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Bound state effects in transverse momentum parton distributions
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We derive a nonperturbative transverse momentum distribution for partons using a potential model to
describe the quark-quark interaction inside the proton. We use this distribution in the calculation of the
differential cross section of �0 production for intermediate transverse momentum values in p� p
collisions at high energies. Assuming a variable string tension constant for the quark-quark potential
we obtain a very good description of the experimental data at different energies. The corresponding values
of the mean transverse momentum of the partons are essentially lower than those obtained using a
Gaussian transverse momentum parton distribution. Using the same approach we can also describe the
proton production data in the Chicago-Princeton experiment. Our analysis indicates that bound state
effects may be important for the description of the experimental data in proton-proton collisions.
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I. INTRODUCTION

During the last decades the tests of perturbative QCD
have been focused on the experimental [1–16] and theo-
retical study [17–27] of hard processes like direct photon
and �0 production with large transverse momentum in pp,
pA, and AA collisions. These processes offer a unique
possibility to test the parton distribution functions (PDF)
inside the proton as well as the parton fragmentation
functions (PFF) determined by deep inelastic scattering
or e�e� annihilation. In particular the good understand-
ing of the pp data is the prerequisite for any attempt to
extract new physics, related to the formation of a quark-
gluon plasma phase, from the pA and AA data. Extensive
studies of the � (or �) production in pp collisions have
shown that the transverse momentum distribution g�kT� of
the partons inside the proton has to be taken into account
for a successful description of the observed pT spectrum
[21–24]. In all these investigations one assumes a Gaussian
form for g�kT�. A new nonperturbative parameter is intro-
duced through this approach: the mean intrinsic transverse
momentum hkTi of the partons. Although the data of
some experiments concerning hadron production at large
pT [21,22] could be explained with relatively small hkTi
values ( � 0:3–0:5 GeV), compatible with the Heisenberg
uncertainty relation for partons inside the proton, there
are a number of other processes leading to a large mean
transverse momentum (hkTi � 1–4 GeV), depending on
Q2, for a description of the corresponding experimental
data. Such a value of hkTi is too high and cannot be
explained as an internal structure of the proton [24].
However, as mentioned by several authors [20–22] the
form of g�kT� can influence significantly the value of
hkTi as well as its pT dependence. In the present work
we derive a transverse momentum distribution for the
partons inside the proton using a potential quark model
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which has successfully been used to describe the spectra
of mesonic [28,29] and baryonic [29,30] bound states
in the past. Following [30,31] we investigate the three-
body quantum mechanical bound state problem solving
numerically the Schrödinger equation and obtaining the
single particle transverse momentum distribution for the
constituent parton. Our main assumption is that intrinsic
transverse momentum effects are not influenced by the
Lorentz boost along the beam axis and therefore could be
treated within a nonrelativistic approach. We use the de-
rived distribution to fit experimental data for the pp!
�0 � X and pp! p� X process. In particular we inves-
tigate the measurements for the pT spectrum of the out-
coming �0 in four experiments performed at different
center of mass energies. It turns out that a relatively low
mean transverse momentum hkTi�� O�300 MeV��, com-
patible with intrinsic dynamics inside the proton, for the
initial partons is sufficient in order to fit perfectly the
experimental data. A smooth dependence of hkTi on pT ,
which within our approach is induced by a correspond-
ing variation of the string tension in the quark-quark po-
tential, is required. Our analysis shows that the kT distri-
bution of the constituent partons can be strongly influenced
by three-body effects and the form of the confining po-
tential which have to be taken into account in order
to describe correctly the experimental data concerning
the pion production in pp collisions. The paper is organ-
ized as follows: in Sec. II we present the parton model
differential cross section as well as the corresponding
kinematics for the �0 production in pp collisions. In
Sec. III we derive the intrinsic transverse momentum dis-
tribution for the partons inside the proton using the quark
potential model of [28]. In Sec. IV we present our numeri-
cal results concerning the description of the data of four
different experiments [1,6,7,16] as well as the correspond-
ing dependence hkT�pT�i. Finally, in Sec. V we summarize
our study and we discuss possible extensions of the present
analysis.
-1 © 2006 The American Physical Society
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II. THE pp! �0 � X CROSS SECTION

The differential cross section for the production of had-
ron h in pp collisions within the perturbative QCD im-
proved parton model is given by

E�
d�

d3p
�pp! h� X� � K

X
abcd

Z
dxadxbfa=p�xa;Q2�

� fb=p�xb;Q2�
d�
dt̂
�ab! cd�

�
Dh=c�zc; ~Q2�

�zc
: (1)

The convolution appearing in Eq. (1) is based on the
factorization theorem which allows for the absorption of
higher order mass singularities into the uncalculated por-
tions of the partonic distribution and fragmentation func-
tions [17,22,32]. In Eq. (1) fi=p�xi; Q2� (i � a; b) are the
parton distribution functions for the colliding partons a and
b in the interacting protons as functions of longitudinal
momentum fraction xi at scale Q. The hard scattering cross
section d�

dt̂ describes the partonic subprocess ab! cd. The
parton fragmentation function Dh=c�zc; ~Q2� gives the
probability for parton c to fragment into hadron h with
momentum fraction zc at scale ~Q. Finally the factor K can
be adjusted to the value K � 2 in order to take into account
higher order corrections in the partonic subprocesses. In
the following analysis we will use different choices for the
factorization scales Q, ~Q. In addition we will use alter-
natively the values K � 1 and K � 2 for the factor K
corresponding to leading order or higher order approxima-
tion to the partonic cross sections, respectively. Assuming
that the distribution of the partonic transverse momentum
is independent of the longitudinal momentum fraction x
and the scale Q permits us to use the widely applied in the
literature factorization ansatz and include parton transverse
momentum effects in our approach through the replace-
ment [21,22,33]:

dxifi=p�xi; Q
2� ! dxid

2kT;ig� ~kT;i�fi=p�xi; Q
2�; (2)

with i � a; b. In order to avoid singularities introduced by
including partonic transverse momentum in the differential
cross sections, describing the relevant subprocesses, we
adopt the old-fashioned regularization scheme using a
finite parton mass m � 0:8 GeV, as in [20,23,24], in the
Mandelstam variables occurring in the denominator of the
corresponding matrix elements as this choice is easier
implemented in our phenomenological analysis.
However, as it will be discussed below, the obtained nu-
merical results are almost independent on the particular
value of m.

The explicit formulas of the relevant partonic cross
sections can be found in [22]. Taking into account the
transverse degrees of freedom we get the following ex-
pressions for the variables ŝ; t̂; û:
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ŝ � sxaxb �
k2
T;ak

2
T;b

sxaxb
� 2 ~kT;a � ~kT;b;

t̂ � �
�
xa �

k2
T;a

sxa

�
pT

���
s
p

zc
�

2

zc
~kT;a � ~pT;

û � �
�
xb �

k2
T;b

sxb

�
pT

���
s
p

zc
�

2

zc
~kT;b � ~pT:

(3)

Because of energy-momentum conservation the momen-
tum fraction of the final hadron zc is given by

zc �
�xa �

k2
T;a

sxa
� xb �

k2
T;b

sxb
�pT

���
s
p
� 2� ~kT;a � ~kT;b� � ~pT

ŝ
:

(4)

For a consistent description of the kinematics in the par-
tonic subprocesses we imply the cuts:

zc 	 1; k2
T;i <min�pT

���
s
p
; x2
i s�; i � a; b: (5)

To calculate the cross section given in Eq. (1) we first have
to determine the distribution g� ~kT� and then perform the
corresponding phase space integrations. Contrary to the
usual treatment assuming a Gaussian form for g� ~kT� we
will here derive an alternative expression based on a widely
applied quark potential model.
III. THE INTRINSIC TRANSVERSE MOMENTUM
DISTRIBUTION g� ~kT�

Since the early days of quantum chromodynamics the
main and almost unique tool used for the description of the
hadronic bound states (mesons, baryons) remain potential
models for the quark-quark and quark-antiquark pair inter-
action. One of the most successful models was proposed by
A. Martin used first to describe mesonic states [28] and
later to describe heavy baryons [30]. A similar model [34],
with respect to its functional form, reproduces also the
spectrum of light baryons. However, when short distance
dynamics become relevant more realistic models including
an explicit Coulomb part have been proposed by several
authors [29,35]. In the following calculations we will use
exclusively Martin’s model [28,30] as we are less inter-
ested in a detailed description of the corresponding had-
ronic spectrum than in a rather rough estimation of bound
state effects in the transverse momentum distribution of the
partons inside the proton. The quark-quark interaction
within this model is given as

V�r� � Aqqr0:1 � Bqq; (6)

and a similar expression with adapted coefficients A �qq, B �qq

holds for the quark-antiquark interaction. In the following
we will consider a baryon consisting of three valence
quarks interacting pairwise with the potential (6). The
Hamiltonian operator of the system is given as
-2



FIG. 1. The intrinsic transverse momentum distribution
2�kTg� ~kT� of a parton inside the proton obtained through the
quark potential model described in Sec. III.
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Ĥ � �
@

2

2m
�r2

1 �r
2
2 �r

2
3� � V� ~r12� � V� ~r23� � V�~r31�:

(7)

The translation invariant part of the Hamiltonian (7) is
searched for variationally as ��3=2 u0���

�5=2 , with �2 � 2
3 �

�r2
12 � r

2
23 � r

2
31�, leading to [30]

d2u0

d�2
�

15

4�2 u0 �
m

@
2 �EG �

~V00�u0 � 0; (8)

where ~V00 � A00 � B00�0:1 with A00 �
3
2Aqq and B00 �

1
2�Bqq. The constant � is given by � �
24
� ��1:55���1:5���3:05�. It is straightforward to show that
the ground state wave function in the momentum space is
given by

~��k2
�� � N

Z 1
0
d��1=2u0���

J2�k��� � k��J3�k���

k2
�

; (9)

where Jn is the Bessel function of order n and N is a
normalization constant. In the center of mass frame ( ~k1 �
~k2 � ~k3 � ~0) of the baryonic system holds

k2
� � k2

1 � k
2
2 �

~k1 � ~k2;

and the two-particle density �� ~k1; ~k2� is given by

�� ~k1; ~k2� � j ~��k
2
��j

2 � j ~��k2
1 � k

2
2 �

~k1 � ~k2�j
2: (10)

From Eq. (10) we obtain the one-particle transverse mo-
mentum density g� ~kT� as

g� ~kT� � 4�
Z 1

0
dkz

Z 1

�1
dz
Z 1

0
dk2k2

2

�

�������� ~�
�
k2
T � k

2
z � k2

2 � zk2

����������������
k2
T � k

2
z

q ���������
2
; (11)

where z is the cosine of the angle between the vectors ~k �
� ~kT; kz� and ~k2. In fact the function u0��� can be obtained
only numerically by solving Eq. (8) using the Numerov
algorithm. Therefore the transverse momentum distribu-
tion (11) is also known only numerically. The integrations
in Eqs. (9) and (11) can be performed to a great accuracy
(relative error � 10�6) using a mixture of Gauss-Kronrod
quadrature and the VEGAS Monte-Carlo integration rou-
tine [36]. In Fig. 1 we present the density in transverse
momentum space of a parton inside the proton obtained by
our approach. The values of the constants Aqq and Bqq are
chosen according to [30] in order to approximately fit the
size and the binding energy of the proton. The character-
istic structure of g� ~kT� within our model is the second
maximum at relative high transverse momenta. This leads,
as we will see in the next section, to a reduction, relative to
the Gaussian case, of the mean intrinsic transverse mo-
mentum of the partons needed to describe the experimental
data for the �0 production at various energies.
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IV. NUMERICAL RESULTS

In the following we will use the derived distribution
g� ~kT� in order to calculate within the parton model the
differential cross section for the �0 production in pp
collisions according to Eq. (1). The only free parameter
in our approach is the mean transverse momentum of the
initial partons hkTi, related to the string tension Bqq in
Eq. (6), which is adjusted in order to fit the experimental
data for different beam energies and different transverse
momenta pT of the final hadrons. In addition, although the
distribution g� ~kT� is derived for the valence quarks inside
the proton, here, we will use the same distribution also for
the initial gluons assuming universality at the level of
constituent partons. In any case for longitudinal momen-
tum fraction xi > 0:5 (i � a; b) the contribution of valence
quarks is dominant and our description is accurate. The
phase space integrations in Eq. (1) are performed using the
VEGAS Monte Carlo routine.

As mentioned in [22] the values of the calculated cross
sections are influenced by the choice of factorization scales
Q, ~Q, the PDF, and FF and finally the inclusion or not,
-3
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through the K factor, of higher order corrections in the
partonic subprocesses. In particular we are interested in
estimating how the pT dependence of the hkTi values,
needed for an accurate description of the experimental
data, is affected by these choices. In order to proceed in
a systematic way we consider four different sets, each one
characterized by a particular choice of PDF, PFF, K facto,r
and factorization scales Q, ~Q.
(1) I
n the first set we use for the PDF the recent Martin,
Roberts, Stirling, and Thorne scheme [37] in next-
to-next-to-leading order while for the PFF we use
the Kniehl, Kramer, Potter [38] parametrization in
next-to-leading order. For the partonic subprocesses
we consider the leading order cross-sections with a
K � 2 factor incorporating the higher order correc-
tions. The factorization scales are fixed to Q2 �
~Q2 � 2ŝ t̂ û

ŝ2�t̂2�û2 proposed in [20] with ŝ; t̂; û the usual
Mandelstam variables.
(2) I
n set 2 the PDF, PFF, and K factor are exactly the
same as in set 1 while the corresponding choice for
the factorization scales is Q � pT and ~Q � pT

zc
.

(3) I
n set 3 we use the leading order Martin, Roberts,
Stirling, and Thorne PDF [39], the leading order
Kniehl, Kramer, Potter parametrization for the
PFF, K � 2 and Q2 � ~Q2 � 2ŝ t̂ û

ŝ2�t̂2�û2 .

(4) F
inally in set 4 we use the same choices as in set 3

but now we take K � 1 ignoring the effect of higher
order corrections in the partonic subprocesses.
FIG. 2. The differential cross section for the �0 production in
the Fermilab experiment [1]. The symbols represent the experi-
mental data sets for three different beam energies. The solid lines
represent the parton model results using a non-Gaussian g� ~kT�
while the dotted lines correspond to the analogous results using a
Gaussian kT smearing. Only for pT < 1 GeV the two fits differ.
This is clearly displayed in the inset. For all the calculations we
have used set 1 for PDF, PFF, K factor, and factorization scales
Q, ~Q.
The detailed phenomenological analysis using all these
sets in our numerical calculations is performed only for
the most sensitive case in order to obtain an upper limit of
hkTi. The remaining analysis is performed using exclu-
sively set 1 which turns out to be the most representative
with respect to the determined hkTi values. Comparison
between the results obtained using set 1 and set 2 allows us
to estimate the effect of the factorization scales while the
corresponding comparison between set 1 and set 3 isolates
the influence of PDF and PFF choice in our calculations.
Finally, comparing results obtained using set 3 and set 4,
respectively, we extract the effect of the K factor.

We will analyze here the results of four experiments
concerning �0 production at different energies. The first
set of data is taken from the fixed target experiment per-
formed in Fermilab (protons incident onH2 target) [1]. The
cross section for the �0 production with transverse mo-
mentum pT at midrapidity and for three different proton
beam energies EL � 200, 300, and 400 GeV is measured.
In Fig. 2 we present the various data sets using symbols
while with solid lines we show the results of the calculation
using the g� ~kT� obtained in the previous section and with
dashed lines the corresponding results using a Gaussian
g� ~kT�. In both calculations we have chosen for PDF, PFF,K
factor, and factorization scales Q, ~Q those of set 1 de-
scribed above. As we can see, the two descriptions differ
only in the region pT < 1 GeV. Within our approach we
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need an intrinsic transverse momentum hkTi of the order of
at most 0.5 GeV in order to reproduce all the experimental
data. It must be noted that in this case one can perfectly fit
the data also for pT < 1 GeV which, as we clearly see in
the inset of Fig. 2, is not possible using a Gaussian distri-
bution g� ~kT�. In Fig. 3 we show the functions hkTi�pT�
obtained using the quark model inspired function g� ~kT� as
well as a Gaussian form. These results correspond to the
calculation presented in Fig. 2 and are obtained using set 1.
It is evident that the Gaussian model leads to much higher
values of hkTi. As already discussed in the previous section
this difference relies on the fact that the non-Gaussian
g� ~kT� derived here possesses a second small local maxi-
mum at high transverse momenta (see Fig. 1) attributed to
the form of the quark-quark potential and the many-body
character of the system.
-4



FIG. 3. The functions hkT�pT�i for the three data sets presented
in Fig. 2. We distinguish between the results of the parton model
using non-Gaussian (n. G.) or Gaussian (G.) intrinsic transverse
momentum distribution.
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As we can see in Fig. 3, the most sensitive process in the
variation of hkTi values is the �0 production at EL �
200 GeV. Therefore, we restrict to this process in order
to perform a detailed phenomenological analysis of the pT
dependence of hkTi using the four different sets of PDF,
PFF, K factor, and factorization scales Q, ~Q defined above
and obtain an upper limit for the hkTi values needed to
describe the experimental data. In Fig. 4 we show the
function hkTi�pT� for the four different choices: set 1
(open circles), set 2 (full triangles), set 3 (full stars), and
FIG. 4. The functions hkT�pT�i needed for a perfect fitting of
the cross section for �0 production at EL � 200 GeV (CP
Collaboration) using the different sets (1– 4) of choices for
PDF, PFF, K factor, and factorization scales Q, ~Q.
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set 4 (crosses). In all cases a perfect fit of the experimental
data is achieved. We observe that the main variation of
about 30% in the hkTi value is caused by the choice of
factorization scales Q, ~Q (compare set 1 with set 2 results)
and a similar effect ( � 26%) is induced by the choice ofK
factor (compare set 3 with set 4 results). The corresponding
hkTi variation caused by the choice of PDF and PFF is
much smaller ( � 8%) (compare set 1 with set 3 results).
Using set 4 we obtain the maximum value hkT;maxi �
0:53 GeV needed to describe the �0 production at pT �
0:77 GeV and EL � 200 GeV.
FIG. 5. (a) The differential cross section for the �0 production
in the Fermilab experiment [1]. The symbols represent the parton
model results using a non-Gaussian g� ~kT� while the lines corre-
spond to the analogous results using the simple parton model
without intrinsic transverse momentum. The PDF, PFF, K factor,
and factorization scales Q, ~Q are chosen according to set 1.
(b) The differential cross section for �0 production at EL �
200 GeV using set 2 with (crosses) and without (dotted line) kT
smearing. For comparison we display also the corresponding
results using set 1.

-5



FIG. 6. The differential cross section for the p� �p production
in the Fermilab experiment [1]. The symbols represent the
experimental data sets for three different beam energies. The
solid lines represent the parton model results using a non-
Gaussian g� ~kT� (set 1).

FIG. 7. The hkTi values used to obtain the theoretical predic-
tions of Fig. 6 (symbols). In the same plot we show the
corresponding behavior obtained from the �0 production. The
stratisfied region determines the hkTi domain needed to describe
the �0 production using Gaussian intrinsic transverse momen-
tum distribution.
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To estimate the contribution of the intrinsic partonic
transverse momentum in the above calculations we have
determined the cross sections for the �0 production using
the simple parton model without intrinsic transverse mo-
mentum distribution of the partons. In Fig. 5(a) we show
the results of our calculations using set 1 for PDF, PFF, K
factor, and Q, ~Q. With symbols we show the cross section
obtained using non-Gaussian intrinsic transverse momen-
tum distribution while with lines we give the corresponding
results without intrinsic kT . For the case of EL � 200 GeV
we have repeated the calculations using set 2. The results
are displayed with crosses (including kT smearing) and
with a dotted line (no kT smearing) in Fig. 5(b). In the
same figure we also show for comparison the correspond-
ing results using set 1 (open circles and solid line, respec-
tively). It is clearly observed that the choice Q2 � 2ŝ t̂ û

ŝ2�t̂2�û2

is not the best in order to fit the experimental data by the
simple (without intrinsic kT) parton model. Therefore, the
kT-smearing effect shown in Fig. 5(a) is in fact overesti-
mated. Here we are interested to show that using the non-
Gaussian g�kT� the corresponding hkTi, needed to describe
the experimental data, does not exceed the value compat-
ible with Heisenberg’s uncertainty relation. Therefore, in
the following we will use the factorization scales given in
set 1 obtaining in this way larger values for hkTi. On the
other hand, we would like to argue that kT smearing be-
sides higher order corrections incorporates also nonpertur-
bative effects and, therefore, we will use in the following
calculations set 1 containing the most updated PDF and
PFF and K � 2.

In order to test our model further, we also have calcu-
lated the cross section for pp! p� �p

2 � X using the non-
Gaussian transverse momentum distribution derived in the
previous section and compared with the data available
from the above mentioned CP Collaboration experiment
at Fermilab [1]. The results are in very good agreement
with those obtained from the �0 production. In Fig. 6 we
show the cross sections for the proton production at three
different energies (EL � 200, 300, and 400 GeV) as a
function of the transverse momentum pT of the final had-
ron. The experimental data are presented by symbols while
the theoretical calculations are shown by solid lines. In
Fig. 7 we display with symbols the hkTi values used to
obtain the theoretical results of Fig. 6 for different pT . It is
interesting that using values hkTi< 0:55 GeV we achieve a
perfect description of the experimental data. In the same
plot we present with solid lines the corresponding func-
tions hkTi�pT� used to describe the �0 production. The
stratified area displays the range of hkTi values needed
for a good description of the �0 production using
Gaussian intrinsic transverse momentum distribution.
Concerning the hkTi dependence on pT we observe a
very good agreement of the results obtained from the �0

production with those obtained from the proton production
for pT > 4:5 GeV.
034007-6



FIG. 9. The differential cross section for �0 production in
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The second experiment we have considered is the �0

production at the proton-proton Intersecting Storage Ring
(CERN) [6]. We have calculated the cross section at two
different energies

���
s
p
� 53 and 63 GeV. Our results are

shown in Figs. 8(a) and 8(b). As in the previous case in
Fig. 8(a) we show the experimental data with symbols and
with solid lines the theoretical results, using non-Gaussian
kT smearing, for the cross section pp! �0 � X for differ-
ent pT values. In Fig. 8(b) we give the dependence hkTi�pT�
used to obtain within our model the cross sections of
Fig. 8(a). As one can see the needed values of hkTi are in
the range 0.18–0.23 GeV in accordance with the results
obtained for the CP Collaboration.

The third experiment we consider is the WA70 at CERN
SPS [7]. It is also a fixed target experiment with EL �
280 GeV. We are interested in �0 production. In Fig. 9 we
show the experimental data (full stars) and the correspond-
ing perturbative QCD calculation using the quark model
inspired g� ~kT� (solid line) as well as a Gaussian form
(dashed line). In this pT region both distributions repro-
duce perfectly the experimental data and cannot be distin-
guished graphically. However, our approach leads to
significantly lower values of hkTi than in the Gaussian
case. This can be seen clearly in Fig. 10 where we show
the function hkT�pT�i both for the quark potential model
inspired g� ~kT� (full circles) as well as the Gaussian intrin-
sic transverse momentum distribution (full stars). For com-
parison we present the same function for the Fermilab
experiment at EL � 300 GeV (open circles, see Fig. 3).
FIG. 8. (a) The differential cross section for the �0 production
in the ISR (CERN) experiment [6]. The symbols represent the
experimental data sets for two different beam energies. The solid
lines represent the parton model results using a non-Gaussian
g� ~kT� (set 1). (b) The hkTi values (symbols) used to obtain the
theoretical predictions of Fig. 8(a).

WA70 at EL � 280 GeV (full stars) and the corresponding
parton model calculation using a non-Gaussian (solid line) as
well as a Gaussian (dotted line) g� ~kT�. Both distributions fit
perfectly the experimental data in this pT range and therefore are
barely distinguishable in the present plot.

FIG. 10. The dependence kT�pT� for the WA70 data set using a
non-Gaussian as well as a Gaussian g� ~kT� in comparison with the
corresponding behavior found for the Fermilab experiment at
EL � 300 GeV with a non-Gaussian g� ~kT�.

034007-7



FIG. 12. The function hkT�pT�i obtained using the non-
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Finally we have analyzed the pp! �0 � X data of the
most recent PHENIX experiment at the Relativistic Heavy
Ion Collider with

���
s
p
� 200 GeV [16]. The corresponding

cross section can be described to a good accuracy without
inclusion of any kT smearing, a fact which is compatible
with expectations for the perturbative character of the
subprocesses involved in this case. Here we have fitted
the experimental data using non-Gaussian kT-smearing
effects. In this way we get a perfect description of the
measured cross section. The obtained mean intrinsic trans-
verse momentum is almost constant: hkTi � 250 MeV.
Based on Heisenberg uncertainty relation one could ex-
plain this value of the mean transverse momentum as an
effect of the internal partonic structure of the incident
proton. Our results are presented in Figs. 11 and 12. The
PHENIX data (open cirlces) for E d3�

dp3 together with the

parton model calculations (crosses) using non-Gaussian

Gaussian g� ~kT� in the parton model description of the
PHENIX data. The solid line at 250 MeV is shown as a guide.

FIG. 11. The pp! �0 � X differential cross section for the
PHENIX experiment (

���
s
p
� 200 GeV). The experimental data

are presented by open circles while the crosses indicate the
parton model calculation using a non-Gaussian kT smearing
(set 1). Only the experimental errors can be seen at this scale.
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g� ~kT� are shown in Fig. 12. The corresponding function
hkTi�pT� is presented in Fig. 12.

To allow for a good comparison between the Gaussian
and non-Gaussian description of the intrinsic transverse
momentum distribution of the partons we summarize all
the results for the hkT�pT�i dependence, obtained through
our analysis, in Fig. 13. We restrict ourselves to the results
of the �0 production. The Gaussian case concerns only the
CP Collaboration data at the three energies (EL � 200,
300, 400 GeV) and the corresponding hkTi values are
presented by the same symbol (full square) for all these
energies. The non-Gaussian description determines a quite
narrow band at relatively small values of hkTi (compatible
with the momentum uncertainty of the partons inside the
FIG. 13. The results for hkT�pT�i values obtained in order to
describe the �0 production data taking into account the intrinsic
transverse momentum distribution of the partons.
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proton) which suffices for a very good description of all the
analyzed experimental data. Finally we would like to add a
few comments concerning the parton mass introduced to
regularize the singularities in the partonic cross sections
after the introduction of kT smearing. As already men-
tioned in Sec. II in all the presented results containing
partonic transverse momenta we have used the value m �
0:8 GeV. In order to test the sensitivity of the obtained hkTi
on the choice of m we have performed calculations for �0

production at EL � 200 GeV (CP experiment) using dif-
ferent values of m varying from m � 0:6 GeV to m �
1 GeV. We have found that for low pT the corresponding
change in the hkTi value was� 5% while for increasing pT
this variation decreases approaching 0 for pT � 6:15 GeV.
Thus the results presented above do not practically depend
on the regularizing partonic mass m.
V. CONCLUDING REMARKS

Using a quark potential model capable to describe con-
sistently baryonic systems as three quark bound states we
have derived an intrinsic transverse momentum distribu-
tion g� ~kT� of partons inside the proton. This, clearly non-
Gaussian, distribution is characterized by the presence of a
smooth local maximum at relatively high transverse mo-
menta. Our approach is based on the idea that transverse
momentum effects may be described nonrelativistically as
they are not influenced by the Lorentz boost along the
beam axis. Describing the kT-smearing effects in the parton
model for pp collisions through this non-Gaussian distri-
034007
bution we calculated the differential cross section for �0 as
well as p production at midrapidity for different beam
energies. Assuming that the corresponding nonperturbative
parameter hkTi, related to g� ~kT�, depends on pT of the
finally produced hadron as well as the incident energy,
we obtain a very good description of the experimental
data measured in pp collisions at four different experi-
ments. The corresponding values of hkTi as a function of
pT could originate, according to Heisenberg uncertainty
relation, from the internal partonic structure of the proton
and define a narrow band. It is interesting to investigate the
possibility to describe in a similar way other processes like
the single photon production, the Drell-Yan pair produc-
tion or the deep inelastic scattering [40]. Additionally it is
challenging to extend our approach to pA and AA pro-
cesses. The performed analysis, although incorporating
several approximations, shows that many-body effects
through a confining potential, reflected at the level of
one-particle distributions, may influence strongly the
kT-smearing phenomena observed in hadronic collisions
and therefore should be taken into account for a better
description of the experimental data.
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