

034014
realistic confining potential, such as the ‘‘Coulomb �
linear’’ one, if the tetraquark system can be used for
guidance Ref. [3]. The ordering of states in the tetraquarks,
Ref. [3] is function of the (reduced) quark masses; we have
tried to find level crossings, i.e., changes of the level
ordering Ej�312

�334
�35i
>Ej�312634

�35i
, but we could not find one

for quark-antiquark mass ratios ranging from unity, see
Fig. 2, up to and exceeding 106.

Another important consequence of a smaller/larger !
value in pentaquarks is in the spatial matrix elements of the
HFI, which scale like!3=2 with the HO frequency!, so the
pentaquark HFI splittings are inversely proportional to the
ratio �Imeson=Ipentaq� � �!meson=!pentaq�

3=2, whose maxi-
mum value equals �8=3� 0:70�3=4 � 3:813=4 ’ 2:73 and
the minimum value �8=3� 2:96�3=4 � 0:9013=4 � 0:95;
and/or �Inucleon=Ipentaq� � �!nucleon=!pentaq�

3=2, whose
maximum value reads �2=0:70�3=4 � 2:863=4 ’ 2:20 and
the minimum value �2=2:96�3=4 � 0:6763=4 � 0:746.

These numerical values effectively establish upper
bounds on the size of the pentaquark HFI matrix elements
(or, physically speaking, of the HF pentaquark mass split-
tings) in terms of baryon HFI matrix elements, i.e., baryon
mass splittings. The former have been assumed in the
m /m5

FIG. 2. Ratios of pentaquark energies Ej�312
�334

�35i
=Ej1123145i

� 1
(solid), and Ej�312634

�35i
=Ej1123145i

� 1 (dashed) in the nonrelativistic
chromo-harmonic quark model as a function of the antiquark-
quark mass ratio m5=m.
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literature as being independent of the latter, and as a rule
larger than the here provided upper bounds.

E. Color singlet mixing in the chromo-harmonic model
in the q4 �q system

It is not obvious, however, how the asymptotic penta-
quark state j1123145i ‘‘evolves’’ as the separation of the two
hadrons is reduced to zero �R! 0. In other words: which
linear combination of the Pauli basis states does the
j1123145i state turn into in this limit? At first sight one
might guess that it is that state in Eq. (8) whose expansion
coefficient is closest to unity, i.e., that it is the j�312634

�35i,
but that conjecture turns out to be incorrect. The correct
answer is the j�312

�334
�35i.

That much can be seen from the spatial dependence of
the mixing angle ���R�, Fig. 3, which diagonalizes either
diagonal 2� 2 submatrix of the color potential Eq. (18):
We write the spatial ‘‘evolution’’ of the asymptotic ‘‘-
baryon-meson’’ color singlet state as a function of two of
the three Pauli states and a spatially varying mixing angle:

j1123145i � sin���R�j�312634
�35i � cos���R�j�312

�334
�35i:

(50)

One can see that ���R! 1� ! 54:740, i.e., precisely the
angle such that cos���R!1� � 1=

���
3
p

, and
cos���R! 0� � 1, which proves our claim. The other,
orthogonal linear combination represents one of two hid-
den- color states

j81238�45i � cos���R�j�312634
�35i � sin���R�j�312

�334
�35i;

(51)

turns into j�312634
�35i in the zero-separation limit.

Note that the Pauli basis states j�312
�334

�35i, j�312634
�35i

correspond precisely to the phenomenological Ansätze
promoted by Jaffe and Wilczek (JW) and by Karliner and
Lipkin (KL), respectively. Moreover, note that the KL
Ansatz state cannot be reached from the asymptotic KN
state, by using the time evolution operator in the non-
relativistic quark model without gluons.
IV. DISCUSSION AND SUMMARY

Note that both hidden- color singlet states j8�;�123845i are
confined and orthogonal to the asymptotic meson-nucleon
one. That means that they cannot decay into a meson and a
nucleon in the nonrelativistic quark model, which does not
contain a color-dependent operator that could turn two
color octets into a color singlet state (such as the two-gluon
annihilation/scattering operator). In a realistic model with
gluon creation/annihilation such a decay would exist, but it
034014
would be suppressed as compared to the ‘‘fall-apart’’ decay
mode.

There is a potentially important application of these
ideas, viz. to the unusually small decay width of the ��:
If the �� is created in one of the ‘‘nonasymptotic’’ color-
singlet states j8�;�123845i, as it may, due to color SU(3)
conservation, then its decay into a nucleon and a kaon is
forbidden in the NR approximation and may proceed only
through two-gluon/glueball intermediate states, which is
supressed in the real world.

In summary we have considered the stability, confine-
ment and color singlet clustering/decays of pentaquarks in
the simplest admissible color-exchange (Fi � Fj) two-body
potential model. Most of the results in Sec. II and all of the
results in Sec. III are new, so far as we know. We do not
repeat here the (partial) summaries given above. We have
evaluated the heavy antiquark mass dependence of the
pentaquark ground state’s energy and showed that the
system is not bound even with top antiquark.
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