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Strongly coupled quantum field theory
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I analyze numerically a two-dimensional ��4 theory showing that in the limit of a strong coupling
�! 1 just the homogeneous solutions for time evolution are relevant in agreement with the duality
principle in perturbation theory as presented in [M. Frasca, Phys. Rev. A 58, 3439 (1998)], being
negligible the contribution of the spatial varying parts of the dynamical equations. A consequence is that
the Green function method works for this nonlinear problem in the large coupling limit as in a linear
theory. A numerical proof is given for this. With these results at hand, I built a strongly coupled quantum
field theory for a ��4 interacting field computing the first order correction to the generating functional.
Mass spectrum of the theory is obtained turning out to be that of a harmonic oscillator with no dependence
on the dimensionality of space-time. The agreement with the Lehmann-Källen representation of the
perturbation series is then shown at the first order.
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A lot of problems in physics have such a difficult equa-
tions to solve that the most natural approach is a numerical
one. Weak perturbation theory generally proves to be in-
sufficient to extract all the physics. A well-known case is
given by quantum chromodynamics that due to the strength
of the coupling constant at low energies, makes useless
known perturbation techniques demanding the need for
numerical solutions.

In the seventies and eighties of the last century a sig-
nificant attempt to build a perturbation theory for a strongly
interacting quantum field theory was proposed [1–8]. In
this approach it was stipulated that the perturbation to be
considered is the free part of the Lagrangian. Notwith-
standing this approach is still studied today [9] no fruitful
results have been obtained so far due to the strongly
singular perturbation series that is obtained in this way.
Rather, the rationale behind this method is really smart as
one recognize that just interchanging the two parts of the
Lagrangian one gets different perturbation series.

This duality in perturbation theory is a general mathe-
matical property of differential equations as was shown in
Ref. [10,11]. What makes duality interesting is the general
property of the leading order that, while in the weak
perturbation case is just a free linear theory whose solution
is generally known, for the dual series that holds in the
limit of a strongly coupling, that is a coupling going to
infinity, one can prove a theorem showing that the adiabatic
approximation applies. We also pointed out in recent works
[12,13] that in field theory and general relativity the dual
perturbation series at the leading order produces a rather
interesting result: in a strongly coupled field theory the
leading order is ruled by a homogeneous equation, that is,
the spatial variation of the field in the equations of the
theory becomes negligible. In general relativity this gives
precious informations on the space-time near a singularity
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where the above behavior was conjectured in [14–16] and
numerically shown in [17].

In this paper I have two different aims. Firstly, I intend to
prove that the numerically observed behavior in general
relativity also holds for a ��4 theory, that is, a homoge-
neous equation rules the leading order of a strongly inter-
acting scalar field. Then, after numerically proving that in a
strongly coupled field theory the Green function can be
used in the same way as done in a weak field theory, a
quantum field theory is obtained.

We apply the duality principle in perturbation theory as
devised in [10–13] assuming a Hamiltonian for the field
(here and in the following we take @ � c � 1)
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being D the dimension, �0 the mass and � the coupling.
For our aims we take �0 � 1 and a single component
scalar field. This Hamiltonian gives the following
Hamilton equations

@t� � � @t� � @2
x���� �V

0��� (2)
apex meaning derivation with respect to �. From Eqs. (2)
we recognize two perturbation terms @2

x��� and V 0���,
and one may ask what is the relation between the weak
perturbation series for the latter term with the one having
the term @2

x��� as a perturbation. Indeed, by exchanging
@2
x���$ V0��� for perturbation the following equa-

tions can be obtained
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FIG. 1. Numerical solution for ����� ��3 � 0 with
� � 104.
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FIG. 2. Analytical solution of @2
t �� ��

3 � 0 with � � 104

as given in Eq. (9).
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This is a nontrivial set of equations that can be recovered if
we take
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So, our interchange of the perturbations produced a dual
series that holds in the limit �! 1 as expected by the
duality principle in perturbation theory [10,11]. The most
important result we have obtained is that we get at the
leading order a homogeneous equation, that is, a self-
interacting scalar field with a coupling constant going to
infinity is ruled by a homogeneous equation. This result is
relevant as settles the physical meaning of homogeneous
solutions for a given field theory.

Now, let us specialize the above analysis to a ��4

theory. When �! 1 we have to solve the leading order
equation @2

t �0 � ���
3
0 that has the following solution by

Jacobi elliptic functions [18]
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being sn the snoidal Jacobi elliptic function, C1 and C2 two
integration constants that can depend on spatial variables.
So, this analytical solution has to coincide with the nu-
merical solution of the equation ����� ��3 � 0 with
� very large, after the proper boundary conditions are set.
Another interesting problem is to see how farther can be
considered to hold the approximation

�0�x; t� �
Z 1

0
G�t� t0�j�x; t0�dt0 (6)

as a solution of the equation ����� ��3 � j in the
limit of � very large andG�t� t0� the Green function given
by the equation @2

t G�t� � �G
3�t� � ��t� that is
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The time reversed solution
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(8)

also holds. It is not difficult to verify thatG��t� � G���t�.
The first numerical analysis we worked out is to verify

that indeed, when � is very large, a good first approxima-
tion is given by the leading order solution (5). In order to
check this we consider the equation ����� ��3 � 0
for D � 2, � � 104 and take ��0; t� � 0, ��1; t� � 0,
@t��x; 0� � 0 and ��x; 0� � x2 � x. The solution is given
in Fig. 1. The analytical solution in this case can be easily
computed by Eq. (5) giving

� � �x2 � x�sn
�
�x2 � x�

����
�
2

s
t� x0; i

�
: (9)

being x0 � cn�1�0; i� as to have sn�x0; i� � 1. This solu-
027701
tion is presented in Fig. 2 and the comparison with the
numerical result is quite satisfactory. Homogeneous solu-
tions drive, in a first approximation, strongly self-
interacting scalar fields.

For the next step we have studied the D � 2 equation
����� ��3 � � sin�2��x� t�� with the same value
for � with boundary conditions ��0; t� � 0, ��1; t� � 0,
@t��x; 0� � 0 and ��x; 0� � 0. The numerical solution is
given in Fig. 3 The analytical solution can be easily com-
puted with the Green function of Eq. (7) giving � �
�
R
t
0 G��t� t

0� sin�2��x� t0��dt0 and the result is given
in Fig. 4 and again is quite satisfactory. These results
support the other conclusion that the Green function
method is still useful in a regime of largely coupled scalar
fields.

There is an exterminate literature for quantum
field theory (see e.g. [19–21] for scalar fields). As a
convention we will use boldface for D� 1 dimen-
sional vectors. Space-time signature is ��;�;�;��.
We start with the standard path integral formulation
for the generating functional as Z�j� �

R
�d�� 	

efi
R
dDx�1=2�@t��2�1=2�r��2�1=2�2��V����j��g that we rewrite

as
-2
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FIG. 3. Numerical solution for ����� ��3 �
� sin�2��x� t�� with � � 104.
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Z�j��
Z
�d��efi

R
dDx�1=2�@t��2��V����j��g

	ef�i
R
dDx�1=2�r��2�1=2�2�g; (10)

separating the leading term from the perturbation in agree-
ment with our discussion above. Using our conclusions
about Green function obtained above one can write down
the generating functional, without the perturbation, by the
Gaussian approximation

Z0�j� � exp
�
i
2

Z
dDx1d

Dx2j�x1���x1 � x2�j�x2�

�
; (11)

from which one can get the Wick theorem. It is easy to
verify that ��2Z0�j��=f�j�y1��j�y2�gjj�0 � �i��y2 � y1�

having set

��x2 � x1� � �D�1�x2 � x1��G��t2 � t1� �G��t2 � t1��

� ��x1 � x2�: (12)

In order to make all the argument self-consistent we
derive the generating functional (11) from Eq. (10). The
existence of the leading order functional will rely in the
end on the existence of the semiclassical approximation for
the path integral

Z0�j� �
Z
�d��efi

R
dDx�1=2�@t��2��V����j��g: (13)
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FIG. 4. Analytical solution with the Green function of Eq. (7)
and � � 104 and forcing function j � � sin�2��x� t��.

027701
This can be seen in the following way. Let us apply the
rescaling of time � �

����
�
p
t. One has

Z0�j��
Z
�d��efi

���
�
p R

dDx�1=2�@���2�V����gei=
���
�
p R

dDxj�; (14)

that shows that the limit �! 1 corresponds to the semi-
classical limit. That is, the system tends to recover a
classical behavior in the strong coupling limit and all the
results obtained above for this case apply. So, we reinsert
the original time variable t and take

� � �c � ��; (15)

being �� a small deviation from the classical solution �c
that satisfies the equation

�� c � �V0��c� � j: (16)

Inserting Eq. (15) into the functional integral (13) one has,
using Eq. (16),

Z0�j� � ei=2
R
dDxj�cF��c�; (17)

being

F��c��e
�i�

R
dDx�V��c��1=2�cV0��c��

	
Z
�d���e�i

R
dDx�1=2�� ����1=2�V00��c�����2�: (18)

We now apply the property that we have proved for the
solution of Eq. (16), that is, the Green function method still
applies as in Eq. (6). This gives back the Gaussian func-
tional (11) taking into account that, in the limit of interest
�! 1, after the substitution of the Green function (7) and
(8), F��c� � 1.

A short digression on the Feynman propagator (12) is
needed. Indeed, it is well-known that [18]

sn �u; i� �
2�
K�i�

X1
n�0

��1�ne��n�1=2��

1� e��2n�1��
sin
�
�2n� 1�

�u
2K�i�

�
;

(19)

being K�i� �
R�=2

0 d�=
������������������
1� sin�
p

� 1:311 102 877 7 a
constant. This means that a Fourier transform gives

��!� �
X1
n�0

Bn
!2 �!2

n � i�
; (20)

being Bn � �2n� 1���2=K2�i�����1�n�1e��n�1=2���=�1�
e��2n�1��� and the mass spectrum of the theory in the limit
�! 1 is given by !n � �n� 1=2���=K�i����=2�1=4 that
we can recognize as those of a harmonic oscillator. A mass
gap computed for n � 0 is given by �S � ��=2K�i��	
��=2�1=4. This result does not depend on the dimension D
but could depend on the number of components of the
scalar field that we have not considered here.

It is straightforward to write down the full generating
functional to work out perturbation theory. One has
-3
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Z�j� � exp
�
i
2

Z
dDy1d

Dy2
�

�j�y1�
��r2 � 1��D�y1 � y2�

	
�

�j�y2�

�
Z0�j�; (21)

that, by expanding the first exponential, gives

Z�j� �
�
1�

1

2

Z
dDy1dDy2��r

2 � 1��D�y1 � y2�

	 ��y1 � y2� �
i
2

Z
dDy1d

Dy2��r
2 � 1�

	 �D�y1 � y2�I�y1�I�y2� � . . .
�
Z0�j�; (22)

being I�z� �
R
dDx1��z� x1�j�x1�. We realize straight-

forwardly that there seems to be a divergence as also
happens for weak perturbation theory. In order to make
the computation physically clear we pass to momentum
space by a Fourier transform as ~f�k� �

R
dDxf�x�eikx and

one has straightforwardly

Z0�j� � exp
�
i
2

Z dDk
�2��D

~j�k�~��k�~j��k�
�
: (23)

So the first integral becomesZ
dDy1dDy2��r

2�1��D�y1�y2���y1�y2�

�
Z
dDkdDk1�k2�1�~��k��D�k�k1��D�k�k1�; (24)

and we can dispose of the product of Dirac distributions by
substituting one of them with the D-dimensional volume
VD divided by �2��D reducing it to
VD

R
�dD�1k�=�2��D�1�k2 � 1�

R
�d!=2��~��!� where
027701
we have explicitly given the dependence on ! to make
clear that this integral seems to diverge and a cutoff in k has
to be introduced. But we notice that the last integral is
nothing else than ��0� � 0 and so, we take this renormal-
ization constant to be zero. So, finally one has

Z�j� �
�

1�
i
2

Z dDk
�2��D

�k2 � 1�~j�k�~��k�~j��k�~���k�

� . . .
�
Z0�j�; (25)

that is the result we aimed to. We notice that to recover the
proper ordering in � one has to turn back to space and time
variables and one can see that we are at order ��1=2 having
the product of two Green functions. We have an expansion
that holds in the strong coupling limit as promised. We see
that this series recovers the proper dependence on k in the
propagator in agreement with the Lehmann-Källen repre-
sentation [19,20]. This completes the proof of existence of
a strongly coupled quantum field theory for a ��4 model.

Recently it was shown by Kleinert as very fine results for
critical exponents can be obtained with the variational
method [22–24] but no hint is given on the structure of
the solution of the field equations. Here we have built a
successful approach showing a possible way to find solu-
tions to nonlinear quantum field theories in the strong
coupling limit. We were also able to show that a homoge-
neous equation rules the dynamics and Green function
methods can be successfully applied in the strong coupling
limit. All this has been supported by numerical results. So,
this approach can open up the way to exploit analytical
solutions where, presently, just heavy numerical work can
be accomplished.
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