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Neutrino emissivities due to direct Urca processes of several spin-one color-superconducting phases of
dense quark matter are calculated. In particular, the role of anisotropies and nodes of the gap functions is
analyzed. Results for the specific heat as well as for the cooling rates of the color-spin-locked, planar,
polar, and A phases are presented and consequences for the physics of neutron stars are briefly discussed.
Furthermore, it is shown that the A phase exhibits a helicity order, giving rise to a reflection asymmetry in
the neutrino emissivity.
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I. INTRODUCTION

Exotic states of matter are expected to exist in the central
regions of compact stars. The baryon density in these
systems is likely to exceed several times the nuclear satu-
ration density, �0 ’ 0:15 fm�3. The exact nature of such
dense matter, however, is yet unknown. It was suggested
already 30 years ago [1] that it might be deconfined quark
matter. Since the temperatures in neutron stars are suffi-
ciently low, this matter is likely to be in a color-
superconducting state. (For reviews on color superconduc-
tivity see Ref. [2].) There is little doubt that dense baryonic
matter at asymptotically high quark chemical potential� is
a color superconductor [3]. In this case, the ground state is
the color-flavor locked (CFL) phase [4] (for studies of the
CFL phase in QCD at asymptotic density, see also
Refs. [5,6]). At densities existing in stars, however, this
phase may not necessarily be realized. The main reason for
the potential breakdown of the CFL phase is a relatively
large difference between the masses of the strange quark,
ms, and the masses of the up and down quarks, mu ’ md,
which is negligible only at large densities. This difference,
together with the requirements of � equilibrium and elec-
tric and color charge neutrality, gives rise to a mismatch
between the Fermi momenta of the quarks that form
Cooper pairs [7]. Therefore, the conventional BCS pairing
[8], which is the underlying mechanism of the CFL state,
becomes questionable and the search for the true ground
state of quark matter in compact stars has to include differ-
ent, unconventional superconducting states [9–12].

Determining the ground state of QCD at moderate den-
sities from first principles, i.e., within the framework of
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QCD, is not possible at present. It is natural therefore to
make use of astrophysical observations to test the presence
of various suggested phases. The goal of this paper is to
investigate color superconductors in which quarks of the
same flavor form Cooper pairs and to study their effect on
specific observables.

Single-flavor Cooper pairing is the simplest possibility
for neutral quark matter. Contrary to other unconventional
pairing mechanisms, such as the gapless 2SC phase [9], the
gapless CFL phase [10], the CFL phase with additional
meson condensates [11], or the crystalline phases [12], it is
allowed for arbitrarily large mismatches between the Fermi
momenta of different quark flavors. Single-flavor pairing in
the color antitriplet channel is possible only in the sym-
metric spin-one channel [3,13–17]. This is the conse-
quence of the Pauli principle which requires the wave
function of the Cooper pair to be antisymmetric under
the exchange of the constituent quarks. This is in contrast
to pairing of different flavors where the antisymmetric
spin-zero channel is allowed.

Furnishing triplet representations with respect to both
color and spin groups, the order parameter in a spin-one
color superconductor is given by a complex 3� 3 matrix.
This is similar to superfluid 3He, where condensation
occurs in spin and angular momentum triplets [18]. In
both systems, the matrix structure of the order parameter
gives rise to several possible phases. In 3He the observed
phases are the so-called A, B, and A1 phases. In this paper,
we consider the following four main spin-one color-
superconducting phases of quark matter: the color-spin
locked (CSL), planar, polar, and A phases, proposed in
Refs. [14–17,19]. The A and CSL phases are analogues
of the A and B phases in 3He, respectively.

In contrast to the nonrelativistic case of 3He, spin-one
color superconductors may involve pairing of quarks of the
same as well as of opposite chiralities. In this paper, we
focus on the so-called ‘‘transverse’’ phases, in which ex-
-1 © 2006 The American Physical Society
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clusively quarks of opposite chiralities pair. Theoretical
studies at asymptotically large densities suggest that these
phases are preferred [14,17].

As in the case of 3He, the gap functions of most of the
quark phases considered here are anisotropic in momentum
space. Only the CSL phase is isotropic. The gap in the
polar phase vanishes at the south and north poles of the
Fermi sphere, whereas the gap in the planar phase is
anisotropic but nonzero in any direction of the quasipar-
ticle momentum. The A phase is special in the sense that it
has two gapped quasiparticle modes with different angular
structures, one of which has two point nodes.

One should expect that the anisotropies and especially
the nodes affect the physical properties of the correspond-
ing quark phases. The low energy excitations around the
nodes give important contributions to various thermody-
namical and transport properties, e.g., the specific heat, the
neutrino emissivity, the viscosity, the heat and electrical
conductivity, etc. In application to compact stars, the spe-
cific heat and the neutrino emissivity determine the cooling
behavior during the first 105–106 years of the stellar evo-
lution. In this paper, we compute these two quantities for
the four mentioned spin-one color-superconducting phases
and deduce the resulting cooling rates. In addition, we will
discuss the reason why the distribution of neutrino emis-
sion from the A phase breaks reflection symmetry in posi-
tion space.

The paper is organized as follows. The general formal-
ism of calculating the time derivative of the neutrino
distribution function is given in Sec. II. The main result
from Sec. II is then used in Sec. III to compute the neutrino
emissivity. The specific heat is calculated in Sec. IV. Both
quantities are used in Sec. V to discuss the cooling behav-
ior of the considered phases. In Sec. VI we explain the
asymmetry of the neutrino emission in the A phase. Finally,
we comment briefly on the effect of nonzero quark masses
in Sec. VII.

Our convention for the metric tensor is g�� �
diag�1;�1;�1;�1�. Our units are @ � c � kB � 1.
Four-vectors are denoted by capital letters, K � K� �

�k0;k�, while k � jkj and k̂ � k=k. We work in the
imaginary-time formalism, i.e., T=V

P
K �

T
P
n

R
d3k=�2��3, where n labels the Matsubara frequen-

cies!n � ik0. The Matsubara frequencies are!n � 2n�T
for bosons, and !n � �2n� 1��T for fermions.

II. TIME DERIVATIVE OF THE NEUTRINO
DISTRIBUTION FUNCTION

In this section, we derive a general expression for the
time derivative of the neutrino distribution function in spin-
one color-superconducting phases.

A. General formalism

Within the Kadanoff-Baym formalism [20], one derives
the following kinetic equation for the neutrino Green func-
034012
tion (see, for example, Refs. [21–23]):
i@�X Tr���G<
� �X;P��	 � �Tr�G>

� �X;P���<
� �X;P��

��>
� �X;P��G

<
� �X;P��	; (1)
where the trace runs over Dirac space. (Here and in the
following, the index � always labels neutrino quantities
and should not be confused with a Lorentz index.) The
kinetic equation is obtained from the general Kadanoff-
Baym equation after applying a gradient expansion, which
is valid when the neutrino Green functions G<;>

� �X;P��
and self-energies �<;>

� �X;P�� are slowly varying functions
of the space-time coordinate X � �t;x�. For our purposes,
it is sufficient to consider spatially homogeneous systems
which are close to equilibrium. In this case, the neutrino
Green functions assume the following approximate form
[22]:
iG<� �t; P�� � ����P�;� ����0�
�
p�

� ff��t;p����p�0 ��� � p��

� �1� f��t;�p��	��p�0 ��� � p��g; (2a)

iG>� �t; P�� � ��
�P�;� ����0�

�
p�

� f�1� f��t;p��	��p�0 ��� � p��

� f��t;�p����p�0 ��� � p��g; (2b)
where �� is the neutrino chemical potential. The functions
f�;��t;p�� are the neutrino and antineutrino distribution
functions. We are interested in the Urca processes u�
e� ! d� � (electron capture) and d! u� e� � �
(�-decay), which provide the dominant cooling mecha-
nism for quark matter. These processes are important for
neutron stars with core temperatures of the order of or
smaller than several MeV. In this stage of the stellar
evolution, the mean-free path of neutrinos becomes larger
than the stellar radius, wherefore in our results we shall set
�� � 0.

The leading order contributions to the neutrino self-
energies which enter the kinetic equation (1) are given by
the diagrams in Fig. 1. For the sake of simplicity, we do not
take strange quarks into account. Their weak interactions
are Cabibbo suppressed, and their number density is not
expected to be very large. (Admittedly, however, the bigger
phase space for the Urca processes involving massive
strange quarks may partially compensate this suppression.)
The diagrams in Fig. 1 translate into the following expres-
sions:
-2



e
_

_
W

_
W

e
_

_
W

_
W

ν

d

u

ν
=Σ

−

− +

+

ν

d

u

ν

+

+

−

−=Σ ><
ν ν

FIG. 1. Neutrino self-energies relevant for the neutrino Urca processes in the close-time-path formalism. The � and � signs assign
the vertices to the upper and lower branch of the time contour, respectively.
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�<
� �t;P�� �

G2
F

2

Z d4Pe
�2��4

���1��5���
	Pe;	��e�0�

��
�1��5��
>
�
�Pe�P��

�
pe
fe�t;pe�

���pe0��e�pe�; (3a)

�>
� �t;P�� ��

G2
F

2

Z d4Pe
�2��4

���1��5���	Pe;	��e�0�

��
�1��5��
<
�
�Pe�P��

�
pe
�1� fe�t;pe�	

���pe0��e�pe�; (3b)

where GF is the Fermi coupling constant and �e is the
electron chemical potential. In the derivation we used the
explicit form of the electron Green functions G<;>

e �t; Pe�.
They are given by expressions analogous to Eqs. (2). We
have neglected the positron contribution, i.e., the ana-
logues of the second terms in curly brackets on the right-
034012
hand sides of Eqs. (2). [Note that the processes involving
positrons, u! d� e� � � and d� e� ! u� �, are sup-
pressed by a large factor exp�2�e=T� because �e is posi-
tive and, in the regime under consideration, much larger
than the temperature.]

The functions �<;>
�
 �Pe � P�� are the self-energies of

the W bosons. The W exchange is approximated by its
local form since the typical neutrino energies are much
smaller than the W mass. In the case of neutrino processes
in compact stars, the corresponding neutrino energies do
not exceed several dozens MeV.

Next, we insert the Green functions (2) and self-energies
(3) into the kinetic equation (1). In order to obtain the
expression for the neutrino (antineutrino) distribution func-
tion, we integrate on both sides of the kinetic equation
over p�0 from ��� to 1 (from �1 to ���). The results
are
@
@t
f��t;p�� ��i

G2
F

16

Z d3pe
�2��3p�pe

L�
�pe;p��f�1� f��t;p��	fe�t;pe��>
�
�Q�� f��t;p���1� fe�t;pe�	�

<
�
�Q�g; (4a)

@
@t
f��t;p�� ��i

G2
F

16

Z d3pe
�2��3p�pe

L�
�pe;p��f�1� f��t;p��	�1� fe�t;pe�	�<
�
�Q

0� � f��t;p��fe�t;pe��>
�
�Q

0�g; (4b)
with the four-momenta Q � �pe � p� ��e ���;pe �
p�� and Q0 � �pe � p� ��e ���;pe � p��, and the
shorthand notation

L�
�pe;p�� � Tr���0pe � � 
 pe��
�1� �5�

� ��0p� � � 
 p�����1� �5�	: (5)

In the following, it is convenient to express the results in
terms of the retarded self-energy for W bosons, ��


R .
Therefore, we shall use the following relations:

�>�Q� � �2i�1� nB�q0�	 Im �R�Q�; (6a)

�<�Q� � �2inB�q0� Im �R�Q�; (6b)
where nB�!� � 1=�e!=T � 1� is the Bose-Einstein distri-
bution function.

Here we consider the cooling of quark matter only in the
absence of neutrino trapping. Then, the neutrino and anti-
neutrino distribution functions on the right-hand side of
Eq. (4) are vanishing, f�;��t;p�� � 0. The electron distri-
bution function can be approximated by its equilibrium
expression,

fe�t;pe� ’ nF�pe ��e�; (7)

with nF�!� � 1=�e!=T � 1�. Then, one arrives at
-3
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@
@t
f��t;p�� �

G2
F

8

Z d3pe
�2��3p�pe

L�
�pe;p��nF�pe��e�

�nB�p���e�pe� Im ��

R �Q�; (8a)

@
@t
f��t;p�� ��

G2
F

8

Z d3pe
�2��3p�pe

L�
�pe;p��nF��e�pe�

�nB�p���e�pe� Im ��

R �Q

0�: (8b)

We shall see in Sec. II D that the right-hand sides of
Eqs. (8a) and (8b) are in fact identical.

B. Quark propagators in spin-one color
superconductors

As we shall see below, cf. Eq. (18), the expression for the
imaginary part of the polarization tensor of the W-vector
boson is given in terms of the quark propagator S�K�. In
this paper, we consider the following four spin-one super-
conducting phases: the CSL, planar, polar, and A phases.
Each of these phases is characterized by a 12� 12 gap
matrix Mk in color and Dirac space,

M k �
X3

i;j�1

Ji�ij�?;j�k̂�; (9)

where �Ji�jk � �i�ijk and �?�k̂� � �� k̂� 
 k̂ are basis
vectors for the color antitriplet and spin triplet representa-
tions, respectively. We focus exclusively on the transverse
phases, which have the highest pressure at asymptotic
density and thus are expected to be preferred over others.
For a more general form of the matrix Mk see Ref. [17].
The matrix � is a complex 3� 3 matrix and assumes a
specific structure for each of the phases. In Table I, we give
� and the resulting matrices Mk.

In spin-one color superconductors, the quark propagator
is diagonal in flavor space, S�K� � diag�Su�K�; Sd�K�	.
The Nambu-Gorkov structure of the flavor-diagonal ele-
ments is given by

Sf�K� �
G�f �K� ��f �K�
��f �K� G�f �K�

 !
; f � u; d; (10)

where [15–17]

G�f �K� � �G
�
0;f�K�	

�1
X
e;r

P�k;r�
�e
k

k2
0 � ��

e
k;r;f�

2 : (11)
TABLE I. Matrices � and Mk and eigenvalues �k;r with correspo
The angle between k and the z-axis is denoted by k.

Phase �ij Mk

CSL �ij J 
 �?�k̂�
Planar �i1�j1 � �i2�j2 J1�?;1�k̂� � J2�?;2�k̂�
Polar �i3�j3 J3�?;3�k̂�
A �i3��j1 � i�j2� J3��?;1�k̂� � i�?;2�k̂�	
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For the sake of simplicity, we have not included the quark
self-energy correction. For a more general expression of
the propagator, including this correction, see Refs. [24,25].
The inverse free propagator for quarks and charge-
conjugate quarks in the ultrarelativistic limit is

�G�0;f�K�	
�1 � ��K� ��f�0

� �0

X
e

�k0 � ��f � ek�	��ek : (12)

The Dirac matrices �e
k � �1� e�0� 
 k̂�=2, where e �

�, are projectors onto positive and negative energy states.
The matrices P�k;r and P�k;r in Eq. (11) are projectors onto
the eigenspaces of the matrices MkM

y
k and

�0My
kMk�0, respectively. Both matrices have the same

set of eigenvalues �k;r,

M kM
y
k �

X
r

�k;rP
�
k;r; (13)

�0My
kMk�0 �

X
r

�k;rP
�
k;r: (14)

As we shall see, only the projection operators P�k;r (and not
P�k;r) are needed in the calculation of the neutrino emis-
sion. They are given explicitly in Appendix B. The eigen-
values �k;r appear in the quasiparticle dispersion relations,

�ek;r;f �
�������������������������������������������������
�ek��f�

2 � �k;rj�fj
2

q
: (15)

Here �f are the gap parameters, which are different for u
and d quarks in general. The eigenvalues for the four
considered phases as well as their degeneracies nr are
listed in Table I. Note that all phases contain an ungapped
mode, �k;2�3� � 0.

The off-diagonal elements on the right-hand side of
Eq. (10) are the so-called anomalous propagators. They
are given by

��f �K� � �
X
e;r

�0Mk�0P
�
k;r�

�e
k

�f

k2
0 � ��

e
k;r;f�

2 ; (16a)

��f �K� � �
X
e;r

My
kP

�
k;r�

e
k

�f
k2

0 � ��
e
k;r;f�

2 : (16b)

The propagators in Eq. (11) have particle and hole-type
poles at k0 � ���k;r;f, as well as the corresponding anti-
nding degeneracies nr for four spin-one color superconductors.

�k;1�n1� �k;2�n2� �k;3�n3�

2 (8) 0 (4)
1� cos2k�8� 0 (4)

sin2k�8� 0 (4)
�1� j coskj�

2�4� �1� j coskj�
2�4� 0 (4)
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particle poles at k0 � ��
�
k;r;f. In the calculation of the

imaginary part of the retarded self-energy ��

R �Q�, the

antiparticle contributions are suppressed by inverse powers
of the quark chemical potential. [Note, however, that tak-
ing antiparticles into account is important in the calculation
of Re��


R �Q�.] In our calculation, therefore, we omit the
terms with e � � in the quark propagator and arrive at the
following approximate form:

G�f �K� ’ �0��k
X
r

P�k;r
k0 � ��f � k�

k2
0 � �

2
k;r;f

; (17)

where we denoted �k;r;f � ��k;r;f.

C. Imaginary part of the W-boson polarization tensor

In this subsection, we evaluate Im ��

R . As can be seen

from Fig. 1, theW-boson polarization tensor can be written
as

��
�Q� �
T
V

X
K

Tr����S�K��
�S�K �Q�	; (18)

where the trace runs over Nambu-Gorkov, color, flavor, and
Dirac space. The 2� 2 Nambu-Gorkov structure of the
vertices reads

��� �
���1� �5��� 0

0 ����1� �5���

� �
; (19)

where �� � ��1 � i�2�=2 are matrices in flavor space,
034012
constructed from the Pauli matrices �1, �2. After perform-
ing the traces over Nambu-Gorkov and flavor space,

��
�Q� �
T
V

X
K

fTr����1� �5�G�u �K��

�1� �5�G�d �P�	

� Tr����1� �5�G�d �K��

�1� �5�G�u �P�	g;

(20)

where P � K �Q, and the traces run over color and Dirac
space. As we see, the anomalous propagators ��f do not
contribute to the self-energy. This is in contrast to spin-zero
color superconductors, such as the (gapless) 2SC and CFL
phases, in which the anomalous propagators are off-
diagonal in flavor space. In fact, this difference is related
to the conservation of electric charge in the diagrams in
Fig. 1. The anomalous propagators contain the Cooper pair
condensate, which, in the case of a spin-one color super-
conductor, is of the form huui or hddi. Therefore, the
appearance of the anomalous propagators in the diagrams
of Fig. 1 is forbidden by electric charge conservation. In a
spin-zero color superconductor, however, the condensate is
of the form hudi. Hence, electric charge can be extracted
from or deposited into the condensate of Cooper pairs in
the ground state and diagrams containing the anomalous
propagators contribute to the W-boson polarization tensor
[26].

After inserting Eq. (17) into Eq. (20), one arrives at the
following expression for the imaginary part,
Im ��

R �Q� �

T
V

Im
X
K

X
r;s

�
�k0� ��u� k�	�p0� ��d�p�	

�k2
0� �

2
k;r;u��p

2
0� �

2
p;s;d�

T �

rs;��k̂; p̂� �

�k0� ��d� k�	�p0� ��u� p�	

�k2
0� �

2
k;r;d��p

2
0� �

2
p;s;u�

T �

rs;��k̂; p̂�

�
;

(21)

where we defined the following traces in color and Dirac space,

T �

rs;��k̂; p̂� � Tr����1� �5��0P�k;r�

�
k�


�1� �5��0P�p;s�
�
p 	: (22)

In order to perform the Matsubara sum, we use Eq. (A4) in Appendix A. Then, extracting the imaginary part yields

Im ��

R �Q� � ��

X
r;s

X
e1;e2��

Z d3k
�2��3

�
T �


rs;��k̂; p̂�B
e1
k;r;uB

e2
p;s;d

nF��e1�k;r;u�nF�e2�p;s;d�

nB��e1�k;r;u � e2�p;s;d�
��q0 � e1�k;r;u � e2�p;s;d�

�T �

rs;��k̂; p̂�B

e1
k;r;dB

e2
p;s;u

nF�e1�k;r;d�nF��e2�p;s;u�

nB�e1�k;r;d � e2�p;s;u�
��q0 � e1�k;r;d � e2�p;s;u�

�
: (23)
Here, we defined the Bogoliubov coefficients

Bek;r;f �
�k;r;f � e��f � k�

2�k;r;f
; �f � u; d; e � ��:

(24)

The two terms on the right-hand side of Eq. (23) yield the
same contribution. The physical reason for this is that the
second term is just the charge-conjugate counterpart of the
first term. The formal proof goes as follows. In the second
term, one changes the summation indices e1 $ e2 and
r$ s. Then, one introduces the new integration variable
k! �k� q and uses

T �

sr;���p̂;�k̂� � T �


rs;��k̂; p̂�; (25)

which holds for all phases considered in this paper. After
taking into account that �k;r � ��k;r, one obtains the first
term in Eq. (23). Consequently, in the following we keep
only the first term and double the result,
-5
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Im ��

R �Q� � �2�

X
r;s

X
e1;e2��

Z d3k
�2��3

T �

rs;��k̂; p̂�

� Be1
k;r;uB

e2
p;s;d

nF��e1�k;r;u�nF�e2�p;s;d�

nB��e1�k;r;u � e2�p;s;d�

� ��q0 � e1�k;r;u � e2�p;s;d�: (26)

The same result may also be written in another form which
is more convenient for the use in Eq. (8b), i.e.,

Im ��

R �Q

0� � 2�
X
r;s

X
e1;e2��

Z d3k
�2��3

T �

rs;��k̂; p̂0�

� Be1
k;r;uB

e2

p0;s;d

nF�e1�k;r;u�nF��e2�p0;s;d�

nB�e1�k;r;u � e2�p0;s;d�

� ��q00 � e1�k;r;u � e2�p0;s;d�; (27)

where we have used Eq. (A2) and defined P0 � K �Q0.
034012
D. General result for the time derivative of the neutrino
distribution function

We now insert the results for the polarization tensors
(26) and (27) into Eqs. (8a) and (8b), respectively. In order
to calculate L�
�pe;p�� Im ��


R �Q�, we have to compute
the contraction of the tensor L�
�pe;p�� with the color-
Dirac trace T �


rs;��k̂; p̂�. In all cases considered in this
paper, we can write the result as
L�
�pe;p��T �

rs;��k̂; p̂� � 64�pe � pe 
 k̂�

� �p� � p� 
 p̂�!rs�k̂; p̂�; (28)
where the functions!rs�k̂; p̂� depend on the specific phase.
They are calculated in Appendix B.

Then, Eqs. (8a) and (8b) become
@
@t
f��t;p�� � �16�G2

F

Z d3pe
�2��3p�pe

Z d3k
�2��3

nF�pe ��e�
X

e1;e2��

X
rs

�pe � pe 
 k̂��p� � p� 
 p̂�!rs�k̂; p̂�

� Be1
k;r;uB

e2
p;s;dnF��e1�k;r;u�nF�e2�p;s;d���pe ��e � p� � e1�k;r;u � e2�p;s;d�; (29a)

@
@t
f��t;p�� � �16�G2

F

Z d3pe
�2��3p�pe

Z d3k
�2��3

nF��e � pe�
X

e1;e2��

X
rs

�pe � pe 
 k̂��p� � p� 
 p̂0�!rs�k̂; p̂0�

� Be1
k;r;uB

e2

p0;s;dnF�e1�k;r;u�nF��e2�p0;s;d���pe ��e � p� � e1�k;r;u � e2�p0;s;d�: (29b)
At this point it is appropriate to recall the known result that
the neutrino emission from low-temperature weakly inter-
acting matter of massless quarks is strongly suppressed by
the kinematics of the Urca processes [27]. In particular,
energy and momentum conservation requires nearly col-
linear momenta of the participating electron, up quark and
down quark (after taking into account that p� � T �
�e;�u;�d). Strong interaction between quarks changes
the situation dramatically [27]. In this case, applying
Landau’s theory of Fermi liquids, the quark Fermi velocity
is reduced, vF ’ 1� 	, where 	 � 2�s=�3�� with the
strong coupling constant �s. (Here we ignore non-Fermi
liquid corrections. For their possible effects on the Urca
processes in ungapped nuclear or quark matter see
Refs. [28,29], respectively.) A rigorous treatment of the
Fermi liquid correction would require a nonzero quark
self-energy, which we have omitted, see Eq. (11) and the
remark below that equation. However, we may introduce
the modified dispersion relations by hand in order to re-
produce the result for normal quark matter as a limit case of
our expressions. To this end, we identify the first three
factors (multiplied by kp) on the right-hand side of
Eq. (28) with the squared scattering amplitude jMj2, de-
rived by Iwamoto [27],
64G2
F�pek� pe 
 k��p�p� p� 
 p� ! jMj2

� 64G2
F�Pe 
 K��P� 
 P�: (30)

After this replacement, we take the Fermi liquid correc-
tions into account by simply following the same steps as in
Ref. [27]. As in Ref. [27], we work to lowest order in �s.
Therefore, the results of this paper are valid, strictly speak-
ing, only at densities much higher than in the interior of
neutron stars. However, the role of the strong interaction in
the neutrino emission is merely to open a phase space for
the weak processes. In view of this, the limitation due to
uncontrollable strong interaction may not be so essential
for understanding the qualitative features of the neutrino
processes in quark matter at realistic densities.

We approximate the �-functions in Eqs. (29) as follows.
By making use of the definitions p � k� pe � p� and
p0 � k� pe � p�, it is easy to show that the arguments of
the �-functions vanish only if the angle between the mo-
menta of up and down quarks ud is equal to a fixed value
0, up to corrections suppressed by powers of p�=�e.
The value of the angle 0 is given by cos0 � 1�
	�2

e=��u�d�. We note that 0 is independent of the neu-
trino energy p�. Then, both �-functions in Eqs. (29a) and
(29b) are replaced by �e=��u�d���cosud � cos0�.
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Making use of this fact, we rewrite the equations in the following form:

@
@t
f��t;p�� ’ �

64

3
�sG

2
F�e�u�d

Z dpd�p

�2��3
Z dkd�k

�2��3
�1� cos�d���cosud � cos0�

X
e1;e2��

X
rs

!rs�k̂; p̂�

� Be1
k;r;uB

e2
p;s;dnF��e1�k;r;u�nF�e2�p;s;d�nF�p� � e1�k;r;u � e2�p;s;d�; (31a)

@
@t
f��t;p�� ’ �

64

3
�sG

2
F�e�u�d

Z dpd�p

�2��3
Z dkd�k

�2��3
�1� cos�d���cosud � cos0�

X
e1;e2��

X
rs

!rs�k̂; p̂�

� Be1
k;r;uB

e2
p;s;dnF�e1�k;r;u�nF��e2�p;s;d�nF�p� � e1�k;r;u � e2�p;s;d�; (31b)

where �d is the angle between the three-momenta of the neutrino and the d quark. Here we have changed the integration
variable pe to p � k� pe � p� and p0 � k� pe � p�, respectively, and afterwards dropped the prime of p0 in Eq. (31b).

Instead of dimensionful momenta, it is convenient to introduce the following three dimensionless variables,

x �
p��d

T
; y �

k��u

T
; v �

p�
T
: (32)

In terms of the variables x and y, the range of integration runs from ��u;d=T to 1. Since the main contribution in the
integral comes from x; y� �u;d=T, the results do not change if the lower boundary is extended to�1. Then, we can drop
the x- and y-odd contributions from the Bogoliubov coefficients,

Be2
p;s;d �

1

2
�

e2x

2
�������������������������
x2 � �p;s’

2
d

q ; (33a)

Be1
k;r;u �

1

2
�

e1y

2
�������������������������
y2 � �k;r’

2
u

q ; (33b)

in the integrand, and keep only the even contributions, i.e., a constant term 1=2. After this is taken into account, we restrict
the integration over x and y from 0 to1. Accounting for the integration from�1 to 0 produces extra factors of 2 for each
integration which compensate the factors of 1=2 from the two Bogoliubov coefficients. At this point, we notice that the
difference between Eqs. (31a) and (31b) lies only in the signs in front of e1 and e2. Because of the summation over e1 and
e2, the right-hand sides of both Eqs. (31a) and (31b) are identical.

Hence, the result can be written in the following approximate form:

@
@t
f��t;p�� �

@
@t
f��t;p�� ’ �

64

3
�sG

2
F�e�u�dT

2
X
rs

Z d�p

�2��3
Z d�k

�2��3
�1� cos�d���cosud � cos0�F

rs
’u’d�k̂; p̂; v�;

(34)

where

Frs’u’d�k̂; p̂; v� � !rs�k̂; p̂�
X

e1;e2��

Z 1
0

Z 1
0
dxdy�e�e1

�����������������
y2��k;r’2

u

p
� 1��1�ee2

����������������
x2��p;s’2

d

p
� 1��1

� �ev�e1

�����������������
y2��k;r’2

u

p
�e2

����������������
x2��p;s’2

d

p
� 1��1 (35)

with ’f � �f=T.
Three out of four angular integrations in Eq. (34) can be calculated approximately in an analytical form. Details of this

calculation are deferred to Appendix C. We obtain the following main result of this section:

@
@t
f��t;p�� �

@
@t
f��t;p�� ’ �

4�sG2
F

3�4 �e�u�dT
2
X
r

Z 1

�1
d��1� � cos��F

rr
’u’d��; v�: (36)

It holds for isotropic phases as well as for phases in which the order parameter picks a special direction in momentum
space, identified with the z direction. We denote the angle between the neutrino momentum and the z-axis by �. The
function Frr’u’d��; v� is obtained from the function Frs’u’d�k̂; p̂; v� in the collinear limit (k̂ � p̂). Its explicit form reads
034012-7



TABLE II. Functions !rr��� and ��;r for four spin-one color superconductors.

Phase !11��� ��;1 !22��� ��;2 !33��� ��;3

CSL 2 2 1 0
Planar 2 1� �2 1 0
Polar 2 1� �2 1 0
A 1� sgn��� �1� j�j�2 1� sgn��� �1� j�j�2 1 0
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Frr’u’d��;v� � !rr���
X

e1;e2��

Z 1
0

Z 1
0
dxdy�e�e1

����������������
y2���;r’2

u

p
� 1��1�ee2

����������������
x2���;r’2

d

p
� 1��1�ev�e1

����������������
y2���;r’2

u

p
�e2

����������������
x2���;r’2

d

p
� 1��1:

(37)
Here � � cosu � cosd with u being the angle between
the z-axis and the u quark momentum k, and d being the
angle between the z-axis and the d quark momentum p.
The functions !rr��� and ��;r are given in Table II. One
should note that all components of !rs�k̂; p̂� with r � s
disappear in the collinear limit. This can be seen directly
from their explicit expressions given in Appendix B.
Because of this property, every excitation branch r yields
a separate contribution to the result (36).

III. NEUTRINO EMISSIVITY

In this section, we calculate the neutrino emissivity,

�� � �
@
@t

Z d3p�
�2��3

p��f��t;p�� � f��t;p��	

� �2
@
@t

Z d3p�
�2��3

p�f��t;p��: (38)
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This is the total energy loss per unit time and unit volume
carried away from quark matter by neutrinos and antineu-
trinos. Inserting Eq. (36) into Eq. (38) and making use of
the integral

X
e1;e2��

Z 1
0
dvv3

Z 1
0
dx
Z 1

0
dy�e�e1y � 1��1�ee2x � 1��1

� �ev�e1y�e2x � 1��1 �
457

5040
�6; (39)

we obtain

�� �
457

630
�sG2

FT
6�e�u�d

�
1

3
�

2

3
G�’u; ’d�

�
; (40)

where
G�’u;’d� �
1260

457�6

Z 1
0
dvv3

Z 1

�1
d�F11

’u’d��; v� �CSL; planar; polar�; (41a)

G�’u;’d� �
1260

457�6

Z 1
0
dvv3

Z 1

�1
d��F11

’u’d��; v� � F
22
’u’d��; v�	 �A�: (41b)
In all phases we consider, the emissivity �� consists of two
contributions. The first contribution is given by the term
1=3 in the square brackets on the right-hand side of
Eq. (40). It originates from the ungapped modes: r � 2
in the CSL, planar, and polar phases, and r � 3 in the A
phase. The second contribution is given by the term pro-
portional to G�’u; ’d�. It originates from the gapped
modes. The function G�’u; ’d� has to be evaluated nu-
merically for each phase separately. For the sake of sim-
plicity, we set ’u � ’d � ’ in the following. The results
for G�’;’� are plotted in the left panel of Fig. 2. The right
panel of Fig. 2 shows the function G�T�, obtained from
G�’;’� by making use of the following model temperature
dependence of the gap parameter,
��T� � �0

���������������������
1�

�
T
Tc

�
2

s
; (42)

with�0 being the value of the gap parameter at T � 0, and
Tc being the value of the critical temperature.

As a consistency check, we first read off from the figure
that the general result in Eqs. (40) and (41) reproduces the
well-known expression for the neutrino emissivity in the
normal phase. This is obtained by taking the limit ’! 0.
Of course, the result in this limit is the same for all
considered phases. Since G�0; 0� � 1, see left panel of
the figure, we recover Iwamoto’s result [27].

In the spin-one phases, the function G�’;’� describes
the suppression of the emissivity due to the presence of the
-8
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FIG. 2. Left panel: the suppression functions G�’;’� of the neutrino emission contributions due to gapped modes in the CSL, planar,
polar and A phases. Right panel: the temperature dependence of the suppression functions using Eq. (42).
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gap in the quasiparticle spectrum. In order to discuss this
suppression for the different phases, we derive analytic
results for the asymptotic behavior of G�’;’� for ’!
1. Physically, this corresponds to the low-temperature
behavior. The details of the calculation are presented in
Appendix D. The results are

G�’;’� �

8>>><>>>:
’e�

��
2
p
’ �CSL�;����

’
p

e�’ �planar�;
’�2 �polar�;
’�1 �A�:

(43)

The strongest suppression happens in the CSL phase, in
which the gap is isotropic. At large values of ’, the
emissivity is exponentially suppressed, which is universal
and qualitatively the same as, for example, in a spin-zero
color superconductor [26] or in superfluid neutron and/or
proton matter [30,31]. From a physical viewpoint, this
reflects the fact that, in a superconductor, the neutrino
emission is proportional to the density of thermally excited
quasiparticles. It is worth emphasizing, however, that the
function G�’;’� cannot be approximated well by the
exponential function at small ’. For ’ & 1, the actual
suppression is much weaker. This is also obvious from
the right panel of Fig. 2. This panel shows that, in all
phases, the function G�T=Tc� behaves almost linearly all
the way down to T=Tc ’ 0:4. In the CSL and the planar
phases, the exponential suppression starts to show up only
below this point.

The contributions from the gapped modes in the other
spin-one phases differ considerably from the CSL result.
All of them have some degree of anisotropy in the gap
function. The second strongest suppression is seen in the
planar phase. In this case, while the gap function is aniso-
tropic, it has no zeros. The dominant contribution comes
from a stripe around the equator of the Fermi sphere, where

the gap function, which is proportional to
�����������������������
1� cos2f

q
,

takes its minimum.
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In the polar phase, the gap function has point nodes at
the north and south poles of the Fermi sphere, i.e., it costs
no energy to excite quasiparticles around these points.
Therefore, these quasiparticles give the dominant contri-
bution to the emissivity. For large values of the dimension-
less variable ’, in particular, one has a power-law instead
of the exponential suppression.

The gap function in the A phase has also nodes at the
north and south poles of the Fermi sphere. However, there
is a difference compared to the polar phase in the behavior
of the dispersion relations at small angles f. While it is
linear in f in the polar phase, it is quadratic in f in the A
phase. This difference gives rise to a different suppression
of the emissivity, see Fig. 2 and Eq. (43).

The results of this section will be used in Sec. V in order
to discuss the effect of spin-one superconductivity on the
cooling rates of compact stars. Besides the neutrino emis-
sivity, this requires the calculation of the specific heat.
IV. SPECIFIC HEAT

In this section, we calculate the specific heat of spin-one
color superconductors. This result shall be used in the
discussion of the cooling rate in the next section. We
may start from the entropy density (see, for example,
Ref. [18])
S � �
X
f�u;d

X
r

nr
2

Z d3k
�2��3

fnF��k;r;f� lnnF��k;r;f�

� �1� nF��k;r;f�	 ln�1� nF��k;r;f�	g; (44)
where nr is the degeneracy of the quasiparticle branch r as
given in Table I. In each phase,

P
rnr=2 � 6, accounting

for 2 spin and 3 color degrees of freedom. The specific heat
is then obtained as
-9
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cV � T
@S
@T
�

X
f�u;d

X
r

nr
2

Z d3k
�2��3

�k;r;f
@
@T

nF��k;r;f�:

(45)

Making use of the model temperature dependence for the
gap parameter in Eq. (42), the result for all phases we
consider can be written as

cV � T
X
f�u;d

�2
f

�
1

3
�

2

3
K�’f�

�
: (46)

The structure of this result is analogous to that of emissiv-
ity in Eq. (40), i.e., the first and the second terms in the
square brackets on the right-hand side come from un-
gapped and gapped modes, respectively. The explicit
form of the function K�’� reads

K�’� �
3

�2

Z 1
0
dx
Z 1

�1
d�

e
����������������
x2���;1’2
p

�e
����������������
x2���;1’2
p

� 1�2

�

�
x2� ��;1

�
’2�

�2
0

T2
c

��
�CSL;planar;polar�;

(47a)

K�’� �
3

2�2

X2

r�1

Z 1
0
dx
Z 1

�1
d�

e
����������������
x2���;r’2
p

�e
����������������
x2���;r’2
p

� 1�2

�

�
x2� ��;r

�
’2�

�2
0

T2
c

��
�A�: (47b)

The numerical results for the function K�’� for all consid-
ered cases are plotted in the left panel of Fig. 3. The value
of this function in the limit ’! 0 does not reproduce the
result for the normal phase Kn � 1, we rather observe
lim’!0K�’�> 1. This is due to the jump of the specific
heat �cV at the point of the second order phase transition to
superconducting matter. In the model used, the magnitude
of the jump is obtained by calculating the term propor-
tional to �2

0=T
2
c in Eqs. (47). The result can be written as
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FIG. 3. The functions K�’� (left panel) and K�T=Tc� (
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�cV � ��
2
u ��

2
d�

2�2
1

Tc�2 �CSL; planar; polar�; (48a)

�cV � ��
2
u ��

2
d�
�2

1 ��
2
2

Tc�2 �A�; (48b)

where�r � �
R
d�k=�4���k;r�

1=2�0 is the quadratic mean
of the rth gap function. Using the results from Ref. [17],
cf. Eq. (118) therein, we conclude that the jump of the
specific heat is proportional to the condensation energy (at
T � 0). Hence the order of the valuesK�0� in Fig. 3 reflects
the order of the condensation energies.

As for the emissivities, we derive analytical approximate
expressions for the specific heat at asymptotically large ’,
corresponding to asymptotically small temperatures. For
the details of the calculation see Appendix E. We find

K�’� �

8>>><>>>:
’5=2e�

��
2
p
’ �CSL�;

’2e�’ �planar�;
’�2 �polar�;
’�1 �A�:

(49)

This behavior of the specific heat leads to the fact that the
curves in Fig. 3 reverse their order at large ’ compared to
’ � 0, e.g., the specific heat in the CSL phase, which has
the largest jump at the critical temperature, exhibits the
largest suppression for very small temperatures.

Note that the degree of the suppression due to gapped
modes in the specific heat and in the emissivity are similar
at large ’, cf. Eqs. (43) and (49).
V. COOLING RATES

In this section, we shall use the results for the emissivity
in Eq. (40) the specific heat in Eq. (46) in order to study
cooling of bulk matter in spin-one color-superconducting
phases. When the cooling is only due to the neutrino
emissivity, one has the following relation:

���T� � �cV�T�
dT
dt
: (50)
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right panel) for four spin-one color superconductors.
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FIG. 4. Temperature as a function of time for normal quark
matter and four spin-one ‘‘toy phases’’ (dropping the ungapped
modes). The curves represent the CSL phase (solid), planar
phase (long-dashed), polar phase (short-dashed), A phase (dot-
ted), and normal quark matter (dash-dotted).
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In order to derive the change of temperature in time, one
has to integrate the above equation,

t� t0 � �
Z T

T0

dT0
cV�T

0�

���T
0�
; (51)

where T0 is the temperature at time t0. By inserting the
expressions from Eqs. (40) and (46) into Eq. (51) and using
’u � ’d � ’, we derive

t� t0 � �
630

457

�2
u ��

2
d

�sG
2
F�e�u�d

Z T

T0

dT0

�T0�5
1� 2K�T0�
1� 2G�T0�

;

(52)

where the temperature-dependent functionsK�T� andG�T�
are obtained from the functions K�’� and G�’;’� with the
help of Eq. (42).

By making use of Eq. (52), let us estimate the cooling
behavior of a compact star whose core is made out of spin-
one color-superconducting quark matter. We start from the
moment when the stellar core, to a good approximation,
becomes isothermal. At this point, the stellar age is of the
order of t0 � 102 yr and the temperature is about T0 �
100 keV. The estimates in the literature [15,32] suggest
that the value of the critical temperature in spin-one color
superconductors is of the order of Tc � 50 keV. This is
the value that we use in the numerical analysis. Moreover,
we choose �u � 400 MeV, �d � 500 MeV, �e �
100 MeV, �s � 1. The Fermi weak coupling constant is
given by GF � 1:166 37� 10�11 MeV�2.

The numerical results show that the cooling behavior is
dominated by the ungapped modes. Consequently, to a
very good approximation, the time dependence of the
temperature can be computed by neglecting the functions
K�T0� and G�T0� in Eq. (52). In this case, an analytical
expression can be easily derived,

T�t� �
T0�1=4

�t� t0 � ��
1=4
; (53)

where

� �
315

914

�2
u ��2

d

�sG2
F�e�u�d

1

T4
0

: (54)

With the above parameters, this constant is of the order of
several minutes, � ’ 10�5 yr.

It may be interesting, although unphysical, to compare
the cooling behavior of the gapped modes of the different
spin-one phases. To this end, we drop the 1 in the numera-
tor and denominator of the integrand in Eq. (52). The
results are shown in Fig. 4. Note that both the initial
temperature T0 and the critical temperature Tc are beyond
the scale of the figure. The reason is that, even for the
gapped modes, the cooling time scale for temperatures
down to approximately 10 keV is set by the above constant
�. Therefore, all phases cool down very fast, and the
transition to the superconducting phase at T � 50 keV is
034012
hidden in the almost vertical shape of the curve. Only at
temperatures several times smaller than Tc, i.e., of the
order of 10 keV, substantial differences between the phases
appear. In this range, the fully gapped phases cool down
considerably slower than the phases with nodes on the
Fermi sphere, which, in turn, cool slower than the normal
phase. It seems to agree with physical intuition that this
order reflects the order of the suppression at low tempera-
tures for the neutrino emissivity, i.e., the slowest cooling
(isotropic gap) happens for the phase where �� is sup-
pressed strongest while the fastest cooling (no gap) hap-
pens for the smallest suppression. Note, however, that the
cooling depends on the ratio of the suppressions of �� and
cV . Therefore, this order is a nontrivial consequence of the
exact forms of the functions G�’;’� and K�’�. For large
values of ’, we may use Eqs. (43) and (49) to estimate the
ratio K�’�=G�’;’�. For both completely gapped phases
we find K�’�=G�’;’� � ’3=2 while both phases with
point nodes yield ratios independent of ’. Consequently,
for late times, T � t�2=11 in the CSL and planar phases
while T � t�1=4 in the polar, A and normal phases.
VI. SPATIAL ASYMMETRY IN THE NEUTRINO
EMISSION FROM THE A PHASE

In this section, we address a special aspect of the angular
distribution of the neutrino emission. To this end, we
consider the net momentum carried away by neutrinos
and antineutrinos from the quark system per unit volume
and time,

dP�net�

dVdt
� �

@
@t

Z d3p�
�2��3

p��f��t;p�� � f��t;p��	

� �2
@
@t

Z d3p�
�2��3

p�f��t;p��: (55)
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Analogously to the case of the total emissivity, see Eq. (40), we arrive at the following general result,

dP�net�

dVdt
�

457

945
�sG2

FT
6�e�u�dH�’u;’d�ẑ; (56)

where ẑ is the unit vector in z direction, and

H�’u; ’d� � �
420

457�6

Z 1
0
dvv3

Z 1

�1
d��F11

’u’d��; v� � 0 �CSL; planar; polar�; (57a)

H�’u; ’d� � �
420

457�6

Z 1
0
dvv3

Z 1

�1
d���F11

’u’d��; v� � F
22
’u’d��; v�	 �A�: (57b)
In the CSL, planar, and polar phases, the function
H�’u; ’d� is identically zero. This is because F11

’u’d��; v�
is an even function of � in these three phases, and therefore
the integration over � in Eq. (57a) is vanishing. This means
that the net momentum of emitted neutrinos as well as the
related net recoil momentum of bulk quark matter in the
CSL, planar, and polar phases are zero.

The result is nonvanishing, however, in the A phase. The
corresponding function H�’;’� is plotted in the left panel
of Fig. 5. From the figure, we see that H�0; 0� � 0. Of
course, this is just a consistency check that, in the limit
’! 0, we reproduce the vanishing result in the fully
isotropic normal phase of quark matter. From the numeri-
cal data, we find that the maximum value of the function
H�’;’� is approximately equal to 0:064, which corre-
sponds to the value of its argument ’ ’ 2:9. At large ’,
the asymptotic behavior ofH�’;’� is power suppressed as
2.5 5 7.5 10 12.5 15 17.5 20
ϕ

0.01

0.02

0.03

0.04

0.05

0.06

H
(ϕ

,ϕ
)

FIG. 5. Numerical results for the functions H�’;’� and H�T=Tc�
one color-superconducting A phase by neutrinos.
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1=’. For completeness, we also show the temperature-
dependent function H�T� in the right panel of Fig. 5.
This is obtained from H�’;’� by making use of the model
temperature dependence for the gap in Eq. (42).

It may look surprising that the net momentum from the A
phase is nonzero, indicating an asymmetry in the neutrino
emission with respect to the reflection of the z-axis. The
gap functions do not exhibit this asymmetry.

The origin of this remarkable result can be made trans-
parent by rewriting the expression (57b) for the A phase in
the following way,

H�’u; ’d� � �
840

457�6

Z 1
0
dvv3

Z 1

�1
d��Feff

’u’d��; v�;

(58)

where
Feff
’u’d��; v� �

X
e1;e2��

Z 1
0

Z 1
0
dxdy�e�e1

���������������������
y2��1���2’2

u

p
� 1��1�ee2

���������������������
x2��1���2’2

d

p
� 1��1

� �ev�e1

���������������������
y2��1���2’2

u

p
�e2

���������������������
x2��1���2’2

d

p
� 1��1: (59)
In the derivation, we used the explicit forms of !rr��� and
��;r from Table II. Now, the result looks as if only one
single quasiparticle mode contributes to the net neutrino
momentum. The corresponding ‘‘effective’’ gap function
has the angular dependence ��1� �� which clearly dis-
criminates between �z and �z directions.

In order to understand the physical reason for the ap-
pearance of the effective quasiparticle mode, it is useful to
0.2 0.4 0.6 0.8 1
T/Tc

0
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0.03

0.04
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H
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/T
c)

which determine the net momentum carried away from the spin-
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analyze the physical properties of the gapped modes of the
A phase, r � 1; 2. The color-spin structure of these modes
is encoded in the projection operators P�k;r. Their explicit
form is given in Eq. (B12). It is instructive to write the first
two projectors in the form

P�k;1 �
1
2J

2
3�1� sgn�k̂3�	H

��k̂� � 1
2J

2
3�1� sgn�k̂3�	H

��k̂�;

(60a)

P�k;2 �
1
2J

2
3�1� sgn�k̂3�	H��k̂� � 1

2J
2
3�1� sgn�k̂3�	H��k̂�;

(60b)

where H��k̂� � 1
2 �1�� 
 k̂� are the helicity projectors

with � � �5�0�. From Eq. (60a) we see that the quasi-
particles of the first branch have helicity �1 when the
projection of their momentum onto the z-axis is negative,
k̂3 < 0, and helicity �1 if k̂3 > 0. Quasiparticles of the
second branch have opposite helicities, see Eq. (60b).

The next step in the argument is to notice that only left-
handed quarks participate in the weak interactions which
underlie the Urca processes. Formally, this can be seen
from Eq. (20) where the left chirality projectors 1

2 �1� �
5�

occur in the first term under the trace. [Note that the second
term describes charge-conjugate quarks for which 1

2 �1�
�5� projects also onto left chirality states.] In the ultrarela-
tivistic limit, these are quarks with negative helicity.
Taking into account the helicity properties of the quasipar-
ticles in the A phase, it becomes clear that only an effective
gap structure contributes. This is constructed from the
upper hemisphere of the first mode and the lower hemi-
sphere of the second mode, see Fig. 6. This is a graphical
representation of the formal argument given after Eq. (59).
[Of course, our choice for the angular dependence of the
gap functions, namely �k;1 � �1� j coskj�

2 and �k;2 �
�1� j coskj�

2, is only one possible convention. Equiva-
lently, one could choose �k;1 � �1� cosk�

2 and �k;2 �
�1� cosk�

2, in which case the quasiparticle excitations
would be ordered according to their helicity. Then, quasi-
particles of the first (second) branch would have negative
(positive) helicity, and the weak interaction would involve
z

+1

−1 +1

−1 −1
−1

FIG. 6. Gap functions for the first (left) and the second
(middle) excitation branch with specified helicities of quasipar-
ticles in the upper and the lower hemispheres. The effective gap
relevant for the neutrino emission is shown on the right.
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only quasiparticles of the first branch. Our convention in
this paper is in accordance with Ref. [17].]

The asymmetry in the effective gap function translates
into the asymmetry of the neutrino emission. This is due to
the angular dependence of the amplitude for Urca type
processes. As in the vacuum, the corresponding amplitude
is proportional to 1� cos�d. This can be seen, for in-
stance, from the integrand in Eq. (34). Such an angular
dependence of the amplitude means that the neutrinos are
emitted preferably in the direction opposite to the (almost
collinear) momenta of the participating up and down
quarks. In fact, this is a general property that holds also
in the normal phase [27]. Since the effective gap function
assumes smaller values for quasiparticles with k̂3 < 0 than
with k̂3 > 0, there is more neutrino emission in the �z
direction.

One can estimate the maximum velocity of a neutron
star with a quark matter core in the A phase that can be
obtained by the asymmetric neutrino emission. It has been
shown that this velocity is negligibly small, e.g., of the
order 1 m=s, see the erratum in Ref. [33]. In essence, the
reason for this is that the available thermal energy in the
star, after matter in the stellar interior cools down to the
critical temperature Tc & 100 keV of the A phase, is too
small to power substantial momentum kicks. (It would be
interesting to investigate, however, if additional sources of
stellar heating, e.g., such as the latent heat from a first-
order phase transition, could change the conclusion.)

VII. QUARK MASS EFFECTS

In nature, quarks are not exactly massless. Therefore, it
is important to address the effects that the masses have on
the dispersion relations of quasiparticles, and thus on the
neutrino emissivity and the specific heat of quark matter.

In order to study the massive case, we keep the color-
spin structure of the gap matrix Mk exactly as in the
massless case, given in Eq. (9). Then, the inverse full quark
propagator can be written as follows:

S�1�K� �
�G�0 �K�	

�1 Mk�
�0My

k�
0� �G�0 �K�	

�1

 !
; (61)

with �G�0 �K�	
�1 � ��K� � �

0��m, where m is the
quark mass. For simplicity, we omit the flavor index f in
this section.

We do not repeat the detailed calculations for the emis-
sivity and the specific heat with this propagator. Instead we
assume that the main modification happens due to the
change of the quasiparticle dispersion relations. These
relations are determined by the solution to the algebraic
equation det S�1 � 0, or more explicitly,

det��G�0 �
�1�G�0 �

�1 ��2�G�0 �
�1MkG

�
0 �

0My
k�

0	 � 0:

(62)

We find that, in all considered spin-one phases, the results
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for the dispersion relations are essentially the same as in
the massless case, except for the replacement k!�����������������
k2 �m2
p

, i.e.,

�2
k;r � �

�����������������
k2 �m2

p
���2 � �k;r�2; (63)

with the same �k;r’s as for m � 0, see Table I. This result
suggests that the emissivity and the specific heat do not
change qualitatively after including quark masses. This
conclusion may not be so surprising because, in general,
nonzero quark masses are not expected to affect much the
physical properties which are dominated by quasiparticle
states in the vicinity of the Fermi sphere.

In view of the above ‘‘trivial’’ effect of the quark masses,
it is appropriate to comment on the recent study in
Ref. [34] where it is argued that there are no ungapped
modes in the CSL phase when the quarks are massive. This
may look as a contradiction to our result (63), showing that
all ungapped modes, �k;2 � 0, survive after switching on
the mass. The seeming contradiction is removed, however,
after noticing that a different choice of the gap matrix in the
CSL phase is utilized in Ref. [34]. In our notation, the
corresponding gap matrix would be obtained by replacing
�?;j�k̂� with �j in Eq. (9). After making such a replace-
ment, we find that the dispersion relations of quasiparticles
in Ref. [34] are indeed reproduced. In particular, the low-
energy dispersion relations for two out of total three differ-
ent quasiparticles are given by

�2
k;1=2 ’ �

�����������������
k2 �m2

p
���2 � 2�2

� ������������������
1�

m2

8�2

s
�

m

2
���
2
p
�

�
2
:

(64)

Note that these are obtained without the limitation of the
smallness of the quark mass m. The corresponding two
energy gaps are thus

�1=2 �
���
2
p
�
� ������������������

1�
m2

8�2

s
�

m

2
���
2
p
�

�
: (65)

The low-energy approximation, defined by �k;1=2=��

�=�� j
�����������������
k2 �m2
p

��j=�� 1, is completely sufficient
for the study of most transport and neutrino processes in
spin-one color-superconducting phases.

The dispersion relation of the third quasiparticle mode
can be extracted exactly,

�2
k;3 � �2 � k2 �m2 ��2 � 2

�������������������������������������������
�2�k2 �m2� � k2�2

q
’ �

�����������������
k2 �m2

p
���2 �

m2�2

�2 : (66)

Hence the value of the energy gap is
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�3 �
m��������������������

�2 ��2
p ’

m�
�

: (67)

For m � 0, we recover the gaps �1 � �2 �
���
2
p
�, �3 �

0. Thus, in contrast to the massive case, both CSL gap
matrices [i.e., one with �?;j�k̂� and the other with �j in the
definition of Mk] give rise to the same dispersion relations
in the ultrarelativistic case. It should be studied in the
future which of the two physically different CSL phases
at m � 0 has the lower free energy.
VIII. CONCLUSIONS

In this paper, we have computed the neutrino emissivity
due to direct Urca processes (i.e., u� e� ! d� � and
d! u� e� � ��), as well as the specific heat in four
different spin-one color-superconducting phases of dense
quark matter. Starting from the kinetic equation, we have
derived a general expression for the neutrino emissivity. In
the case of the normal phase of quark matter, this reduces
to the well-known analytical result [27]. The basic ingre-
dients in the calculation are the quasiparticle dispersion
relations, containing the spin-one gap functions. We have
studied in detail the effect of an isotropic gap function
(CSL phase) as well as of anisotropic gap functions (pla-
nar, polar, A phases). The numerical results for the emis-
sivity and the specific heat as functions of the ratio of the
gap parameter to the temperature, ’ � �=T, have been
presented.

In all four phases, also analytical expressions have been
derived in the large ’ limit (i.e., in the limit of small
temperatures). In particular, in the case of an isotropic
gap function (CSL phase), the well-known exponential
suppression of the emissivity and the specific heat is ob-
served. We find that anisotropic gaps give rise to different
asymptotes in general. For example, the phases in which
the gap has point nodes (i.e., polar and A phases) show
a power-law instead of an exponential suppression at
’! 1. The actual form of the power-law depends on
the behavior of the gap function in the vicinity of the nodes.
While a linear behavior gives rise to a suppression�1=’2,
a quadratic behavior leads to �1=’.

We have used the results for the emissivity and the
specific heat to discuss the cooling curves of spin-one color
superconductors. Our simplified analysis, performed for an
infinite homogeneous system, reveals several important
qualitative features. Most importantly, the cooling rates
of all considered spin-one color-superconducting phases
differ very little from that of the normal phase. The reason
is that, with the choice of the gap matrix as in Eq. (9), all
phases (even if the quarks are massive) have an ungapped
quasiparticle mode which dominates cooling at low tem-
peratures and, thus, makes the suppression effect due to
gapped modes unobservable. Note, however, that this con-
clusion may change if another choice of the gap matrix,
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e.g., such as used in Ref. [34], corresponds to the true
ground state of quark matter.

In addition to the cooling rates, we have discussed an
unusual property of the color-superconducting A phase, in
which the neutrino emission is not symmetric under the
reflection of one of the coordinate axes in position space.
This is seen from the fact that the net momentum of
emitted neutrinos is nonzero, pointing into a direction
spontaneously picked by the order parameter. As we have
argued, the asymmetry is related to the helicity properties
of the quasiparticles in the A phase. A helicity order arises
naturally from the structure of the gap matrix which is a
straightforward generalization of the A phase in 3He
(where, however, there is no helicity order).

So far, we did not find any observable consequence of
the helicity order in the A phase. The simplest possibility
would be realized if the asymmetric neutrino emission
could result in a ‘‘neutrino rocket’’ mechanism for stars
[33]. The estimated effect on the stellar velocity appears to
be extremely small, however. The search for other observ-
able signatures, e.g., dealing with the timing of pulsars,
may reveal other possibilities. We could also imagine that
observable signatures of the helicity-type order might be
observed in completely different systems in atomic or
condensed matter physics (e.g., trapped gases of cold
fermionic atoms, or high-Tc superconductors) if they hap-
034012
pen to have a similar structure of the order parameter, see,
for example, Ref. [35]. A systematic study of such a
possibility is outside the scope of this paper, however.
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APPENDIX A: MATSUBARA SUM

In the calculation of the polarization tensor ��

R �Q� in

Sec. II we use the following Matsubara sum:
T
X
k0

�k0 � �1��k0 � q0 � �2�

�k2
0 � �

2
1���k0 � q0�

2 � �2
2	
�

1

4�1�2

��
��1 � �1���2 � �2�

q0 � �1 � �2
�
��1 � �1���2 � �2�

q0 � �1 � �2

�
�1� nF��1� � nF��2�	

�

�
��1 � �1���2 � �2�

q0 � �1 � �2
�
��1 � �1���2 � �2�

q0 � �1 � �2

�
�nF��1� � nF��2�	

�
; (A1)
where k0 (q0) is the fermionic (bosonic) energy and
�1; �2; �1; �2 are real numbers (�1; �2 > 0). With
1� nF��1� � nF��2� �
nF��1�nF��2�

nB��1 � �2�

� �
nF���1�nF���2�

nB���1 � �2�
(A2)
and
nF��1� � nF��2� �
nF���1�nF��2�

nB���1 � �2�
� �

nF��1�nF���2�

nB��1 � �2�

(A3)
we can write the result in the following compact form:
T
X
k0

�k0 � �1��k0 � q0 � �2�

�k2
0 � �

2
1���k0 � q0�

2 � �2
2	

� �
1

4�1�2

X
e1;e2��

��1 � e1�1���2 � e2�2�

q0 � e1�1 � e2�2

�
nF��e1�1�nF�e2�2�

nB��e1�1 � e2�2�
: (A4)

This formula is applied to Eq. (21).

APPENDIX B: COLOR AND DIRAC TRACES

In this appendix, we compute the color and Dirac traces
of the tensor T �


rs;��k̂; p̂�, see Eq. (22), in the polar, planar,
A, and CSL phases. Moreover, we contract this tensor with
the tensor L�
�pe;p�, see Eq. (5), to obtain the functions
!rs�k̂; p̂�, see Eq. (28). In this appendix, for the sake of
clarity, we shall add the subscripts c or D at the symbol
‘‘Tr’’ to indicate whether the trace is taken over color or
Dirac space. In the calculation, we encounter the following
expressions:
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L00�pe;p�� � 8�pep� � pe 
 p��; (B1a)

L0i�pe;p�� � 8�pepi� � piep� � i�pe � p��i	; (B1b)

Li0�pe;p�� � 8�pepi� � piep� � i�pe � p��i	; (B1c)

Lij�pe;p�� � 8��ij�pep� � pe 
 p�� � piep
j
�

� pjepi� � i�
ij‘�pep

‘
� � p

‘
ep��	; (B1d)

where i; j � 1; 2; 3, and

T 00�k̂; p̂� � 2�1� k̂ 
 p̂�; (B2a)

T 0i�k̂; p̂� � 2�k̂i � p̂i � i�k̂� p̂�	; (B2b)

T i0�k̂; p̂� � 2�k̂i � p̂i � i�k̂� p̂�	; (B2c)

T ij�k̂; p̂� � 2��ij�1� k̂ 
 p̂� � k̂ip̂j � k̂jp̂i

� i�ij‘�k̂‘ � p̂‘�	; (B2d)

where we abbreviated

T �
�k̂; p̂� � TrD��
��1� �5��0��k�


�1� �5��0��p 	:

(B3)

Using the above results, we calculate the Lorentz contrac-
tion

L�
�pe;p��T �
�k̂; p̂� � 64�pe � pe 
 k̂��p� � p� 
 p̂�:
(B4)

This is a generic result which we shall use in the following
subsections to compute the more complicated contractions
for the spin-one phases.

1. Polar phase

The polar phase is particularly simple, since the projec-
tion operators P�k;r do not depend on the quark momentum
k. With

P �
k;1 � J2

3 ; P�k;2 � 1� J2
3 ; (B5)

we immediately find after performing the color trace

!11�k̂; p̂� � 2; !22�k̂; p̂� � 1;

!12�k̂; p̂� � !21�k̂; p̂� � 0:
(B6)
2. Planar phase

In the planar phase, we have

P�k;1 �
1

1� k̂2
3

�J2
1�1� k̂

2
1� � J

2
2�1� k̂

2
2� � fJ1; J2gk̂1k̂2

� J3k̂3�0�5� 
 k̂	;

P�k;2 � 1� P�k;1; (B7)

where fJ1; J2g denotes the anticommutator of J1 and J2. In
order to perform the color traces, we use J4

i � J2
i �i � 1; 2�

and
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Trc�J
2
i 	 � 2 �i � 1; 2; 3�; Trc�J

2
1J

2
2	 � 1;

Trc�fJ1; J2g
2	 � 2;

Trc�J2
i J3	 � Trc�J2

i fJ1; J2g	 � 0 �i � 1; 2�:
(B8)

The only apparently additional Dirac trace which occurs in
this phase is in fact identical to the above one,

TrD��
��1� �5��5� 
 k̂��k�


�1� �5��5� 
 p̂��p 	

� T �
�k̂; p̂�: (B9)

Consequently, with Eq. (B4) we find

!11�k̂; p̂� � 1
2�3� ��k̂; p̂�	;

!22�k̂; p̂� � 1
2�1� ��k̂; p̂�	;

!12�k̂; p̂� � !21�k̂; p̂� � 1
2�1� ��k̂; p̂�	;

(B10)

where

��k̂; p̂� �
4k̂3p̂3 � �k̂1p̂1 � k̂2p̂2�

2 � �k̂1p̂2 � k̂2p̂1�
2

�1� k̂2
3��1� p̂

2
3�

:

(B11)
3. A phase

In this case, there are three different quasiparticle
branches. Hence, we have three projection operators,

P�k;1 �
1
2J

2
3�1� sgn�k̂3��

0�5� 
 k̂	;

P�k;2 �
1
2J

2
3�1� sgn�k̂3��0�5� 
 k̂	; P�k;3 � 1� J2

3 :

(B12)

Again, all Dirac traces can be reduced to the previous one,
because of Eq. (B9) and

TrD����1� �5��5� 
 k̂��k�

�1� �5��0��p 	

� TrD��
��1� �5��0��k�


�1� �5��5� 
 p̂��p 	

� T �
�k̂; p̂�: (B13)

We thus find immediately, again using Eq. (B4),

!11�k̂; p̂� � 1
2�1� sgn�k̂3�	�1� sgn�p̂3�	;

!22�k̂; p̂� � 1
2�1� sgn�k̂3�	�1� sgn�p̂3�	;

(B14)

!12�k̂; p̂� � 1
2�1� sgn�k̂3�	�1� sgn�p̂3�	;

!21�k̂; p̂� � 1
2�1� sgn�k̂3�	�1� sgn�p̂3�	;

(B15)

!33�k̂; p̂� � 1;

!13�k̂; p̂� � !31�k̂; p̂� � !23�k̂; p̂� � !32�k̂; p̂� � 0:

(B16)

All vanishing functions !rs�k̂; p̂� are zero because of a
vanishing color trace. This is exactly as in the polar phase
-16



NEUTRINO EMISSION AND COOLING RATES OF . . . PHYSICAL REVIEW D 73, 034012 (2006)
where also all functions !rs�k̂; p̂�, that include one gapped
and one ungapped branch, vanish.

4. CSL phase

In the CSL phase,

P �
k;1 � �

1
2�J 
 �?�k̂�	

2; P�k;2 � 1� 1
2�J 
 �?�k̂�	

2:

(B17)

It is convenient to write these projectors with the help of
color indices a; b � 1; 2; 3,

�P�k;1�ab � �ab �
1
2�?;b�k̂��?;a�k̂�;

�P�k;2�ab � �
1
2�?;b�k̂��?;a�k̂�:

(B18)

Using these expressions, we compute the color and Dirac
traces. The only additional nontrivial trace that occurs can
again be expressed in terms of the previous one,

X3

a;b�1

TrD����1� �5��0�?;a�k̂��?;b�k̂���k�

�1� �5�

� �0�?;b�p̂��?;a�p̂���p 	 � �1� k̂ 
 p̂�2T �
�k̂; p̂�:

(B19)

Then, with Eq. (B4) we find

!11�k̂; p̂� � 1� 1
4�1� k̂ 
 p̂�2;

!22�k̂; p̂� � 1
4�1� k̂ 
 p̂�2;

!12�k̂; p̂� � !21�k̂; p̂� � 1� 1
4�1� k̂ 
 p̂�2:

(B20)

Note that we have also used the following identity:

X3

a�1

��?;a�k̂�	2 � �2: (B21)

APPENDIX C: ANGULAR INTEGRALS

Here we compute the integral

I�p�� �
Z
d�p

Z
d�k�1� cos�d���cos0 � cosud�

� F�k̂; p̂�: (C1)
034012
The result shall be applied to Eq. (34). Thus, the function
F�k̂; p̂� stands for Frs’u’d�k̂; p̂; v�, defined in Eq. (35), i.e.,
for notational convenience we omit all indices since only
the dependence on k̂ and p̂ is of relevance. For the defini-
tion of cos0 see text below Eqs. (31).

There is a fixed direction in position space, defined by
the order parameter. We choose our frame such that the
z-axis points into this direction. Moreover, for the d�k
integration, we may choose the frame such that the three-
momentum of the d quark, p, lies in the xz-plane. Then, we
can write the unit vectors of the momenta of u quark, d
quark, and neutrino as

k̂ �
sinu cos’u
sinu sin’u

cosu

0
@

1
A; p̂ �

sind
0

cosd

0
@

1
A;

p̂� �

sin� cos’�
sin� sin’�

cos�

0BB@
1CCA;

(C2)

respectively, and cosud � k̂ 
 p̂, cos�d � p̂� 
 p̂. (In this
appendix, no confusion of the angle ’u with the ratio ’u �
�u=T is possible.) In the chosen frame, the most general
angular dependence of the function F, which applies for all
phases we consider, is

F�k̂; p̂� � F�cosu; cosd; sinu sind; cos’u�: (C3)

The angular dependencies enter this function through the
eigenvalues �k;r, �p;s and the functions !rs�k̂; p̂�. In the
CSL phase, the eigenvalues are constant. However, the
functions !rs depend on the scalar product k̂ 
 p̂, where-
fore the arguments sinu sind and cos’u enter the func-
tion F. In all other phases, �k;r and �p;s are angular
dependent. They depend only on cosu and cosd, respec-
tively. The functions !rs are constant in the polar phase,
whereas they depend on cosu and cosd in the A phase. In
the planar phase, the angular dependence of the functions
!rs seems complicated, see Eqs. (B10) and (B11).
However, with p̂2 � 0, the only additional argument is
cos’u.

Let us abbreviate �i � cosi (i � u; d; 0). Then,
I�p�� �
Z
d�p�1� cos�d�

Z 2�

0
d’u

Z 1

�1
d�u���0 � �u�d �

�����������������������������������
�1� �2

u��1� �
2
d�

q
cos’u�

� F��u; �d;
�����������������������������������
�1� �2

u��1� �2
d�

q
; cos’u�: (C4)

Because of the �-function, the integral is only nonzero if�������� �0 � �u�d�����������������������������������
�1� �2

u��1� �2
d�

q ��������<1; (C5)

or, equivalently, if ��u < �u < ��u , where
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��u � �0�d �
�����������������������������������
�1� �2

0��1� �
2
d�

q
: (C6)

Consequently,

I�p�� � 2
Z
d�p�1� cos�d�

Z ��u

��u
d�u

F��u; �d;
�����������������������������������
�1� �2

u��1� �2
d�

q
; �0��u�d����������������������
�1��2

u��1��2
d�

p ����������������������������������������������������������������������
�1� �2

u��1� �
2
d� � ��0 � �u�d�

2
q : (C7)
In order to perform the �u integral explicitly, we introduce

the new variable �0u � ��u � �0�d�=
�����������������������������������
�1� �2

0��1� �
2
d�

q
with the integration range from �1 to 1. In terms of the
new variable, the integrand becomes a nonsingular func-
tion of �0 when �0 ! 1. Because of the kinematics of the
Urca processes, see text after Eqs. (29), the actual value of
�0 ’ 1� 	�2

e=��u�d� is very close to 1. Therefore, to
leading order, we may set �0 � 1. Then, the integral over
�0u can be performed analytically, and we arrive at

I�p�� ’ 2�
Z
d�p�1� cos�d�F��d; �d; 1� �2

d; 1�:

(C8)

The arguments in the function F show that the leading
result is obtained from k̂ ’ p̂. Applying this approximation
to the results of the previous appendix, we see that the
functions!rs become constant in the case of the planar and
CSL phase. [Note, in particular, that ��k̂; k̂� � 1 in the
planar phase.]
034012
In order to perform the d�p integration, we have to
reinstall the second component of the d quark momentum,
p̂2 � sind sin’d, in the term cos�d. We may perform the
integral over ’d and obtain

I�p�� ’ 4�2
Z 1

�1
d��1� � cos��F��; �; 1� �2; 1�:

(C9)
APPENDIX D: EMISSIVITY AT LOW
TEMPERATURE

In this appendix, we compute the ’ dependence of the
function G�’;’�, cf. definition (41), for ’! 1. This
corresponds to the behavior of the neutrino emissivity of
the gapped modes for small temperatures. For the phases in
which the gap function has no nodes (CSL and planar
phases), it is useful to compute the asymptotic behavior
of the following integral separately:
I�’;’� �
X

e1;e2��

Z 1
0
dvv3

Z 1
0
dx
Z 1

0
dy�e�e1

�����������
y2�’2
p

� 1��1�ee2

�����������
x2�’2
p

� 1��1�ev�e1

�����������
y2�’2
p

�e2

�����������
x2�’2
p

� 1��1: (D1)

After performing the summation over e1 and e2 explicitly and taking into account that exp�
�����������������
x2 � ’2

p
� � 1 and

exp�
�����������������
y2 � ’2

p
� � 1, we arrive at the following expression:

I�’;’� ’
Z 1

0
dvv3

Z 1
0
dx
Z 1

0
dy
�

1

e
�����������
x2�’2
p

� ev�
�����������
y2�’2
p �

1

ev�
�����������
x2�’2
p

� e
�����������
y2�’2
p �

1

ev � e
�����������
x2�’2
p

�
�����������
y2�’2
p

�
1

ev�
�����������
x2�’2
p

�
�����������
y2�’2
p

�
: (D2)

Both the third and fourth terms in the integrand yield contributions of the order of exp��2’�. For the third term we obtain

Z 1
0
dvv3

Z 1
0
dx
Z 1

0
dy

1

ev � e
�����������
x2�’2
p

�
�����������
y2�’2
p � �6

Z 1
0
dx
Z 1

0
dye�

�����������
x2�’2
p

�
�����������
y2�’2
p

Li4��e
�����������
x2�’2
p

�
�����������
y2�’2
p

�

’ 2�’5e�2’; (D3)

where we used the asymptotic behavior of the polylogarithm Li4��e
z� ’ � 1

24 z
4 for z! 1. The fourth term yields

Z 1
0
dvv3

Z 1
0
dx
Z 1

0
dy

1

ev�
�����������
x2�’2
p

�
�����������
y2�’2
p ’ 3�’ exp��2’�: (D4)

We neglect both contributions (D3) and (D4) to the integral I�’;’� since they are suppressed stronger than the first two
terms in Eq. (D2). The latter yield contributions of the order of exp��’�,
-18



NEUTRINO EMISSION AND COOLING RATES OF . . . PHYSICAL REVIEW D 73, 034012 (2006)
I�’;’� ’ 2
Z 1

0
dvv3

Z 1
0
dx
Z 1

0
dy

e�’

ex
2=�2’� � ev�y

2=�2’�
� 4’e�’

Z 1
0
dvv3

Z 1
0
dx
Z 1

0
dy

1

ex
2
� ev�y

2 ’ 42:55’e�’;

(D5)
where the overall number is obtained by performing the
numerical integration.

1. CSL phase

Using Eqs. (37), (41a), and (D5), and ��;1 � 2 (see
Table II) we immediately conclude

G�’;’� �
5040

457�6
I�

���
2
p
’;

���
2
p
’� ’ 0:69’e�

��
2
p
’: (D6)
2. Planar phase

For the planar phase, we may also use Eq. (D5) because
the gap function has no nodes around the Fermi sphere.
However, the result contains an additional angular integra-
tion. Using Eqs. (37) and (41a), and ��;1 � 1� �2, we
derive

G�’;’� �
2520

457�6

Z 1

�1
d�I�

��������������
1� �2

q
’;

��������������
1� �2

q
’�: (D7)

Approximating the angular integral as

Z 1

�1
d�

��������������
1� �2

q
e�

���������
1��2
p

’ ’
Z 1
�1

d�e��1��
2=2�’

�
�������
2�
p e�’����

’
p ; (D8)

we obtain

G�’;’� ’ 0:61
����
’
p

e�’: (D9)
3. Polar phase

In the polar phase, the low-temperature behavior of the
neutrino emissivity is dominated by the regions around the
nodes of the gap function. Since �k;1 � sin2k, the domi-
nant contribution comes from the vicinities of the north and
south pole of the Fermi sphere. The gap behaves linear
around these points,

���������
�k;1

p
’ k. To obtain the leading

order result in ’, we integrate over the region where the
quasiparticle energy is less than or of the order of the scale
set by the temperature, i.e.,

���������
�k;1

p
� & �T, or, equiva-

lently, k & �=’ (and analogously for the south pole of
the Fermi sphere). Consequently, we may use Eq. (41a), set
’u � ’d � 0 and integrate over the appropriate angular
regions. Then, upon using !11��� � 2 (see Table II) and
034012
the integral (39) we obtain

G�’;’� ’
Z �=’

0
dkk �

�2

2’2 ’
4:93

’2 : (D10)
4. A phase

As in the polar phase, the dominant contribution comes
from the nodes of the gap function. Therefore, we can
neglect the term corresponding to the first (fully gapped)
branch in Eq. (41b). We keep the term that corresponds to
the gap function given by �k;2 � �1� j coskj�

2. In con-
trast to the polar phase, the gap function behaves quadrati-
cally in the angular directions in the vicinity of the nodes,���������
�k;2

p
’ 2

k=2. Therefore, in order to be consistent with the
estimate in the polar phase, we restrict the integral to the
regions 0< k <

�������������
2�=’

p
and ��

�������������
2�=’

p
< k <�.

With !22��� � 1� sgn��� we obtain

G�’;’� ’
1

2

Z �

��
���������
2�=’
p dk��� k� �

�
2’
’

1:57

’
:

(D11)

Note that due to the factor !22���, in fact only one of the
nodes, k � �, yields a nonzero contribution. The physi-
cal reason for this is explained in detail in Sec. VI.
APPENDIX E: SPECIFIC HEAT AT LOW
TEMPERATURE

Here we compute the behavior of the function K�’�,
cf. definition (47), for ’! 1. Physically, this corresponds
to the behavior of the specific heat of the gapped modes for
small temperatures. From Eqs. (47) we conclude that for
large ’ and hence ’2 � �2

0=T
2
c

K�’� ’
3

2�2

Z 1
0
dx
Z 1

�1
d��x2���;1’

2�

�
1

1� cosh�
������������������������
x2���;1’

2
q

�
�CSL;planar;polar�;

(E1a)

K�’� ’
3

4�2

X2

r�1

Z 1
0
dxx2

Z 1

�1
d��x2���;r’2�

�
1

1� cosh�
������������������������
x2���;1’

2
q

�
�A�: (E1b)
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1. CSL phase

In the CSL phase, ��;1 � 2, thus the angular integration
d� is trivial. Moreover, we may approximate

1

1� cosh�
�������������������������
x2 � ��;1’

2
q

�
’ 2e�

������������
x2�2’2
p

’ 2e�
��
2
p
’�x2=�2

��
2
p
’�: (E2)

Consequently,

K�’� ’
6

�2

Z 1
0
dx�x2 � 2’2�e�

��
2
p
’�x2=�2

��
2
p
’�

’
3
���
2
p

�3=2
�
���
2
p
’�5=2e�

��
2
p
’ ’ 1:81’5=2e�

��
2
p
’: (E3)
2. Planar phase

As in the CSL phase, the gap has no nodes in the planar
phase. Therefore, a similar approximation can be used,

K�’� ’
3

�2

Z 1

�1
d�e�

���������
1��2
p

’
Z 1

0
dx�x2 � �1� �2�’2	

� e��x
2=�2

���������
1��2
p

’�	

’
3���

2
p
�3=2

’5=2
Z 1

�1
d�e�

���������
1��2
p

’�1� �2�5=4; (E4)

where the contribution originating from the term �x2 in
the square bracket of the first line of Eq. (E4), has been
neglected since it is suppressed by a power of ’. We can
further approximate this expression to obtain

K�’� ’
3���

2
p
�3=2

’5=2
Z 1
�1

d�e��1��
2=2�’ �

3

�
’2e�’

’ 0:95’2e�’:

(E5)
3. Polar phase

In the polar phase, with �k;1 � sin2k, we have

K�’� �
3

2�2

Z 1
0
dx
Z �

0
dk sink�x2 � sin2k’2�

�
1

1� cosh�
������������������������������
x2 � sin2k’2

p
�
: (E6)
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In this case, the dominant contribution comes from the
vicinities of the north and south pole of the Fermi sphere,
where the gap vanishes. The gap behaves linear around
these points,

���������
�k;1

p
’ k. To obtain the leading order result

in ’, we integrate over the region where the quasiparticle
energy is less than or of the order of the scale set by the
temperature, i.e.,

���������
�k;1

p
�0 & �T, or, equivalently, k &

�=’ (north pole of the Fermi sphere, the south pole yields
the same result). Consequently,

K�’� ’
3

�2

Z 1
0
dx

1

1� cosh�x�

Z �=’

0
dkk�x2 � 2

k’
2�

�
5�2

4

1

’2 ’
12:34

’2 : (E7)
4. A phase

In the A phase, we use Eq. (E1b), i.e., in principle, we
have to consider two different angular gap structures.
However, the small temperature behavior is dominated
by the nodes of the gap. Therefore, it is sufficient to
consider only the second branch, �k;2 � �1� j coskj�

2,

K�’� �
3

4�2

Z 1
0
dx
Z �

0
dk sink�x

2��1� jcoskj�
2’2	

�
1

1� cosh�
����������������������������������������������
x2��1�jcoskj�

2’2
p

�
: (E8)

Contrary to the polar phase, the gap function behaves
quadratically in the angular directions in the vicinity of
the nodes,

���������
�k;2

p
’ 2

k=2. Therefore, in order to be consis-
tent with the estimate in the polar phase, we restrict the
integral to the region k &

�������������
2�=’

p
,

K�’� ’
3

2�2

Z 1
0
dx

1

1� cosh�x�

�
Z ���������

2�=’
p

0
dkk

�
x2 �

4
k

4
’2

�
�
�
’
’

3:14

’
:

(E9)
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[18] D. Vollhardt and P. Wölfle, The Superfluid Phases of
Helium 3 (Taylor & Francis, London, 1990).
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