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Next-to-next-to-next-to-leading-order soft-gluon corrections in hard-scattering processes
near threshold
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I present a unified calculation of soft-gluon corrections to hard-scattering cross sections through next-
to-next-to-next-to-leading order (NNNLO). Master formulas are derived, from a threshold resummation
formalism, that can be applied to total and differential cross sections for hard-scattering processes in
hadron colliders. I also present numerical results for charged Higgs production at the LHC where these
corrections are large, and for top quark production at the Tevatron where these corrections greatly reduce
the scale dependence of the cross section.
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I. INTRODUCTION

Calculations of hard-scattering cross sections become
very complicated as one moves from the lowest order to
higher-order corrections. Current theoretical approaches
include a variety of resummations and fixed-order calcu-
lations, some through next-to-next-to-leading order
(NNLO) [1]. These tools can greatly improve next-to-
leading order (NLO) calculations because higher-order
corrections reduce the scale dependence and increase theo-
retical accuracy.

The QCD corrections can be separated into hard, soft,
and virtual parts, corresponding to contributions from en-
ergetic, soft, and virtual gluons, respectively. The soft-
gluon corrections are an important component of the total
result and, in some schemes and kinematical regions, e.g.
threshold, they are numerically dominant. There is a uni-
versality in the form of these soft-gluon corrections, as can
be clearly seen from the techniques of threshold resumma-
tions, which formally resum the soft-gluon contributions to
all orders in the strong coupling [2–8]. Although re-
summed calculations are prescription-dependent (see dis-
cussion in Ref. [9]), finite-order expansions of resummed
cross sections are not, and they have provided us with
many cross sections with NNLO soft-gluon corrections
(for a review see Ref. [10]). Examples include W-boson
production at large transverse momentum [11], direct pho-
ton production [12], top quark production [9,13,14], bot-
tom and charm quark production [15], heavy quark
electroproduction [16] and photoproduction [17], charged
Higgs production [18], and jet production [19].

The NLO soft-gluon corrections are typically a very
good approximation to the exact NLO corrections near
threshold. The NNLO soft-gluon corrections can be nu-
merically significant and they invariably improve the theo-
retical calculation by stabilizing the dependence of the
cross section on the factorization and renormalization
scales, which are arbitrary energy scales in the theory.
Thus, it is worthwhile to provide a unified approach for
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the calculation of these and even higher-order soft-gluon
corrections to hard-scattering processes in hadron col-
liders. It is important to note that new particles, such as
in supersymmetry [20] or Higgs physics [21], or particle
production via new interactions, such as top production via
flavor-changing neutral currents [22], will likely be dis-
covered near threshold where the soft-gluon corrections
are dominant, therefore soft-gluon calculations are relevant
to more than just pure QCD processes.

The calculation of hard-scattering cross sections in
hadron-hadron or lepton-hadron collisions can be written
as

� �
X
f

Z �Y
i

dxi�f=hi�xi; �F�

�
�̂�s; ti; �F;�R�; (1.1)

where � is the physical cross section, �f=hi is the distri-
bution function for parton f carrying momentum fraction
xi of hadron hi, at a factorization scale �F, and �R is the
renormalization scale. The parton-level cross section is
denoted by �̂, and s, ti are standard kinematical invariants
formed from the 4-momenta of the particles in the hard
scattering. In a lepton-hadron collision we have one parton
distribution (i � 1) while in a hadron-hadron collision we
have two, i � 1; 2. The partonic processes are of the form

f1�p1� � f2�l2��p2� ! F� X; (1.2)

where f [l] represents a parton [lepton], F represents an
observed system in the final state, and X any additional
allowed final-state particles. For example, F can represent
a pair of heavy quarks, a single heavy quark, a jet, a photon,
a Higgs boson, a pair of squarks, etc. Then s � �p1 � p2�

2.
In single-particle-inclusive (1PI) kinematics we identify
one particle F with momentum p, and define the kinemati-
cal invariants t1 � �p1 � p�

2, t2 � �p2 � p�
2 (also com-

monly denoted by t and u, respectively). In pair-invariant-
mass (PIM) kinematics we identify a pair of particles (such
as a heavy quark antiquark pair) with invariant mass
-1 © 2006 The American Physical Society
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1The counting of logarithms is different in the exponent and in
the fixed-order expansions; for example, a term that is NNLL in
the fixed-order expansion, as described here, may be NLL in the
exponent [13].
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squared Q2. We note here that � and �̂ are not restricted to
be total cross sections; they can represent any differential
cross section of interest.

In general, �̂ includes plus distributions Dl�xth� with
respect to a kinematical variable xth that measures distance
from threshold, with l � 2n� 1 at nth order in �s beyond
the leading order. These are the soft corrections. The
virtual corrections multiply delta functions ��xth�. In 1PI
kinematics, xth is usually denoted as s4 (or s2), s4 � s�
t1 � t2 �

P
m2 (the sum is over the masses squared of all

particles in the process), and it vanishes at threshold. The
plus distributions are of the form

D l�s4� 	

�
lnl�s4=M2�

s4

�
�
; (1.3)

whereM2 is a hard scale relevant to the process at hand, for
example, the mass m of a heavy quark, the transverse
momentum pT of a jet, etc. The distributions are defined
through their integral with any smooth function, such as
parton densities, by

Z s4 max

0
ds4f�s4�

�
lnl�s4=M2�

s4

�
�

	
Z s4 max

0
ds4

lnl�s4=M2�

s4
�f�s4� � f�0��

�
1

l� 1
lnl�1

�
s4 max

M2

�
f�0�: (1.4)

In PIM kinematics, with Q2 the invariant mass squared of
the produced pair, xth is usually called 1� x or 1� z, with
z � Q2=s! 1 at threshold. Then the plus distributions are
of the form

D l�z� 	
�

lnl�1� z�
1� z

�
�

(1.5)

defined through their integral with any smooth function by

Z 1

y
dzf�z�

�
lnl�1� z�

1� z

�
�
	
Z 1

y
dz

lnl�1� z�
1� z

�f�z� � f�1��

�
1

l� 1
lnl�1�y�f�1�: (1.6)

The highest powers of these distributions in the nth-order
corrections are the leading logarithms (LL) with l � 2n�
1, the second highest are the next-to-leading logarithms
(NLL) with l � 2n� 2, the third highest are the next-to-
next-to-leading logarithms (NNLL) with l � 2n� 3, the
fourth highest are the next-to-next-to-next-to-leading log-
arithms (NNNLL) with l � 2n� 4, etc. These logarithms
can be in principle resummed to all orders in perturbation
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theory. By now there are several processes for which NLL
resummations and NNLO-NNLL results (i.e. the NNLL
terms1 at NNLO) have been presented [10,23].

In this paper, I present master formulas for the NLO,
NNLO, and NNNLO soft-gluon corrections for processes
in hadron-hadron or hadron-lepton collisions. These pro-
cesses can be of QCD, electroweak, Higgs, or supersym-
metric origin at lowest order. Results on the NLO and
NNLO corrections have been presented before [23] but
the notation here is somewhat different to facilitate the
calculation of the NNNLO corrections. The NNNLO re-
sults and their applications to top quark and charged Higgs
production are new. In the next section, I present a thresh-
old resummation formula from which high-order expan-
sions are derived. In Secs. III and IV are presented master
formulas for the NLO and NNLO soft corrections, respec-
tively, that arise from the expansion of the resummation
formula. The formulas are given in the MS scheme (see
[23] for results through NNLO in the deep inelastic scat-
tering scheme), and cover both 1PI and PIM kinematics. In
Sec. V, I present a master formula for the NNNLO correc-
tions. In Secs. VI and VII applications to charged Higgs
production at the LHC and top quark pair production at the
Tevatron, respectively, are discussed. Conclusions are
given in Sec. VIII. Some long expressions for terms in
the NNNLO master formula are collected in the appendix.
II. SOFT-GLUON CORRECTIONS FROM
THRESHOLD RESUMMATION

We begin with a brief review of the threshold resumma-
tion formalism. Threshold resummation follows from fac-
torization theorems for hard-scattering cross sections. One
can write the hadronic cross section as a convolution of
parton densities with a parton-level cross section. This can
be further refactorized into functions associated with soft
and collinear gluon emission from the incoming partons
and any outgoing partons or jets, a function associated with
noncollinear soft gluon emission that involves the color
structure of the hard scattering, and a short-distance hard-
scattering function. The renormalization group properties
of these functions result in the exponentiation of the soft-
gluon contributions thus providing the resummed cross
section [5–7]. For a review see Ref. [24].

The resummation of threshold logarithms is carried out
in moment space. We define moments of the partonic cross
section by �̂�N� �

R
dzzN�1�̂�z� (PIM) or by �̂�N� �R

�ds4=s�e
�Ns4=s�̂�s4� (1PI), with N the moment variable.

The logarithms of N exponentiate. The resummed partonic
cross section in moment space is then given by
-2
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�̂res�N� � exp

"X
i

Efi�Ni�

#
exp

"X
j

E0fj�Nj�

#
exp

"X
i

2
Z ��

s
p

�F

d�
�
�i=i��s����

#
exp

"
2d�s

Z ��
s
p

�R

d�
�
���s����

#


 Tr

(
Hfifj��s��R�� exp

"Z ��
s
p
= ~Nj��

s
p

d�
�

�
yfifj
S ��s����

#
~Sfifj��s�

���
s
p
= ~Nj��


 exp

"Z ��
s
p
= ~Nj��

s
p

d�
�

�
fifj
S ��s����

#)
: (2.1)
The sums over i run over incoming partons: in hadron-
hadron collisions we have two partons in the initial state, so
i � 1; 2; in lepton-hadron collisions we have one parton.
The sum over j is relevant if we have massless partons in
the final state at lowest order. We note that we have sup-
pressed all gauge-dependent terms because these terms
cancel out explicitly.

Equation (2.1) is actually valid for both 1PI and PIM
kinematics with appropriate definitions for Ni and Nj. In
1PI kinematics Ni � N��ti=M

2� for incoming partons i,
and Nj � N�s=M2� for outgoing partons j; here M2 is any
chosen hard scale relevant to the process at hand. In PIM
kinematics Ni � Nj � N. Also note that ~N � Ne�E , with
�E the Euler constant. The various exponents above are
known at most to three loops. Below we give explicitly
only the one-loop (and some two-loop) expressions that
will be needed in our applications to charged Higgs pro-
duction at NLL accuracy and top quark production at
NNLL accuracy. Some two-loop and three-loop results
can be found explicitly in [23,25,26]. We note however
that the two-loop and higher-loop results for process-
dependent functions, such as the soft anomalous dimen-
sions �S, have to be calculated explicitly for a specified
partonic process.

The first exponent in Eq. (2.1) is given in the MS scheme
by
Efi�Ni� � �
Z 1

0
dz
zNi�1 � 1

1� z

�Z 1

�1�z�2

d�
�
Ai��s��s��

� 	i��s��1� z�2s��

)
; (2.2)
with Ai��s� � A�1�i �s=
� A
�2�
i ��s=
�

2 � A�3�i ��s=
�
3 �

� � � . Here A�1�i � Ci with Ci � CF � �N
2
c � 1�=�2Nc� for

a quark or antiquark and Ci � CA � Nc for a gluon, with
Nc the number of colors, while A�2�i � CiK=2 with K �
CA�67=18� 
2=6� � 5nf=9 [27], where nf is the number

of quark flavors. Also 	i � ��s=
�	
�1�
i � ��s=
�

2	�2�i �
��s=
�3	

�3�
i � � � � , with 	�1�i � Ci.
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The second exponent is given by

E0fj�Nj� �
Z 1

0
dz
zNj�1 � 1

1� z

(Z 1�z

�1�z�2

d�
�
Aj��s��s��

� Bj��s��1� z�s�� � 	j��s��1� z�2s��

)
;

(2.3)

where Bj � ��s=
�B
�1�
j � ��s=
�

2B�2�j � ��s=
�
3B�3�j �

� � � with B�1�q � 3CF=4 and B�1�g � �0=4, where �0 is the
lowest-order �-function, �0 � �11CA � 2nf�=3.

In the third exponent �i=i is the moment-space anoma-
lous dimension of the MS density �i=i. Note that the
N-independent part of the one-loop �i=i is the same as

��1�i , the one-loop parton anomalous dimension, given by
��1�q � 3CF=4 and ��1�g � �0=4 for quarks and gluons,
respectively [13].

The � function in the fourth exponent is given in the
appendix. The constant d�s � 0; 1; 2 if the Born cross
section is of order �0

s , �1
s , �2

s , respectively.
Hfifj are the hard-scattering functions for the

scattering of partons fi and fj, while Sfifj are the soft
functions describing noncollinear soft gluon emission. We

use the expansions H � �
d�s
s H�0� � ��

d�s�1
s =
�H�1� �

��
d�s�2
s =
2�H�2� � ��

d�s�3
s =
3�H�3� � � � � and S�S�0��

��s=
�S�1� ���s=
�2S�2����s=
�3S�3� ���� . Note that
both H and S are matrices in color space and the trace is
taken. At lowest order, the trace of the product of the hard
matrices H and soft matrices S reproduces the Born cross

section for each partonic process, �B � �
d�s
s tr�H�0�S�0��.

The evolution of the soft function follows from its renor-
malization group properties and is given in terms of the soft
anomalous dimension matrix �S [5,6,24]. In processes with
simple color flow �S is a trivial 1
 1 matrix while in
processes with complex color flow an appropriate choice
of color basis has to be made. For quark-(anti)quark scat-
tering, �S is a 2
 2 matrix [5,28]; for quark-gluon scat-
tering it is a 3
 3 matrix [6]; for gluon-gluon scattering it
is an 8
 8 matrix [6]. For the discussion below we expand
�S as �S � ��s=
��

�1�
S � ��s=
�

2��2�S � ��s=
�
3��3�S �

� � � . The process-dependent soft anomalous dimension
matrices have by now been presented at one loop for all
-3
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2! 2 partonic processes; a compilation of results is given
in [24]. They can be explicitly calculated for any process
through the calculation of eikonal vertex corrections using
the techniques and results in Refs. [5,6,24]. Some work has
been done on two-loop calculations of these anomalous
dimensions [29], and furthermore the universal compo-
nents of these anomalous dimensions for quark-antiquark
and gluon-gluon initiated processes have been extracted
from the NNLO results for Drell-Yan and Higgs production
as detailed in Ref. [23].

The exponentials in the resummed cross section can be
expanded to any fixed order in �s and then inverted to
momentum space to provide explicit results for the higher-
order corrections. A fixed-order expansion avoids the prob-
lems with infrared singularities in the exponents and thus
no prescription is needed to deal with these in our approach
(see discussion in Ref. [9]).
III. NLO MASTER FORMULA FOR SOFT-GLUON
CORRECTIONS

We first expand the resummed formula in Eq. (2.1) to
next-to-leading order and present a master formula for the
NLO soft-gluon corrections in the MS scheme and 1PI
kinematics:

�̂�1� � �B
�s��

2
R�



fc3D1�s4� � c2D0�s4� � c1��s4�g

�
�
d�s�1
s ��2

R�



�AcD0�s4� � Tc1��s4��; (3.1)

where �B is the Born term,

c3 �
X
i

2Ci �
X
j

Cj; (3.2)

with Cq � CF and Cg � CA, and c2 is defined by c2 �

c�2 � T2, with

c�2 � �
X
i

Ci ln
�
�2
F

M2

�
(3.3)

denoting the terms involving logarithms of the scale, and

T2 � �
X
i

�
Ci � 2Ci ln

�
�ti
M2

�
� Ci ln

�
M2

s

��

�
X
j

�
B�1�j � Cj � Cj ln

�
M2

s

��
(3.4)
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denoting the scale-independent terms. We remind the
reader that the sums over i run over incoming partons
and the sums over j run over any massless partons in the
final state. Note that not all the NLO corrections are
proportional to the Born term; only the leading logarithms
and terms involving the scale are. The function Ac is
process-dependent and depends on the color structure of
the hard scattering. It is defined by
Ac � tr�H�0���1�yS S�0� �H�0�S�0���1�S �: (3.5)
With regard to the ��xth� terms, we split them into a term
c1, that is proportional to the Born cross section, and a term
Tc1 that is not. c1 � c�1 � T1, with
c�1 �
X
i

�
Ci ln

�
�ti
M2

�
� ��1�i

�
ln
�
�2
F

M2

�
� d�s

�0

4
ln
�
�2
R

M2

�
(3.6)
denoting the terms involving logarithms of the scale. T1

and Tc1 do not involve the factorization and renormalization
scales. Note that T1 and Tc1 are virtual terms and cannot be
derived from the resummation formalism, but they can be
read off by matching to a full NLO calculation for any
specified process.

In PIM kinematics we simply replace s4 by 1� z, set
s � M2, and delete all ln��ti=M

2� terms from the above
expressions. The same should be done for the NNLO and
NNNLO results that follow.

As shown in Ref. [23] the NLO master formula passes a
number of tests. Its predictions agree with NLO soft-gluon
results for all processes where those results are already
available. Also, the renormalization and factorization scale
dependence in the physical cross section (after convoluting
the partonic cross section with the parton distributions)
cancels out explicitly, i.e. d�=d�F � 0 and d�=d�R �
0 at NLO.
IV. NNLO MASTER FORMULA FOR SOFT-GLUON
CORRECTIONS

At next-to-next-to-leading order, the expansion of
Eq. (2.1), with matching to the NLO soft-plus-virtual re-
sult, Eq. (3.1), gives the NNLO soft corrections in the MS
scheme and 1PI kinematics:
-4
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�̂ �2� � �B
�2
s��

2
R�


2

1

2
c2

3D3�s4� � �B
�2
s��

2
R�


2

�
3

2
c3c2 �

�0

4
c3 �

X
j

Cj
�0

8

�
D2�s4� �

�
d�s�2
s ��2

R�


2

3

2
c3AcD2�s4�

� �B
�2
s��

2
R�


2 C�2�D1
D1�s4� �

�
d�s�2
s ��2

R�


2

��
2c2 �

�0

2

�
Ac � c3Tc1 � F

c
�
D1�s4� � �B

�2
s��

2
R�


2 C�2�D0
D0�s4�

�
�
d�s�2
s ��2

R�


2

��
c1 � �2c3 �

�0

4
ln
�
�2
R

M2

�
�
�0

4
ln
�
M2

s

��
Ac �

�
c2 �

�0

2

�
Tc1 � F

c ln
�
M2

s

�
�Gc

�
D0�s4�

� �B
�2
s��

2
R�


2 R�2���s4� �
�
d�s�2
s ��2

R�


2 R�2�c ��s4�: (4.1)

We have used the definitions

C�2�D1
� c3c1 � c2

2 � �2c2
3 �

�0

2
T2 �

�0

4
c3 ln

�
�2
R

M2

�
� c3

K
2
�
X
j

�0

4
B�1�j ; (4.2)
C�2�D0
� c2c1 � �2c3c2 � �3c2

3 �
�0

2
T1 �

�0

4
c2 ln

�
�2
R

M2

�
� d�s

�2
0

8
ln
�
M2

s

�
�
X
i

	�2�i

�
X
i

Ci
�0

8

�
ln2

�
�2
F

M2

�
� ln2

�
M2

s

�
� 2 ln

�
M2

s

��
�
�0

2

X
i

��1�i ln
�
M2

s

�
�
X
i

Ci
K
2

�
ln
�
�2
F

M2

�
� 2 ln

�
�ti
M2

�
� ln

�
M2

s

��

�
X
j

�B�2�j � 	
�2�
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X
j

Cj

�
�
�0

8
ln2

�
M2

s

�
�
�0

4
ln
�
M2

s

�
�
K
2

ln
�
M2

s

��
�
X
j

�0

2
B�1�j ln

�
M2

s

�
; (4.3)
Fc � tr�H�0����1�yS �2S�0� �H�0�S�0����1�S �
2 � 2H�0���1�yS S�0���1�S �; (4.4)
Gc � tr�H�1���1�yS S�0� �H�1�S�0���1�S �H
�0���1�yS S�1� �H�0�S�1���1�S �H

�0���2�yS S�0� �H�0�S�0���2�S �: (4.5)
In PIM kinematics simply replace s4 by 1� z, set s � M2,
and delete all ln��ti=M2� terms.

The quantities d�s , �0, and K have all been defined in
Sec. II, and �2 � 
2=6, �3 � 1:202 056 9 . . . . Also c3, c2,
c1, Tc1 , and Ac have been defined in Sec. III. The virtual
terms R�2� and R�2�c cannot be derived from resummation. A
separate calculation is needed for each process to derive
those. However, all the scale-dependent terms in R�2� (R�2�c
is scale-independent) can be derived and are given explic-
itly in Eq. (12) of Ref. [10].

As shown in Ref. [23], the NNLO master formula passes
many rigorous tests. It reproduces the NNLO soft-gluon
results for all processes where these results are known.
Also at NNLO the renormalization and factorization scale
dependence in the physical cross section cancels out.

The master formula can in principle provide all the soft
corrections at NNLO for any process. In practice, the
accuracy which we can attain depends on whether the
one-loop ��1�S is known (in which case we can attain NLL
034001
accuracy; ��1�S is known for all 2! 2 processes); whether
furthermore the NLO virtual terms are known (NNLL
accuracy); and whether the two-loop ��2�S is known
(NNNLL accuracy). Most current results are known to
NLL or NNLL accuracy. Note that ��2�S is only known for
the simplest cases of Drell-Yan and Higgs production
where the color structure is trivial [23]. However, it was
shown in [14] that the contributions of ��2�S can be small so
that effectively NNNLL calculations can be made in some
cases even when ��2�S is not fully known.

V. NNNLO MASTER FORMULA FOR SOFT-
GLUON CORRECTIONS

At next-to-next-to-next-to-leading order, the expansion
of Eq. (2.1), with matching to the NLO and NNLO soft-
plus-virtual results, gives the NNNLO soft-gluon correc-
tions in the MS scheme and 1PI kinematics:
-5
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The quantities d�s , �0, and K have been defined in Sec. II,
while c3, c2, c1, Tc1 , and Ac have been defined in Sec. III.
Also C�2�D1

, C�2�D0
, Fc, Gc, �2, and �3 have been defined in

Sec. IV, and �4 � 
4=90. The expressions for �1, X3, X2,
X1, X0, Y�1�i , Y�1�j , Y�0�i , Y�0�j ,Mc,Kc

1,Kc
2, andKc

3 are given in
the appendix.

Note again that in PIM kinematics we simply replace s4

by 1� z, set s � M2, and drop the terms with ln��ti=M
2�

in the above formula and in all the expressions given in the
appendix.

This NNNLO master equation gives the structure of the
NNNLO soft corrections and can provide the full soft
corrections explicitly if all the two-loop and three-loop
quantities are known. Therefore for processes with non-
trivial color structure we are currently limited to NLL or
NNLL accuracy, as the applications to charged Higgs and
top quark production in the next two sections illustrate.
The structure of the corrections as presented here can be
useful for checking future calculations if and when such
three-loop quantities become available. Also note that
scale logarithms and �i constants will be kept as appropri-
ate at subleading logs as explained in the next two sections.

When the color structure of the hard scattering is simple,
i.e. when H, S, and �S are simply 1
 1 matrices, then the
above expressions can be simplified. We can then easily
absorb Ac into c2 in Eq. (3.1), and Tc1 into c1, by redefining
c2 and c1. Then all the terms are proportional to �B in
Eqs. (3.1), (4.1), and (5.1). We will see this explicitly in the
two applications in the next two sections.
VI. CHARGED HIGGS PRODUCTION VIA
bg! tH�

Charged Higgs production is a process of great interest
at the LHC. The charged Higgs boson, if discovered, would
be an unmistakable sign of new physics beyond the stan-
dard model [21]. A promising channel of discovery is
associated production with a top quark via bottom-gluon
fusion for which SUSY and QCD radiative corrections
have been calculated [30–33]. NLO and NNLO soft-gluon
corrections to this process were recently studied in [18]
where the corrections were found to be large, especially for
a very massive charged Higgs.

We now apply our NNNLO master formula to charged
Higgs production in the minimal supersymmetric standard
model (MSSM) via bottom-gluon fusion, a process with
simple color flow, at NLL accuracy. We study the process
b�pb� � g�pg� ! t�pt� �H��pH�� in 1PI kinematics and
define the kinematical invariants s � �pb � pg�

2, t �
�pb � pt�2, u � �pg � pt�2, and s4 � s� t� u�m2

t �

m2
H� , where mt is the top quark mass and mH� is the

charged Higgs mass (we take the bottom quark mb � 0
in the kinematics [18]).
034001
The NLO coefficients of Sec. III here take the values
c3 � 2�CF � CA� and c2 � c�2 � T2 with c�2 � ��CF �
CA� ln��2
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where Re ��1�S denotes the real part of the one-loop soft
anomalous dimension [18],
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Note that, due to the simple color structure of this process,
�S is simply a 1
 1 matrix. Here, as described in the last
paragraph of the previous section, we have absorbed the
term 2 Re ��1�S , which arises from Ac, into T2. Also,
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The various terms from the appendix used in the
NNNLO corrections here take the values X3 � �0c3=12,
X�2 � ��0=8�c3 ln��2

R=m
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H��,
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X�1 �
�0

4
�2c3; (6.5)

where X�2 denotes the scale logarithm terms in X2, X�
2

1
denotes terms involving squares of the scale logarithms in
X1, and X�1 denotes the �i terms in X1.

The NNNLO-NLL corrections are then given by
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(6.6)
Because we absorbed Ac into c2, the corrections take a
simple form, simply multiplying the Born term �B. Note
that consistent with a NLL calculation we include all D5

(LL) and D4 (NLL) terms. In addition, we calculate all
scale logarithms at NLL accuracy. This means that for
coefficients of lni��2=m2� we include the most singular
plus distribution and the next-most-singular one [13].
Thus, we also include all scale logarithms in the D3 terms,
the cubed and squared scale logarithms in the D2 terms,
and the cubed scale logarithms in the D1 terms. With
respect to the subleading �i terms that arise from inversion
from moment to momentum space, we include only those
that we can calculate exactly (for a discussion of the
numerical effects of such terms, see Ref. [9]). Thus we
include all �i terms in the D3 and D2 terms, and all �i
terms multiplying scale logarithms in the D1 term.

In Fig. 1 we plot the cross section versus charged Higgs
mass for pp collisions at the LHC with

���
S
p
� 14 TeV

using the MRST2002 approximate NNLO parton distribu-
tion functions [34] with the respective three-loop evalu-
ation of �s. We set the factorization scale equal to the
renormalization scale and denote this common scale by �.
We show results for the LO, NLO-NLL, NNLO-NLL, and
200 400 600 800 1000
m

H
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-

FIG. 1 (color online). The total cross section for charged Higgs
production at the LHC.

034001
NNNLO-NLL cross sections, all with a choice of scale
� � mH� . In the calculation we choose a value tan� � 30;
here tan� is the ratio of the vacuum expectation values of
the two Higgs doublets in the MSSM. It is straightforward
to calculate results for any other value of tan�, since the
only dependence on � is in a factor m2

btan2��m2
t cot2�

appearing in the Born term. The cross sections span over 2
orders of magnitude in the mass range shown, 200 GeV �
mH� � 1000 GeV. The NLO, NNLO, and NNNLO
threshold corrections are positive and provide a significant
enhancement to the lowest-order result. We note that the
cross sections for the related process �bg! �tH� in the
MSSM are exactly the same.

In Fig. 2 we plot the K-factors, i.e. ratios of cross
sections at higher orders to the LO result, to better show
the relative size of the corrections. The NLO-NLL/LO
curve shows that the NLO soft-gluon corrections enhance
the LO cross section by approximately 25% to 50% de-
pending on the mass of the charged Higgs. As expected, the
corrections increase for higher charged Higgs masses as we
get closer to threshold. The NNLO-NLL/LO curve shows
that if we include the NNLO threshold corrections we get
an enhancement over the LO result of approximately 35%
200 400 600 800 1000
m

H
- (GeV)
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2

rotcaf-
K
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-
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1/2
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H
-

FIG. 2 (color online). The K-factors for charged Higgs pro-
duction at the LHC.
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to 70% in the range of masses shown. Again the enhance-
ment increases with charged Higgs mass, as expected.
Finally, the NNNLO-NLL/LO curve shows the further
enhancement that the NNNLO soft-gluon corrections pro-
vide, approximately 45% to 80% over LO. We note that the
NNNLO soft-gluon corrections are quite significant in this
case. This is not necessarily typical for other processes, but
happens here because of the very massive final state.
Another process where NNNLO soft-gluon corrections
are known to be big is inclusive hadron production at
high transverse momentum [35].
VII. TOP QUARK PRODUCTION VIA q �q! t �t

The study of the top quark is important in understanding
the electroweak sector and searching for new physics. The
top quark is now being actively studied at run II at the
Tevatron [36–38]. Theoretically, the production cross sec-
tion has been studied to NNLO and NNNLL in both 1PI
and PIM kinematics [14]. The corrections are moderate
and they substantially decrease the scale dependence of the
cross section. Transverse momentum distributions are also
known to NNLO-NNNLL [14], while rapidity distributions
have been presented in Ref. [39].

Here we apply our NNNLO master formula to top quark
pair production via quark-antiquark annihilation, which is
the dominant partonic subprocess at the Tevatron. We
study the channel q�pa� � �q�pb� ! t�p1� � �t�p2� in 1PI
kinematics, and define the kinematical invariants s �
�pa � pb�2, t1 � �pb � p1�

2 �m2
t , u1 � �pa � p1�

2 �
m2
t , and s4 � s� t1 � u1, with mt the top quark mass.

For this process, which has complex color flow, H, S,
and �S are 2
 2 matrices. However,H�0� has a particularly
simple form in a singlet-octet color basis (the only nonzero
element is H�0�22 [9,13]) so that simplifications arise.

The NLO coefficients of Sec. III here take the values
c3 � 4CF and c2 � c�2 � T2, with c�2 � �2CF ln��2

F=m
2
t �

and

T2 � 2 Re ��1�S;22 � 2CF � 2CF ln
�
t1u1

m4
t

�
� 2CF ln

�
m2
t

s

�
;

(7.1)

where Re ��1�S;22 denotes the real part of the 22 element of
the soft anomalous dimension matrix [5,9],
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(7.2)

with L� � ��1� 2m2
t =s�=���ln��1� ��=�1� ��� � i
�

and � �
�����������������������
1� 4m2

t =s
p

. Note that, even though we have
034001
nontrivial color matrices for this process, due to the simple
form of the H matrix here we have absorbed the term
2 Re ��1�S;22, which arises from Ac, into T2. To be precise,

Ac � ��B=�2
s�2 Re ��1�S;22. Also, c1 � c�1 � T1 with
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(7.3)

and T1 as given by the ��s4� terms in Eq. (4.7) of Ref. [40]
(we have effectively absorbed Tc1 into c1; for details see
[14]). Also, Fc � ��B=�2

s��4�Re ��1�S;22�
2 � 4��1�S;12��1�S;21�

with ��1�S;12 � �CF=CA� ln�u1=t1� and ��1�S;21 � 2 ln�u1=t1�
the 12 and 21 elements of the soft anomalous dimension
matrix.

The various terms from the appendix used in the
NNNLO corrections here take the values X3 � �0c3=12,
X2 � ���0=4�T2 � ��0=8�c3 ln��2
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where X�
n

i denotes the terms with scale logarithms to the

nth power in Xi, X
�
0 denotes the �i terms in X0, Y�1;�

2�
q

denotes terms involving squares of the scale logarithms in

Y�1�q , and Y�0;�
3�

q denotes terms involving cubes of the scale
logarithms in Y�0�q .

The NNNLO-NNLL corrections are then given by
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Because we have absorbed Ac into c2, and Tc1 into c1, the
corrections take a simple form, simply multiplying the LO
term �B. Note that consistent with a NNLL calculation we
include all D5, D4, and D3 terms. In addition, we calcu-
late all scale logarithms at NNLL accuracy. This means
that for coefficients of lni��2=m2� we include the most
singular plus distribution and the two next-most-singular
ones [13]. So we also include all scale logarithms in the D2

terms, the cubed and squared scale logarithms in the D1

terms, and the cubed scale logarithms in the D0 terms.
With respect to the subleading �i terms that arise from
inversion from moment to momentum space, we include
only those that we can calculate exactly (see Ref. [9]).
1 10
µ / m

t

0

5

10

  σ
) bp(

LO
NLO
NNLO-NNNLL
NNNLO-NNLL

qq -->  tt  at the Tevatron  S
1/2

=1.96 TeV    m
t
=175 GeV

FIG. 3 (color online). The scale dependence of top production
in the q �q channel at the Tevatron.
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Thus we include all �i terms in the D2 and D1 terms, and
all �i terms multiplying scale logarithms in the D0 term.

In Fig. 3 we plot the scale dependence of the cross
section for q �q! t�t at the Tevatron run II for a top quark
mass mt � 175 GeV. We set the factorization scale equal
to the renormalization scale and denote this common scale
by �. Again we use the MRST2002 approximate NNLO
parton distribution functions [34] (results using the
CTEQ6M distributions [41] are similar [14]). We plot a
large range in scale and see that the higher-order soft-gluon
corrections greatly decrease the scale dependence of the
cross section. The NNLO-NNNLL and the NNNLO-
NNLL curves are relatively flat. The NNNLO-NNLL result
displays very little variation and it approaches the scale
independence expected of a physical cross section.
VIII. CONCLUSIONS

In this paper, I presented a unified approach to calculat-
ing the NNNLO soft-gluon corrections for hard-scattering
processes in hadron-hadron and lepton-hadron collisions in
the MS scheme in either 1PI or PIM kinematics. The
master formulas given in the paper allow explicit calcula-
tions for any process, with either simple or complex color
flows, keeping in general the factorization and renormal-
ization scales separate and the color factors explicit.
Detailed results, illustrating the use of the master formulas,
were given to NLL accuracy for charged Higgs production
via bottom-gluon fusion at the LHC, and to NNLL accu-
racy for top quark production via quark-antiquark annihi-
lation at the Tevatron.

The NNLO and NNNLO corrections increase theoretical
accuracy and diminish the dependence on the factorization
and renormalization scales, and thus are essential in further
calculations of QCD corrections for many hard-scattering
-10
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processes, both in their own right and as backgrounds
which may be particularly important in searching for the
Higgs boson and supersymmetric particles, as well as other
processes that signal new physics beyond the standard
model.

APPENDIX

The � function is given by

���s� 	 �d lng=d�
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where g2 � 4
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Note that
034001
�s��� � �s��R�

�
1�

�0

4

�s��R� ln

�
�2

�2
R

�

�
�2

0

16
2 �
2
s��R�ln

2

�
�2

�2
R

�
�

�1

16
2 �
2
s��R�


 ln
�
�2

�2
R

�
� � � �

�
: (A3)

The various quantities used in the NNNLO expression,
Eq. (5.1), are given by the following expressions. For the
quantities X3, X2, X1, X0, we have
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where �0�2�i=i is given by Eqs. (2.6) and (2.7) of Ref. [23] for quarks and gluons, respectively. The quantity R0�2� at the end of
the above equation stands for the virtual two-loop corrections R�2� in Eq. (4.1) minus � terms and scale terms. To be precise
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Also

Y�1�i � 2A�3�i � Ci�0

�
�0

8
ln2

�
�2
F

�2
R

�
�
K
2

ln
�
�2
F

�2
R

��
� Ci

�1

8

�
ln
�
�2
R

M2

�
� ln

�
M2

s

�
� 1� 2 ln

�
�ti
M2

��
; (A9)

Y�1�j � �
�0

2
B�2�j � A

�3�
j � Cj

�2
0

16
ln2

�
�2
R

M2

�
�
�0

8
���0B

�1�
j � 2CjK� ln

�
�2
R

M2

�
�
Cj
8
�2�2

0

�
�1

16

�
�Cj ln

�
�2
R

M2

�
� 2Cj � B

�1�
j � 2Cj ln

�
M2

s

��
; (A10)
-11



NIKOLAOS KIDONAKIS PHYSICAL REVIEW D 73, 034001 (2006)
Y�0�i � �Ci
�2

0

48

�
ln3

�
�2
F

�2
R

�
� ln3

�
�2
R

M2

��
�
Ci
32
��1 � 4�0K�

�
ln2

�
�2
F

�2
R

�
� ln2

�
�2
R

M2

��
� Ci

�0

4
K
�

2 ln
�
�ti
M2

�
� ln

�
M2

s

��


 ln
�
�2
R

M2

�
� Ci

�1

16

�
1� 2 ln

�
�ti
M2

��
ln
�
�2
R

M2

�
�
�2

0

16

�
4��1�i � 2Ci � �0d�s � Ci

�1

�2
0

� Ci ln
�
M2

s

��


 ln
�
M2

s

�
ln
�
�2
R

M2

�
� 	�2�i

�0

2
ln
�
�2
R

M2

�
� A�3�i ln

�
�2
F

M2

�
� 	�3�i �

Ci
6
�2

0ln3

�
�ti
M2

�
�
Ci
4
�0��0 � 2K�ln2

�
�ti
M2

�

� ��0	
�2�
i � 2A�3�i � ln

�
�ti
M2

�
�
�2

0

48
Ciln3

�
M2

s

�
�
Ci
32
��1 � 4�0K�ln2

�
M2

s

�

�
�2

0

4

�
Ci
2

ln
�
�ti
M2

�
� ��1�i �

Ci
4
�
�0

4
d�s

�
ln2

�
M2

s

�
�

�
�A�3�i � 	

�2�
i
�0

2
� CiK

�0

2
ln
�
�ti
M2

�
�
�1�0

32
d�s

� Ci
�1

16
�
�1

8
��1�i

�
ln
�
M2

s

�
; (A11)

and

Y�0�j �
�0

4

�
�2B�2�j � 2	�2�j �

�
�0

2
�2B�1�j � Cj� � CjK

�
ln
�
M2

s

�
� Cj

�0

4
ln2

�
M2

s

��
ln
�
�2
R

M2

�

�
�1

16

�
B�1�j � Cj � Cj ln

�
M2

s

��
ln
�
�2
R

M2

�
� B�3�j � 	

�3�
j �

7

48
Cj�

2
0ln3

�
M2

s

�
�
�0

16
��5Cj�0 � 4�0B

�1�
j � 2CjK�


 ln2

�
M2

s

�
�
�1

32
Cjln

2

�
M2

s

�
�

�
�0

2
	�2�j � A

�3�
j �

�1

16
�2B�1�j � Cj�

�
ln
�
M2

s

�
: (A12)

Also we have defined,

Mc � tr�H�1���1�yS S�0� �H�1�S�0���1�S �H
�0���1�yS S�1� �H�0�S�1���1�S �; (A13)
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