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We collect some arguments for treating a D-brane with overcritical electric field as a well-posed initial
condition for a D-brane decay. Within the field theoretical toy model of Minahan and Zwiebach we give an
estimate for the condensates of the related infinite tower of tachyonic excitations.
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1For charged strings, another kind of instability due to pair
production dominates at the quantum level for weak fields [4,5].
This is the analog of the Schwinger phenomenon for particle
electrodynamics. The derived rate is however zero for neutral
strings, preventing this kind of mechanism from screening the
growth in absolute value of the electric field, until it reaches the
critical value at which the classical instability appears. On the
other side, raising slowly E exposes the bosonic D-brane to the
I. INTRODUCTION

Tachyon dynamics in the context of D-brane decay was
the subject of intense studies in recent years [1]. The main
focus has been on the field theoretical or string field
theoretical aspects of tachyons as excitations indicating
some instability leading to the decay of certain field con-
figurations. This field theoretical point of view is by far
more adequate than discussions in terms of a particle
language including its conceptual problems with super-
luminal velocities.

Open strings in the presence of an overcritical electric
field mainly have been considered as an ill-defined setting
(there are however interesting connections with S-branes,
see for instance [2,3]). Classically the endpoints of open
strings have to move with superluminal velocity and at the
quantum level there appears a singularity at the critical
field strength in the string analog of the Schwinger pair
creation [4,5]. On the other hand, looking at String Field
Theory in the presence of an overcritical electric field
presents a picture conceptually not so different from that
with undercritical or zero electric field. Instead of one
tachyonic excitation, accompanied by a zero mass and an
infinite tower of stable excitations, one is faced with a
stable excitation corresponding to the former tachyon and
the fact that the infinite tower has become tachyonic. At
this level the difference between undercritical and over-
critical electric field seems to be only technical.

In the present paper we want to sketch this point of view
in some more detail. Section II is devoted to a discussion of
several aspects supporting the conjecture that the decay of
D-branes due to the presence of an overcritical electric
field can be a well-posed problem in string theory. Of
course any attempt to implement this picture has to handle
the serious technical problems caused by the infinite num-
ber of tachyonic excitations driving the D-brane decay. The
level truncation, which turned out to be very effective in
the undercritical case, is no longer applicable. Some com-
ments on the treatment of the overcritical case within
Boundary Conformal Theory are also added. In Sec. III
we then restrict ourselves to a discussion within a toy
model introduced by Minahan and Zwiebach in [6,7],
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accordingly modified by the presence of the overcritical
electric field. As a quantitative result we will get an esti-
mate of the values of all the fields in the infinite tachyonic
tower after condensation.

II. GENERAL CONSIDERATIONS

A. Spectrum

Propagation of open bosonic strings in the background
of a constant electromagnetic field has been analyzed in a
series of papers [4,5,8,9]. The spectrum of the masses of a
neutral string in the presence of a purely electric back-
ground has been derived as a particular case in [4,9], where
a classical instability has been shown to arise above a
critical value of the electric field. In this case, string modes
develop negative squared masses, and a tachyonic contri-
bution to the mass comes also from the motion of the string
in transverse directions. This classical instability, which is
indeed present both for neutral and for charged strings, has
no analogue in particle mechanics1. Its appearance is ad-
vocated in [4] as a signal of the fact that, in a second
quantized treatment of the theory, the string field would
evolve away from the chosen unstable configuration. The
spectrum can be reproduced by the formula

k�G
��k� � ��n� 1� (1)

where we set �0 � 1. The metric to be used is the so called
‘‘open string metric’’

G�� �

�
1

g� B
g

1

g� B

�
��
; (2)

where g; B are the sigma-model (closed string) constant
backgrounds [10]. This, in turn, is the natural formula
usual tachyon decay (which is absent in the similar case of open
superstrings). We assume an overcritical electric field as a given
initial condition.
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arising from the analysis of the conformal dimensions of
the vertex operators of the world-sheet conformal field
theory [10], and consistently from evaluation of the singu-
larities of string scattering amplitudes (see [11] and refer-
ences therein). For our purposes we will take the closed
string metric to be g � � � ��1; 1; . . . ; 1�.

In the case of a purely electric background, without loss
of generality one can choose the only nonzero components
of the antisymmetric tensor to be

B01 � �B10 � E: (3)

The open string metric becomes G�� � ���1� E
2�; �1�

E2�; 1; . . . ; 1�. One can notice the appearance of a critical
value for the electric field: when E � 1, the open string
metric (2) changes its signature in the �0; 1� block. Formula
(1) can be written as

�k2
0 � k

2
1 � �1� E

2�k2
? � ��1� E

2��n� 1�; (4)

or, equivalently,

k��
��k� � ��1� E

2��n� 1� � E2k2
?; (5)

k? indicating the momentum component transverse to the
electric field. If one sets k����k� � �M2, this formula
coincides with what is obtained, for example, in Sec. 4 of
[9]. Generically, the distance between equidistant levels of
the operator M2 is smaller by a factor �1� E2� [9]. In the
overcritical case, then one has M2 < 0 (up to the first level
due to presence of the zero-point energy of the oscillators),
and a tachyonic contribution coming from the motion of
the string in the transverse direction 2.

What we can read out of (4), is that what was a timelike
momentum (positive squared mass) in the absence of the
background, becomes in the presence of an overcritical
electric field a spacelike one (tachyon). The spectrum of
the bosonic open string has therefore been reversed, and it
contains an infinite tower of tachyonic modes3.

It is also important to notice that a similar situation, in
the presence of an electric background, would occur in
superstring theory [4,11], whose spectrum does not origi-
nally contain a tachyon. The appearance of an infinite
tower of tachyons has no analog in the absence (or in the
2We keep in mind that this last contribution to the squared
mass is present even for undercritical fields, while only for
overcritical fields it gives a tachyonic contribution to the energy,
according to the dispersion relation k2

0 � k2
1 � �1� E

2�k2
? �

�1� E2��n� 1� derived from (4). The sign of the ‘‘bare’’
squared mass term depending on the level n is always reversed
in overcritical fields.

3We remark that a possible interpretation of this change of
signature from the point of view of the full target space could be
ascribed to an interchange of the role of space and time between
the directions 0 and 1. However, if one demands now x1 to
assume the role of time, thus recovering a standard positive mass
spectrum for the open string tower, then the closed string sector
of the theory, whose masses are determined via the closed string
metric as ��g���� � �4�n� 1�, would have infinite tachyons.
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presence of an undercritical) electric field. Therefore, in
the following we will regard the ensuing classical evolution
away from the chosen configuration (which we will sug-
gest to interpret as a decay of the electrified D25-brane) as
due to the overcritical electric field [4].

B. D-brane Decay

The above mentioned instability is accompanied by
another effect. When interpreting bosonic open string the-
ory as a description of the dynamics of a space-filling D25-
brane, the tension of such a brane is naturally derived from
the Dirac-Born-Infeld action [12]. Such a tension, in the
presence of a constant electric field background, is there-
fore proportional to the Born-Infeld factor

���������������
1� E2
p

. This
factor becomes imaginary in the overcritical case, which is
to say that the squared mass of the brane becomes negative.

We can interpret this occurrence in the open string
picture. Classically, an electric field stretches open strings
against their internal tension [13]. At the critical value the
electric force counterbalances the tendency of the string to
oscillate, and stretches it to infinity. Beyond the critical
value the classical tachyonic instability is generated 4. This
is a signal that the nonperturbative string field theory
vacuum, whose dynamics is determined by the open string
theory defined on such a background, acquires a tachyonic
instability. The fact that the D25-brane becomes tachyonic
has another manifestation in the superluminal velocity of
the T-dual D24-brane [14]. Equivalently, this is known to
be a (tilted) S-brane, a spacelike object which arises in the
description of the standard D-brane decay via the rolling
tachyon picture [2,3]. In particular, in [2] an effective
action has been derived for S-branes, which turns out to
be equal to the Dirac-Born-Infeld action times a factor i.

We suggest to interpret the features of the first quantized
spectrum discussed in the previous section in the light of
this physical picture. While it is by now clear how one
should interpret the presence of the usual bosonic open
string tachyon, which is responsible for driving the D-
brane decay towards the closed string vacuum [1], here
the situation is complicated by the fact that the brane itself
behaves like a tachyonic soliton background of String Field
Theory. This is precisely because, while the nature of the
bosonic string tachyon is related to string zero-point quan-
tum oscillations without classical analogue, the tachyonic
tower described in the previous section reflects the classi-
cal instability of the tachyonic brane. What we propose is
therefore that, still, the idea of describing the decay
through the rolling of the tachyonic excitations living on
the worldvolume is applicable, with the natural difference
being represented by the presence of an infinite number of
tachyonic states. The practical way to do this will be
described in the next section.
4At the same time the endpoints of the strings classically
acquire a superluminal velocity [9].

-2



D-BRANES IN OVERCRITICAL ELECTRIC FIELDS PHYSICAL REVIEW D 73, 026006 (2006)
C. String Field Theory and BCFT

The main tool to study the rolling of the tachyon has
been Cubic String Field Theory [15], in connection with
methods of Boundary Conformal Field Theory [1]. On one
side, the presence of a minimum of the String Field Theory
potential corresponding to the absence of perturbative open
string excitations has been firmly established in the level
truncation scheme. On the other side, an exactly marginal
boundary perturbation to the world-sheet action for the
tachyon profile of the form

�
Z
@�

cosh�X0�t��dt (6)

has been used [1] to describe the time evolution of the
system and to derive the related stress-energy tensor during
the decay. In the presence of an undercritical electric field,
the procedure has been generalized in [16]. The final
products of the decay include in this case the additional
presence of fundamental string charges in the tachyon
vacuum.

The idea is therefore to make use of the available
formulation of String Field Theory in the presence of
antisymmetric backgrounds, this time evaluated for an
overcritical electric field. We still expect it to be the
instrument which describes the nonperturbative decay of
the original unstable configuration, through the evolution
of the infinite tower of tachyons. However, if one tries to
apply the above mentioned strategy to this new situation,
one soon realizes the scarce suitability of the level trunca-
tion scheme5. Its good approximation relies on the fact that
all the tower of positive mass excitations is stable around
the origin (perturbative vacuum), and even if the higher
spin fields assume nonzero vacuum expectation values at
the closed string minimum [18], it is conceivable that these
values will not differ too much from the original stable
point at zero (this appears also as a feature of the toy model
used in [6,7] on which we will elaborate in the next
section). Now instead, all of them are tachyonic at the
origin, and one will expect all of them to substantially
move away. Neglecting them all but a finite set, or in other
words setting them to zero starting from a certain level on,
does not look a priori like a good approximation.

On the other hand, since all the tower of states is rolling
down, one would need like an infinite sum of boundary
perturbations of the type (6) for the higher spin fields, with
the suitable modifications in order to account for the
electric field.

The boundary perturbation (6) was originally introduced
by inspection of the linearized String Field Theory equa-
tions of motion. If one would like to proceed in analogous
way, one has to look at solutions of the linearized equations
of motion for the higher spin fields of the tower, in the
5See [17] for considerations on critical electric fields in
Vacuum SFT.
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background of an overcritical electric field. The main
problem is the inclusion of all the tower, and we will sketch
here only the proposal for the first state. For this purpose,
we can follow the treatment reported in [19] to determine
the condition for conformal invariance of the boundary
coupling to the spin two field at the linearized level in
the background field. Adopting their parameterization and
choosing the gauge where the Stueckelberg field is set to
zero, one obtains the termZ

@�
A���X�@

aX�@aX
�dt (7)

with the following conditions on the symmetric tensor
A���X�:

�@�@� � 1�A�� � 0; @�A�� � 0; A�� � 0; (8)

where all indices are contracted with the open string met-
ric. Taking this into account, and making a spatially inde-
pendent ansatz, one finds that

A���X0� � a�� cosh�X0
���������������
E2 � 1

p
� (9)

is a solution, provided a�� is symmetric, purely spatial and
traceless. Inserted in (7), the solution (9) provides a gen-
eralization of the boundary deformation (6) suitable for the
new case. The polarization tensor a�� would have the same
status as the parameter �, the initial value of the tachyon.

This will have to be supplemented with all the remaining
boundary couplings for the higher spin states. However, it
can already be studied as a prototype in order to gain
insight about the features of the boundary state resulting
from such kind of perturbations, which will in turn deter-
mine the type of vacuum obtained at the end of the decay.
III. A TOY MODEL

In [6,7] toy models for the standard bosonic string
tachyon condensation were studied, whose features simu-
late the behavior found in String Field Theory for the true
rolling tachyon. The idea is to study the lump solution of an
effective field theory for the tachyon field. Fluctuations
around this nonperturbative solution are determined by
solving a Schrödinger equation of a known type, whose
spectrum can be exactly computed resulting in an infinite
tower of scalar excitations of increasing mass.

This situation has a close resemblance with the case of
the String Field Theory obtained by quantization around
the vacuum provided by a D-brane. In particular, the
presence of a tachyon signals the instability of such a
configuration, and the decay towards a stable minimum
can be studied by looking for the minima of the obtained
multiscalar potential. The main advantage is that in this
simplified case one already knows the minimum of the
original potential, and one can fix the values of the infinite
set of scalar fields in the static case by simply requiring that
summing the fluctuations to the lump profile produces the
-3
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minimum of the original tachyon field. One can therefore
treat simultaneously the whole tower of states, which in the
case of an overcritical electric field is a strict requirement.

The technical procedure, in the case of absence of
electric field, is briefly summarized in what follows. One
considers the action for the tachyon field � of a D25-brane

S �
1

g2
o

Z
d25ydx

�
�

1

2
@��@���

1

2
�@x��2 � V���

�
;

(10)

where y� � �t; ~y� and go is the open string coupling con-
stant. The potential has the form shown in Fig. 1:

V��� � �
1

4
�2 ln�2: (11)

It has a maximum at e�1=2, corresponding to the D25-
brane, and a local minimum at 0, corresponding to the
closed string vacuum, where the curvature diverges. The
last fact beautifully mimics the idea of decoupling of the
open string degrees of freedom in the stable vacuum, which
is a feature of the standard tachyon condensation. The
potential admits a Gaussian lump solution independent of
the y variables

���x� � exp
�
�
x2

4

�
; (12)

shown in Fig. 1, that represents a D24-brane. After �!
����, making the ansatz

� �
X
n

��n�y� n�x�; (13)

the computation of the spectrum of fluctuations around the
lump is effectively reduced to the one dimensional
Schrödinger equation for the harmonic oscillator

�
d2 

dx2 �

�
�

3

2
�

1

4
x2

�
 �x� � m2 �x�; (14)

that determines in this way the ‘‘open string’’ spectrum
m2 � n� 1 for n � 0.

The advantage of the model is that we know the mini-
mum to be at the value where the original tachyon field� is
equal to 0, therefore the exact values of the condensates for
the whole tower are obtained by solving the following
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FIG. 1. The shape of the potential V��� and of the lump
solution.
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equation:

0 � ���x� �
X
n

��n n�x�: (15)

Since the Gaussian itself is the first eigenfunction of the
harmonic oscillator, the solution of the equation is imme-
diately found. It simply amounts to fixing the expectation
value�1 for the tachyon (n � 0), and zero for all the other
excitations. This means that only the tachyon condenses.

We want to use this model to describe the decay of a D-
brane due to the overcritical electric field. The decay of the
D-brane is now driven by the infinite tower of former
massive fields now being tachyonic. We will see that it is
still possible to study the decay of a D24-brane using the
potential for the tachyon of a D25-brane.

Modifying the model in the presence of an electric field,
simply amounts to use for the y coordinates the open string
metric, and simultaneously to introduce for them the star-
product6.

Then, instead of (10), the action becomes

S �
1

g2
o

���������������
1� E2

p Z
d25ydx

�
�

1

2
G��@��@��

�
1

2
�@x��2 � V���

�
; (16)

where we included the factor
���������������
1� E2
p

in order to recover
the correct D-brane tension. Technically it would be
equivalent to take into account the factor

����������������
� detG
p

�
j1� E2j in the measure and to replace g2

o by
g2
o

����������������������������
� det�g� B�

p
� g2

o

���������������
1� E2
p

, as is done for the DBI
action in Ref. [10]. Note that we insist on keeping the
string coupling real for use in full String Field Theory.
The action (16) is thought to be an effective one for the
lowest string excitation. Having this in mind, the presence
of an imaginary factor in (16) is no obstacle and in agree-
ment with the DBI analysis.

The ‘‘transverse’’ part in the x variable is not touched by
the electric field. In particular, the same lump (12) is still a
solution of the new equations of motion. With G�� from
Sec. II, the action (16) can be written as

S �
1

g2
o

1���������������
1� E2
p

Z
d25ydx

�
1

2
�@0��

2 �
1

2
�@1��

2

�
1

2
�1� E2�

X
a

�@a��2 �
1

2
�1� E2��@x��2

� �1� E2�V���
�
: (17)

Here, a labels directions parallel to the brane, but perpen-
dicular to the electric field.
6We will again always consider here either effective one
dimensional x-variable problems, or static or linearized ones in
the y variables, therefore the star product will never play any
role, and we will omit to write it.
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FIG. 2. The shape of the potential Vel up to a factor j1� E2j.
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Referring ourselves to the action (17), we first collected
an overall factor in front, in order to make the following
analysis clearer. We are interested in determining the so-
lutions of the classical equations of motion, and to discuss
their stability. The overall factor does not change this kind
of analysis, since it does not alter the equations of motion
and it does not affect the issue of stability around the
extrema of the classical potential. We can therefore dis-
regard this factor as far as this analysis is concerned. We
will return later on its actual role.

From inspection of (17), one can see that the time
derivative is normalized as in the E � 0 case, but the
potential has a factor in front with respect to that case,
which changes sign in the overcritical case. We realize
therefore that, together with the already known effect of
the extra contribution coming from transverse motion7, the
net effect of the overcritical electric field is to reverse the
sign of the potential. This potential is drawn in Fig. 2. Such
an effect is consistent with the general argument concern-
ing the sign of the squared masses in the overcritical
electric background. The reversed tachyon potential for
static configurations has a stable minimum at e�1=2, that
corresponds to the D25-brane. This means that the tachyon
is now a stable (positive mass) state in the spectrum of the
D25-brane8.

The model is therefore suitable to mimic the situation in
the full String Field Theory, and one can be further con-
vinced of this by examining the expanded action around
the lump solution by replacing � with ����. The action
reads now

S �
1

g2
o

���������������
1� E2

p Z
d25ydx

�
�

1

2

�
d ��
dx

�
2
� V� ���

�

�
1

g2
o

1���������������
1� E2
p

Z
d25ydx

�
1

2
�@0��

2 �
1

2
�@1��

2

�
1

2
�1� E2�

X
a

�@a��
2 �

1

2
�1� E2�

	���@2
x � V00� ������ . . .

�
: (18)

The lump solution is still interpreted as a codimension 1
brane. Its asymptotes at x � 
1 correspond to the ab-
sence of the D25-brane. The first two terms correctly
reproduce the D24-brane tension with the Born-Infeld
factor which accounts for the electric background. This
factor becoming imaginary was the object of the discussion
in Sec.2.

The remaining part gives just the effective action for the
fluctuations, which is used to determine the dynamics of
7Compare the derivatives in the direction ya in (17) with the
contribution from k? in (4) and (5).

8The D25-brane is affected as well as the D24-brane (lump) by
the electric field, which is switched on in directions common to
both of them.
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the decay through the equations of motion and the analysis
of stability, which are not influenced by the overall factor.
The effective one dimensional Schrödinger problem is
untouched by the presence of the electric field, the spec-
trum of fluctuations is therefore the same. But when we
plug back the mode expansion in the action, we see that the
eigenvalues of the Schrödinger equation contribute with a
multiplicative factor �1� E2�. This is precisely the modi-
fication of the squared mass for the open string spectrum
according to the general treatment in Sec. II. We see here
that the theory living on the worldvolume of the lump
suitably describes the infinite tachyonic tower of states of
an electrified D-brane. After integration over x, the result-
ing multiscalar potential can be taken as a toy model for the
behavior of the full String Field Theory in the presence of
an overcritical electric field.

We can now predict inside this toy model the value of the
condensate for the infinite tachyonic tower. The final stage
representing the end of the rolling manifests itself in this
toy model as a stable minimum of the reversed potential
(corresponding to the old maximum)9.

We can apply the same technique as in the case without
electric field to compute the expectation values, only re-
quiring that the lump profile plus the fluctuations reduces
the original tachyon to its true minimum at e�1=2.

The overcritical counterpart of the Eq. (15) is therefore

e�1=2 � ���x� �
X1
n�0

��n n�x�

� exp��x2=4� �
X1
n�0

��n n�x�; (19)

where the eigenfunctions  n�x� are the usual harmonic
oscillator basis constructed in terms of Hermite polyno-
mials
9Of course it is open whether this feature is shared by the real
String Field Theory potential. At this stage we take it as a
conjecture.
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 n�x� �
1

2n=2
�����
n!
p Hn

�
x���
2
p

�
exp��x2=4�: (20)

If we absorb the Gaussian profile in a redefinition of the
coefficient ��0, then Eq. (19) represents an expansion of a
constant in terms of a Hilbert space basis. A constant is
certainly not in the Hilbert space. Still it is possible to
compute the coefficients ��n by performing the scalar
product with any elements of the basis10. From

��n �
1�������
2	
p

Z 1
�1

dx n�x�
�
e�1=2 � exp

�
�
x2

4

��
; (21)

one gets

�� 2n�1 � 0; ��2n � �
n;0 �
2�n

n!

�������������
2�2n�!
e

s
: (22)

This is the value of the condensates for the whole tower of
states at the true vacuum. At large level number n, using
Stirling’s approximation, one gets a behavior

�� 2n ���!
���
2

e

s
�	n��1=4: (23)

Because of the slow decrease of ��2n in (23), the result-
ing series is not absolutely and not uniformly (for all x)
convergent. However, the oscillations with n of the sign of
the Hermite polynomials enforce uniform convergence in
finite x-intervals. It is straightforward to check this at least
numerically.

Although the expectation values for higher modes go to
zero with n! 1 the decrease is not as fast as in the case
without electric field [6,7]. In accordance with our previous
discussion we take the slow decrease as an indication that
level truncation would be a bad approximation. Indeed, we
performed some explicit checks in level truncation, and
they confirmed these expectations. Taking into account up
to level n � 2, and expanding the reversed effective po-
tential up to the fifth power in these scalars, a minimum is
found at ��0 � �0:226, ��1 � 0, ��2 � 0:555. This has to
be compared with the exact result (22), namely ��0 �
�0:142, ��1 � 0, ��2 � 0:607. At first sight this may
seem not so bad an approximation, but we notice that, first,
truncating at even powers up to the fourth, sixth and eighth
ones produce instead no minimum, and, second, truncation
to seventh and ninth powers produce a worse minimum.
For example, with the seventh powers included the mini-
mum is at ��0 � �0:0831, ��1 � 10�8, ��2 � 0:350, and
with the ninth powers included the minimum is at ��0 �

DORN, SALIZZONI, AND TORRIELLI
10The basis is normalized such that
R
dx n�x� m�x� ��������

2	
p


n;m.
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�0:0463, ��1 � 10�4, ��2 � 0:259. If convergence of level
truncation is eventually to be obtained, it is done with wide
oscillating behavior, similar to the convergence of the sum
in (19).

A last comment concerns the nature of the endpoint of
the condensation process. The toy model setup is designed
to simulate the decay of a D24-brane as a lump solution of
the D25 tachyon field �. For the case of undercritical
electric field the minimum of the potential for � corre-
sponds to the absence of the D25. Now in the overcritical
case� takes a value as in the presence of a D25. Within the
lump-based model one has no possibility to decide whether
this value for � indicates a D25 or the true vacuum in
which � could assume just the same value (� does not
drive a D25 decay). However, beyond the model one
should expect that it will be the duty of the tower of
unstable D25 modes to prevent a formation of a D25.

From the open string point of view, the analogy with pair
production of pointlike charges suggests that the endpoint
of the condensation process corresponds to the discharge of
the overcritical electric field: dipoles nucleating from the
vacuum easily stretch to infinity until they screen the
electric field making it critical or undercritical [3]. When
looking at the D-brane decay, this means that the fluctua-
tions around the unstable configuration are going to lower
the value of the electric background itself towards critical
or undercritical values. In the T-dual picture, one expects
therefore that the T-dual superluminal brane (S-brane)
would lower its velocity to (under-) luminal, thereby be-
coming a usual timelike D-brane. This would correspond
to what is observed, for example, in [2], where the final
stage of the S-brane evolution is represented by a flattening
of its profile. This gives a hint that a remnant could be left
after condensation, in accord to the general expectation of
fundamental string fluxes as final products of the decay in
the presence of electric fields [16]. In order to get a full
description of this phenomenon one would have to allow
dynamics for the electric field as well and properly con-
sider backreaction of the D-brane. In this respect we think
that a closer connection to the S-brane picture could again
be fruitful.
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