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Quantum anomaly and geometric phase: Their basic differences
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It is sometimes stated in the literature that the quantum anomaly is regarded as an example of the
geometric phase. Though there is some superficial similarity between these two notions, I here show that
the differences between these two notions are more profound and fundamental. As an explicit example, I
analyze in detail a quantum mechanical model proposed by M. Stone, which is supposed to show the
above connection. I show that the geometric term in the model, which is topologically trivial for any finite
time interval T, corresponds to the so-called ‘‘normal naive term’’ in field theory and has nothing to do
with the anomaly-induced Wess-Zumino term. In the fundamental level, the difference between the two
notions is stated as follows: The topology of gauge fields leads to level crossing in the fermionic sector in
the case of chiral anomaly, and the failure of the adiabatic approximation is essential in the analysis,
whereas the (potential) level crossing in the matter sector leads to the topology of the Berry phase only
when the precise adiabatic approximation holds.
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I. INTRODUCTION

In quantum field theory the quantum anomaly plays an
important role to test if a specific classical symmetry in
question is really preserved in quantum theory [1–4]. The
quantum anomaly also predicts some novel phenomena
which are not expected by a classical consideration, for
example, the baryon number violation in the Weinberg-
Salam theory [5]. In some special cases of chiral anomaly,
one can summarize the effects of the quantum anomaly in
the form of an extra Wess-Zumino term [6] which is added
to the starting Lagrangian.

On the other hand, it has been recognized that one
obtains phase factors in the adiabatic treatment (such as
in the Born-Oppenheimer approximation) of the
Schrödinger equation which depends on slowly varying
background variables [7–17]. These phases are called
‘‘geometric phases’’, and they are generally associated
with level crossing. Although the manner of obtaining
geometric phases is quite different from that of quantum
anomalies, it is sometimes stated in the literature that the
chiral anomaly is regarded as a kind of geometric phase
[18,19].

The notion of the geometric phase itself does not appear
to be sharply defined at this moment. In the influential book
by Shapere and Wilczek [20], various phase factors in
physics which exhibit topological properties are discussed
together as geometric phases. It is important to synthesize
various phenomena and notions into a unifying notion, but
it is the opinion of the present author that this broad use of
the scientific terminology could lead to confusions and
misunderstandings in view of the wide use of geometric
phases in various fields in physics today. This broad use of
the terminology is closely related to the broad use of the
terminology of ‘‘adiabatic approximation’’. The practical
Born-Oppenheimer approximation, which provides a typi-
cal adiabatic approximation in physics, contains two quite
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different time scales but the slower time scale T measured
in units of the time scale of the faster system is finite. In
such a practical Born-Oppenheimer approximation, it is
shown that the commonly referred Berry’s phase, which is
purely dynamical without any approximation, is topologi-
cally trivial and no monopole-like singularity at the level
crossing point [21]. The notion such as holonomy is valid
for the level crossing problem only in the precise adiabatic
limit with T ! 1 [11].

The above properties of the geometric phase become
quite clear in a recent attempt to formulate the geometric
phase in the second quantized formulation [21]. This ap-
proach works in both of path integral and operator formu-
lations, and the analysis of geometric phases is reduced to a
simple diagonalization of the Hamiltonian. The hidden
local gauge symmetry, which arises from the fact that the
choice of basis vectors in the functional space is arbitrary
in field theory, replaces the notions of parallel transport and
holonomy [22]. By carefully diagonalizing the geometric
term in the infinitesimal neighborhood of level crossing, it
is shown that the topological property of the geometric
phase is trivial in the practical Born-Oppenheimer approxi-
mation, where the period T of the slower system is finite,
and thus no monopole-like singularity, as already stated
above. This approximate topology in the geometric phase
is quite different from the exact topology associated with
gauge fields such as in the familiar Aharonov-Bohm effect
[23]. We thus become somewhat suspicious about the
claim on the equivalence of quite distinct notions such as
quantum anomaly and geometric phase. The purpose of the
present paper is to show that these two notions, namely,
quantum anomaly and geometric phase, may have some
superficial similarity to each other, but the differences in
these two notions are more profound and fundamental.

In the literature, the paper by M. Stone [18] is often
quoted as an evidence of the equivalence of the quantum
anomaly and the geometric phase. I thus explain the crucial
-1 © 2006 The American Physical Society
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differences between the geometric phase and the quantum
anomaly by taking the model by Stone1 as a concrete
example, though the analysis is valid for the more general
model summarized in the Appendix. We first analyze the
problem from the point of view of several characteristic
properties of the chiral anomaly,2 such as the failure of the
naive manipulation and the failure of the decoupling theo-
rem, on the basis of the explicit model in [18] and a
corresponding field theoretical model which contains a
true anomaly in Secs. II and III. I show that the interpre-
tation of the geometric term in the model in [18] as the
Wess-Zumino term, namely, a manifestation of quantum
anomaly, is untenable even in the precise adiabatic ap-
proximation. I then analyze the problem from the point
of view of two key concepts involved in both of the chiral
anomaly and the geometric phase, namely, level crossing
and topology. By a careful examination of the statements
made in the paper by Nelson and Alvarez-Gaume [24], I
explain in Sec. IV that the chiral anomaly and the geomet-
ric phase are completely different in the fundamental level.

II. QUANTUM MECHANICAL MODEL:
GEOMETRIC PHASE

I first recapitulate the model due to M. Stone [18]. The
model starts with the Hamiltonian

H �
~L2

2I
��n�t� � ~�; (2.1)

where n�t� is a unit vector specifying the direction of the
‘‘magnetic field’’ acting on the spin represented by the
Pauli matrix ~�, and ~L generates the rotation of n�t�. We
1It should however be emphasized that we are not criticizing
the analysis of the geometric phase itself in the model by Stone,
which is essentially identical to the simplest example in [10].

2To make the analysis definite, I define the quantum anomaly
as the even-dimensional chiral anomaly and the geometric phase
as the phase associated with general level crossing which is
summarized in the Appendix.
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analyze the mathematical aspects of the model (2.1) in this
paper without asking the possible physical meaning of the
specific model, which is explained in [18]. Partly referring
to the second quantization, one can write the above
Hamiltonian as

H�t� �
~L2

2I
�  y�n�t� � ~� ; (2.2)

where the field  stands for the two-component spinor.
One may then write an evolution operator in the formal

path integral representation [18]�
f
��������exp

�
�
i
@

Z T

0
Hdt

���������i
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�
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or in the Euclidean formulation (t! �i�), we have

Z
D ~nD yD �� ~n2 � 1�

� exp
�
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@

Z �

0
d�
�
�

_~n2
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(2.4)

Following Ref. [18], we take this path integral as our
starting point.

This path integral is rewritten as
Z
D ~nD 0yD 0�� ~n2 � 1� exp
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2I
�  y�@@� ���3 �U� ~n����

y
@@�U� ~n����� 

��
; (2.5)
when one performs a time-dependent unitary transforma-
tion (or a gauge transformation)

 ��� � U� ~n���� 0���;  y��� �  0y���Uy� ~n���� (2.6)

with

U� ~n����y ~n��� ~�U� ~n���� � j ~nj�3: (2.7)
The last relation in (2.5) means that the naming of integra-
tion variables is arbitrary in the path integral. An explicit
form of the unitary transformation is given by defining

v�� ~n� �
cos�2 e

�i’

sin�2

 !
; v�� ~n� �

sin�2 e
�i’

� cos�2

 !
;

(2.8)

in terms of the polar coordinates, n1 � j ~nj sin� cos’, n2 �
j ~nj sin� sin’, n3 � j ~nj cos�. Note that these eigenfunc-
tions, which satisfy

�~n��� ~�v�� ~n� � ��j ~njv�� ~n�; (2.9)

are singular at the origin �~n � 0 and also contain spurious
-2



4The Legendre transformation from the Lagrangian to the total
Hamiltonian is involved in the presence of the derivative cou-
pling as in the present example (2.16). Thus our fermionic
Hamiltonian (2.17) is valid only when the variable ~L or ~n�t� is
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singularities at north and south poles.3 In our choice of the
phase convention, we have v�� ~n�0�� � v�� ~n���� if ~n�0� �
~n���; it has been explained in detail elsewhere [22] and
later in the appendix that the choice of the time-dependent
phases of these eigenfunctions is arbitrary due to the
hidden local gauge symmetry. Then U� ~n���� is given by a
2� 2 matrix

U� ~n���� � �v�� ~n�v�� ~n� �: (2.10)

This unitary transformation keeps the path integral mea-
sure invariant

D yD �D 0yD 0 (2.11)

without giving a nontrivial Jacobian for the present two-
component problem (2.6), as long as U� ~n���� is not singu-
lar. The matrix U� ~n���� becomes singular at the level
crossing point which takes place at �~n � 0 in the present
case. (In terms of the polar coordinates, U� ~n���� at the
north or south pole exhibits spurious singularity.) The
treatment in the infinitesimal neighborhood of the singu-
larity is discussed later.

If one defines (in Euclidean metric, but the result is valid
for Minkowski metric also)

vym� ~n�i
@
@�
vn� ~n� � Akmn� ~n� _nk; (2.12)

where m and n run over �, we have

Ak��� ~n� _nk �
�1� cos��

2
_’;

Ak��� ~n� _nk �
sin�

2
_’�

i
2

_� � �Ak��� ~n� _nk�
?;

Ak��� ~n� _nk �
1� cos�

2
_’:

(2.13)

Note that we have

Tr
�
vym� ~n�i

@
@�
vn� ~n�

�
� _’: (2.14)

The above relation (2.5) implies the equivalence of two
Lagrangians

L � �
_~n2

2I
�  y@@� �  

y�~n��� � ~� (2.15)

and

L0 � �
_~n2

2I
�  y�@@� ���3 �U� ~n����

y
@@�U� ~n����� :

(2.16)
3In the context of level crossing, it is natural to consider the
combination �~n by allowing the possible time dependence of
��t�. If the variable ��t� ~n moves toward the origin during a
cyclic motion, it implies that the two levels approach the level
crossing point.
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The fermionic part of the starting Hamiltonian (2.2) is thus
equivalent to4 (by going back to Minkowski metric)

Hfermion�t� � � 
y

�
��3 �U� ~n�t��

y @

i
@tU� ~n�t��jj ~nj�1

�
 ;

(2.17)

or in the original notation of (2.1)

Hfermion � ���3 �U� ~n�t��
y @

i
@tU� ~n�t��jj ~nj�1: (2.18)

The last term in (2.18), which may be understood as a pure
gauge term, is generally called as ‘‘geometric term’’ for the
historical reason. The survival of this geometric term in the
limit of the large � limit was interpreted in Ref. [18] as an
evidence of the failure of the decoupling theorem. The
failure of the decoupling theorem in the context of quan-
tum anomaly is however more involved, as will be ex-
plained later. This Hamiltonian (2.18), which is exact,
carries all the information about the geometric phases as
I show below; this means that the geometric phases are
purely dynamical.

If one is interested in the lower energy state of the
Hamiltonian (2.18), one has an approximate Hamiltonian

Had ’ ��� �U� ~n�t��y
@

i
@tU� ~n�t��jj ~nj�1���

� ��� @
�1� cos��

2
_’ (2.19)

by noting (2.13). If � is sufficiently large, to be precise for

2�T 	 2�@; (2.20)

one may neglect the off-diagonal part in the geometric term
in (2.18), and this Hamiltonian Had provides a good adia-
batic approximation to the full Hamiltonian. Here T is the
period of the slower dynamical system ~n�t� and 2�@ stands
for the magnitude of the geometric term times T. We
emphasize that the adiabatic approximation in the present
context corresponds to throwing away the off-diagonal part
in the geometric term, namely, throwing away a part of the
Hamiltonian. The geometric term in (2.19) is reminiscent
of a magnetic monopole located in the parameter space at
the level crossing point �~n � 0. The fermionic
Hamiltonian (2.19) thus gives rise to the dynamical phase
treated as a background c-number. This limitation, however,
does not influence our analysis of the possible connection of
the geometric term with the Wess-Zumino term. The analysis of
geometric term is generally performed in this simplified situation
[17]. The second quantized path integral approach to the geo-
metric term [21] is more flexible for the treatment of more
general situations.
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exp
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@

Z T
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dt
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2

_’
��

� exp
�
i
@
�T � i

I �1� cos��
2

d’
�
; (2.21)

for a cyclic motion of the slower system, and the second
term gives rise to the familiar Berry’s phase [10,18].

The last geometric term in (2.18) has an approximate
topological property around the level crossing point in the
practical Born-Oppenheimer approximation where the pe-
riod of the slower dynamical system T is finite. This fact is
understood as follows: For sufficiently close to the level
crossing point, �
 0 but � � 0, one has �T � 2�@
instead of (2.20). One may then perform a further unitary
transformation of the fermionic variable [21]

 0�t� � U���t�� 00�t�;  0�t�y �  00y�t�Uy���t��

(2.22)

with

U���t�� �
cos�2 � sin�2
sin�2 cos�2

 !
; (2.23)

in addition to (2.6). The Hamiltonian (2.17) is thus equiva-
lent to (by repeating the path integral analysis)

Hfermion�t� � � 
y

�
�U���t��y�3U���t��

� �U���t��U� ~n�t���y

�
@

i
@t�U� ~n�t��U���t���jj ~nj�1

�
 

� � y
�
�U���t��y�3U���t�� � @

_’ 0

0 0

 !�
 

’ � y@
_’ 0

0 0

 !
 ; (2.24)

for �
 0, or in the original notation

Hfermion ’ @
_’ 0
0 0

� 	
: (2.25)

The geometric phase thus either vanishes or becomes
trivial

exp
�
�i

Z T

0
_’dt

�
� expf�2i�g � 1; (2.26)

in the infinitesimal neighborhood of level crossing. The
geometric term is thus topologically (i.e., under the con-
tinuous variation of the parameter �) trivial for any finite
T. At the level crossing point, �
 0, the conventional
energy becomes degenerate but the degeneracy is lifted
when one diagonalizes the geometric term. It is important
that the additional transformation (2.23) depends on the
variable � only and preserves (2.14).
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Though the geometric phase is topologically trivial in a
precise sense, it is still interesting that the geometric phase
is approximately topological. This approximate topologi-
cal property (of a pure gauge term) is traced to the fact that
the eigenfunctions in (2.9) are singular on top of the level
crossing, i.e., the gauge transformation (2.6) is singular,
though the singular behavior is avoided in the sense of the
trivial phase as in (2.25) by defining a suitable basis set in
the neighborhood of the singularity by a further unitary
transformation. (The above relation (2.24) also shows that
if the time variation of ~n�t� is faster than the fermionic
variables even for� which is not small, the geometric term
dominates the ��3 term, and the geometric term becomes
topologically trivial. This is another indication that the
geometric term is not quite topological, and this observa-
tion becomes relevant when one compares the geometric
phase with the chiral anomaly. )

The geometric term corresponds to the normal term not
an anomalous term in field theory, as I explain in Sec. III.
The geometric term in the present model has nothing to do
with the Wess-Zumino term as we understand it in field
theory which is a result of the symmetry breaking by
quantum effects. To be more precise, (2.5) shows that

det�@@� ��~n��� � ~�
 � det�U� ~n����yf@@� ��~n���

� ~�gU� ~n����


� det�@@� ���3

�U� ~n����y@@�U� ~n����
:

(2.27)

The ordinary Wess-Zumino term would manifest itself as
an extra phase factor on the right-hand side of this relation
(see, for example, (3.25)), but no such an extra phase in the
present example.

This analysis of the Wess-Zumino term becomes more
transparent if one considers H � ~L2

2I ��n�t� � ~���0 in-
stead of (2.1), or

H �
~L2

2I
�  y��n�t� � ~���0
 ; (2.28)

instead of (2.1) with a positive constant �0 which satisfies

�0 >� (2.29)

by noting that the absolute value of the energy is not fixed
in the present quantum mechanical model. This choice
incidentally defines a Euclidean theory more precisely, as
the Hamiltonian becomes positive definite. Then the
equivalent Hamiltonian (by treating ~n�t� as a background
variable) in (2.17) is replaced by

Hfermion�t� � � y
�
��3 ��0 �U� ~n�t��y

�
@

i
@tU� ~n�t��jj ~nj�1

�
 ; (2.30)
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or in the original notation of (2.1)

Hfermion � ���3 ��0 �U� ~n�t��y
@

i
@tU� ~n�t��jj ~nj�1:

(2.31)

The adiabatic approximation for the lower energy state j�i
is then given by

Had ’ ����0 �

�
U� ~n�t��y

@

i
@tU� ~n�t��jj ~nj�1

	
��

� ����0 � @
�1� cos��

2
_’; (2.32)

and the dynamical phase for the fermionic part is given by

exp
�
�
i
@

Z T

0
dt
�
����0 � @

�1� cos��
2

_’
��

� exp
�
�
i
@
��0 ���T � i

I �1� cos��
2

d’
�
: (2.33)

We thus obtain the same geometric phase independently of
�0. The almost topological property of the geometric
phase arises from the crossing of two levels

�0 ��j ~n�t�j> 0 (2.34)

at �j ~n�t�j � 0; the crossing of positive and negative levels
at �j ~n�t�j � 0, which is realized when one sets �0 � 0, is
not essential for the geometric phase. The fact that we can
include an arbitrary mass parameter �0 shows that the
basic symmetry in the present model is vectorlike which
contains no anomaly, to be consistent with the absence of
the nontrivial Jacobian. This may be compared to (3.7).

For the present case (2.28) also, we have a naive relation

det�@@� ��~n��� � ~���0
 � det�U� ~n����yf@@� ��~n���

� ~���0gU� ~n����


� det�@@� ���3 ��0

�U� ~n����y@@�U� ~n����
;

(2.35)

without any extra phase factor which would correspond to
the Wess-Zumino term. We also have for Hfermion in (2.30)�

0

��������exp
�
�

1

@

Z �

0
Hfermion���d�

���������0
�
� 1; (2.36)

for the fermionic vacuum j0i in the second quantized sense
defined by

 �j0i �  �j0i � 0 (2.37)

in the adiabatic picture where one can approximately di-
agonalize the fermionic Hamiltonian by treating the vari-
able ~n�t� as a background c-number. Note that the energies
of the fermionic states are positive definite with vanishing
vacuum energy in the adiabatic picture. The important
point here is that we do not have any extra phase in
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(2.35), and we do not have any contribution from the
fermionic part of the Hamiltonian for the evolution opera-
tor (2.36). This is consistent with the general relation

det�@@� ���3 ��0 �U� ~n����y@@�U� ~n����


� Str
�
exp

�
��1=@�

Z �

0
Hfermion���d�

��


 exp
�
�

1

@
h0jHfermionj0i�

�
� 1; (2.38)

for �! 1 with fixed large � and �0 with �0 >� such
that the vacuum with vanishing energy is isolated. When
one defines the functional determinant with periodic
boundary conditions, the determinant gives a supertrace.
If one should have a Wess-Zumino term, then both-hand
sides of this relation (2.38) would have an extra nontrivial
phase factor relative to det�@@� ��~n��� � ~���0
. See
Eq. (3.25).

Instead of (2.38), one might prefer to consider (2.27) for
�! large

det�@@� ���3 �U� ~n����
y
@@�U� ~n����



 exp
�
�

1

@

Z �

0
d�h�jHfermionj�i

�

� exp
�
��
@
� i

I �1� cos��
2

d’
�
; (2.39)

with the fermionic Hamiltonian (2.17), for which one-
fermion state with up spin gives the energy lower than
the vacuum [18]. It thus appears that one obtains the
geometric term from the fermionic functional determinant
in the leading term. This relation (2.39) is however ill-
defined for �! 1 for which the geometric (adiabatic)
phase is best defined [11]. Also, the vacuum and the state
j � �i are degenerate in this case

exp
�
�
Z �

0
d�h� � jHfermionj � �i

�

� exp
�
�
Z �

0
d�h�jHfermionj�i

�
Z �

0
d�h�jHfermionj�i

�

� exp
�
��
@
� i

I �1� cos��
2

d’�
��
@

� i
I �1� cos��

2
d’

�

� exp
�
�i

I
d’

�
� expf�2�ig � 1: (2.40)

It should be noted that the geometric terms appear in the
subleading terms in (2.38). In this respect, it is immaterial
if the geometric terms appear in the leading term or in the
subleading terms by varying the parameter �0. The crucial
property is that the Wess-Zumino term, if it should exist in
the present model, should appear multiplying all the terms,
-5



5We have VR��� � expf�i�1=f���
aTag and VL��� �

expfi�1=f���
aTag in the fixed chiral frame. If one defines the

global chiral transformation law by VL��� ! e�i

aTaVL��� and

VR��� ! ei

aTaVR���, the transformation law in (3.6) is realized

if one understands that expf2i�1=f���
aTag � VL���VR���

y and
the fermion fields  0 and � 0 in (3.8) are not transformed under
the global chiral transformation.
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not only the leading term but also the subleading terms in
both of (2.38) and (2.39) when one starts, respectively, with
the left-hand sides of (2.35) and (2.27). Obviously, no such
a Wess-Zumino term in the present model. This may be
compared to (3.26).

III. FIELD THEORETICAL MODEL: QUANTUM
ANOMALY

A unitary transformation and induced terms which are
analogous to those discussed in the preceding section are
realized by a field theoretical model defined by

L � � �x��i���@� � ieQA�� �mU���
 �x�

�
f2
�

16
Tr@�U���@

�U���y; (3.1)

where

U��� � e2i�1=f���5�a�x�Ta (3.2)

and

 �x� �
p�x�
n�x�

� 	
; Q �

1 0
0 0

� 	
; Ta �

1

2
�a:

(3.3)

In the present field theoretical model, we work in the
Euclidean metric with g�	 � ��1;�1;�1;�1�. In this
model p�x� and n�x� stand, respectively, for the idealized
proton and neutron which are degenerate in mass, and
�a�x� stand for the pion fields with �a standing for the
Pauli matrix. A��x� is the electromagnetic field. The above
Lagrangian is invariant under the electromagnetic gauge
transformation and also invariant under a global chiral
SUL�2� � SUR�2� transformation which is weakly broken
by the electromagnetic interaction. This chiral symmetry
becomes explicit by writing the above Lagrangian as

L � � L�x�i���@� � ieQA�� L�x�

� � R�x�i���@� � ieQA�� R�x�

� � L�x�me2i�1=f���a�x�Ta R�x�

� � R�x�me
�2i�1=f���a�x�Ta L�x�

�
f2
�

16
Tr@�U���@�U���y; (3.4)

where

 L;R�x� �
�
1� �5

2

	
 �x�: (3.5)

Under the global chiral transformation with global parame-
ters 
aTa,

 L�x� � e�i

aTa 0L�x�;  R�x� � ei


aTa 0R�x�;

e2i�1=f���a�x�Ta � e�i

aTae2i�1=f���a�x�0Tae�i


aTa ;
(3.6)

the Lagrangian is form invariant if one sets e � 0. If one
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imposes this global chiral symmetry, an additional naive
mass termm0 in (3.1) which is obtained by the replacement

mU��� ! m0 �mU��� (3.7)

is not allowed. This may be compared to (2.28).
We now perform a field-dependent unitary transforma-

tion

 �x� � V��� 0�x� � VR��� 
0
R�x� � VL��� 

0
L�x�;

� �x� � � 0�x�V��� � � 0R�x�VR���
y � � 0L�x�VL���

y;

(3.8)

with5

V��� � e�i�1=f���5�a�x�Ta : (3.9)

One then naively obtains the resultZ
DU���D � D exp

�Z
d4xL

�

�
Z

DU���D � 0D 0 exp
�Z

d4xL0
�

�
Z

DU���D � D exp
�Z

d4xL0
�
; (3.10)

where

L0 � � �x��i���@� � ieQA� � Vy���D�V���� �m
 �x�

�
f2
�

16
Tr@�U���@�U���y; (3.11)

with

D�V��� � @�V��� � ie�QA�; V���
; (3.12)

by assuming the invariance of the measure

D � D �D � 0D 0: (3.13)

We also used the fact that the naming of integral variables
is arbitarary in the path integral (3.10).

Here we performed a naive manipulation by ignoring the
possible Jacobian for the above change of integration
variables (3.8). Nevertheless, we obtain the term in
(3.11), which was called ‘‘Dyson term’’ in the old literature
[25–28]

� �x�i���Vy���D�V���� �x�


 �1=f�� � �x����5�D���x�� �x�; (3.14)

in the order linear in the variables ��x� with ��x� �
�a�x�Ta and
-6



QUANTUM ANOMALY AND GEOMETRIC PHASE: THEIR . . . PHYSICAL REVIEW D 73, 025017 (2006)
D���x� � @���x� � ie�QA�;��x�
: (3.15)

The above naive manipulation suggests the equivalence of
the derivative coupling in L0 (3.11),

L 0 
 �1=f�� � �x����5@���x� �x�; (3.16)

and the pseudoscalar coupling in the starting Lagrangian L
(3.1),

L 
�2im�1=f�� � �x��5��x� �x�; (3.17)

to the order linear in the pion fields.
The derivative coupling in L0 (3.11), which appears

sandwiched by fermion fields  y and  , precisely corre-
sponds to the geometric term in (2.16), though we here
have a four-dimensional derivative instead of the simple
time derivative in (2.16). Naively, the appearance of the
derivative coupling is also regarded as a result of the failure
of the decoupling theorem for m! large in the sense of
Ref. [18], but the actual failure of the decoupling theorem
is more involved as will be explained later. It is clear that
the above operation is a naive one and the appearance of
the above Dyson term has nothing to do with the quantum
anomaly. It is well-known that the above two Lagrangians
(3.1) and (3.11) give rise to quite different predictions for
the decay amplitude �0 ! �� � in the soft-pion limit,
which marked the genesis of the modern notion of quantum
anomaly [29,30]. This, in particular, implies that

det�i���@� � ieQA�� �mU���


� det�i���@� � ieQA� � V
y���D�V���� �m
;

(3.18)

in contrast to (2.27) and (2.35).
Some of the essential and general properties of the

quantum anomalies are:

(1) T
he anomalies are not recognized by a naive ma-

nipulation of the classical Lagrangian or action (or
by a naive canonical manipulation in operator for-
mulation), which leads to the naive Nöther’s
theorem.
(2) T
he quantum anomaly is related to the quantum
breaking of classical symmetries (and the failure
of the naive Nöther’s theorem). For example, the
Gauss law operator (or BRST charge) becomes
time-dependent and thus it cannot be used to specify
physical states in anomalous gauge theory [31].
(3) T
6

he quantum anomalies are generally associated
with an infinite number of degrees of freedom.
The anomalies in the practical calculation are thus
closely related to the regularization, though the
anomalies by themselves are perfectly finite.
In the present chiral SU�2� symmetry, which is anomaly free
(4) I

by itself, no Wess-Zumino term arises for A� � 0. For SU�3�,
for example, one obtains a nontrivial Jacobian or the Wess-
Zumino term even with A� � 0, and such a term is shown to
exhibit a topological property [2,3].
n the path integral formulation, the anomalies are
recognized as nontrivial Jacobians for the change of
path integral variables associated with classical
symmetries.
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None of these essential properties are shared with the
derivation of geometric terms in Sec. II. Rather, the geo-
metric term there (2.16) corresponds to the naive Dyson
term in (3.11), which is known to fail to account for the
whole story of the above chiral transformation.

To incorporate the anomaly, one needs to evaluate the
Jacobian carefully for the above chiral transformation (3.8)
[32]. One may first rewrite the covariant derivative in (3.1)
as

D� � @� � ieQA� � @� � ieYA� � ieT
3A�; (3.19)

with

Y � 1
2; T3 � 1

2�
3: (3.20)

The Wess-Zumino term for the transformation (3.8) then
has a well-known form [2–4]

D � D � JD � 0D 0;

lnJ � i
Z
d4xLWess�Zumino

� i
Z
d4x

Z 1

0
ds

1

f�
��	��tr�a�x�Ta

1

16�2

�

�
e2

2
�U�s�yT3U�s� �U�s�T3U�s�y
F�	F��


� 4ie�F�	a�a�

�
; (3.21)

where

F�	 � @�A	 � @	A�;

a� �
i
2
�U�s�yD�U�s� �U�s��D�U�s��

y
;
(3.22)

with

U�s� � e�is�1=f���
a�x�Ta ;

D�U�s� � @�U�s� � ie�A�T3; U�s�
:
(3.23)

This is obtained by an integral of the Jacobian for the
repeated applications of the infinitesimal transformation

 �x� � e�ids�1=f���
a�x�Ta�5 0�x�;

� �x� � � 0�x�e�ids�1=f���
a�x�Ta�5 ;

(3.24)

and tr stands for the trace over the 2� 2 matrices with
trTaTb � 1

2�ab.
In terms of the functional determinant we have6

det�i���@� � ieQA�� �mU���


� det�i���@� � ieQA� � Vy���D�V���� �m


� exp
�
i
Z
d4xLWess�Zumino

�
; (3.25)
-7
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which may be compared to (2.27). For T ! large (in the
present Euclidean theory), we have

det�i���@� � ieQA� � V
y���D�V���� �m


exp
�
i
Z
d4xLWess�Zumino

�


 expf�EvacTg exp
�
i
Z
d4xLWess�Zumino

�

� exp
�
i
Z
d4xLWess�Zumino

�
; (3.26)

for a fixed large m and slowly varying ��x� with periodic
boundary conditions, for which we have a mass gap 
m
and thus the fermionic vacuum with vanishing energy is
isolated. This relation may be compared to (2.38).

In the order linear in the pion fields, we have the
Jacobian

lnJ � i
Z
d4x

1

f�
�trTaT3��a�x�

e2

16�2 �
�	��F�	F��

� i
Z
d4x

1

f�
�0�x�

e2

32�2 �
�	��F�	F��: (3.27)

It is well-known that this Wess-Zumino term (3.27) when
added to the Lagrangian L0 in (3.11)Z

d4x�L0 �LWess�Zumino



 �
Z
d4x�1=f���0�x�@�� � �x����5T3 �x�


�
Z
d4x

i
f�
�0�x�

e2

32�2 �
�	��F�	F�� (3.28)

correctly describes the decay �0 ! �� � in the soft-pion
limit [29,30] in agreement with the result on the basis of
(3.1). In the operator notation, this equivalence is expressed
as the relation

@�� � �x����5T
3 �x�
 � 2im� � �x��5T

3 �x�


� i
e2

32�2 �
�	��F�	F��;

(3.29)

which expresses the failure of the naive Nöther’s theorem
for the exact global chiral symmetry generated by �5T

3.
It is instructive to see in detail how this equivalence in

the decay �0 ! �� � is achieved. We consider two dis-
tinct cases: (i) m � 0. In this case, the operator
� � �x����5T3 �x�
 in (3.28) is free of infrared singularity
in the soft-pion limit, namely, for the four-momentum of
the pion p� 
 0. Thus the first term in (3.28) vanishes in
the soft-pion limit

lim
p�!0

Z
d4xeip�x

�
@�� � �x����5T3 �x�
 � 0; (3.30)

and the second anomaly term gives the same result as the
025017
pseudoscalar coupling in (3.17). (ii) m � 0. This case is
singular from the point of view of spontaneously broken
chiral symmetry. Nevertheless, in this case, which corre-
sponds to the case � � 0 in (2.2), the pseudoscalar cou-
pling in (3.17) vanishes. On the other hand, the current
� � �x����5T3 �x�
 becomes singular in the soft-pion limit
but still one can use the operator relation (3.29) withm � 0
in (3.28) and the two terms in (3.28) cancel each other, to
be consistent with the vanishing pseudoscalar coupling in
(3.17).

We emphasize that the derivation of the chiral anomaly
does not depend on the relative magnitude of m, which is
analogous to � in (2.2), and the frequency of the external
variables such as the gauge field, but rather depends on the
relative magnitude of the cutoff massM, such as the Pauli-
Villars regulator mass which can be chosen to be arbitrarily
large, and the frequency of the external variables. This is
quite different from the case of the geometric phase where
the parameter �, which corresponds to m, directly enters
the criterion of the adiabatic approximation in (2.20) where
1=T corresponds to the frequency of the external variables.
Because of this difference, the failure of the decoupling
theorem in the chiral anomaly is stated precisely as fol-
lows: The derivative coupling term in (3.28), which corre-
sponds to the geometric term in (2.16), vanishes for
m! 1 [1], and the anomaly term balances the pseudo-
scalar term in (3.17) which does not vanish in the limit.

The discovery of the chiral anomaly is based on the
recognition that the naive Dyson’s relation, namely, the
naive equivalence between (3.1) and (3.11), inevitably fails
in gauge field theory, and one needs to include an extra
Jacobian (or Wess-Zumino term).
IV. DISCUSSION

I have explained the basic differences between the geo-
metric phase and the quantum anomaly by analyzing the
concrete model due to Stone and a corresponding model in
field theory which contains a true quantum anomaly. The
only similarity between the geometric phase in the adia-
batic approximation and the Wess-Zumino term is that
both of them exhibit topological properties under certain
limiting conditions.

In contrast, the differences are more profound and fun-
damental. Firstly, the geometric phase arises from the
naive rearrangement of terms inside the fermionic operator
sandwiched by  y and  , whereas the Wess-Zumino term
associated with quantum anomaly arises from the
Jacobian, namely, a completely new additional part to the
Lagrangian. Secondly, the geometric phase is recognized
only when one throws away a part of the original
Hamiltonian in the adiabatic approximation, whereas the
quantum anomaly is exact without any approximation. The
Born-Oppenheimer approximation in the geometric phase
means a neglect of a part of the Hamiltonian, whereas the
Born-Oppenheimer approximation in the quantum anom-
-8
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aly, if any [24], is actually not an approximation; this is
obvious in the path integral formulation of quantum
anomalies where the Born-Oppenheimer approximation
simply means a specific order of path integration, namely,
one first integrates over fermions with fixed bosonic (such
as gauge or Nambu-Goldstone) variables and then one
integrates over bosonic variables later. The path integral
over the fermionic variables, which are quadratic, can be
performed exactly and the Wess-Zumino term is induced
by this fermionic path integral; in this sense no approxi-
mation is invloved in the analysis of the chiral anomaly,
though the path integral of bosonic variables in the non-
linear effective chiral model in Sec. III is not renormaliz-
able. Because of this difference, the topological property of
the geometric phase is inevitably trivial in the practical
Born-Oppenheimer approximation for any finite time in-
terval T if one deals with the exact Hamiltonian, whereas
the topology in the quantum anomaly, which is basically a
short distance phenomenon in four-dimesional space-time,
is exact once its existence is established since no approxi-
mation is involved.

One may still wonder, if my assertion is valid, what then
happens with the analysis by Nelson and Alvarez-Gaume
[24] where a precise analogy between the quantum anom-
aly in the Hamiltonian interpretation and the geometric
phase is forcefully argued. I believe that all that is said
about the chiral anomaly there [24] is correct. I also believe
that they can perform all of their analyses of the chiral
anomaly without referring to the geometric phase in quan-
tum mechanics. The pair production picture in [24] is
based on the fact that one can arrive at the level crossing
point with vanishing energy at a fixed well-defined time t0.
This means the failure of the naive adiabatic picture as is
emphasized in [24]. On the other hand, the validity of the
topological property of the geometric phase is based on the
condition that we never approach the level crossing point
for any finite t, namely, on the strict validity of the adia-
batic picture. The topological property of the geometric
phase cannot be used in the context of the analysis in [24].
If one arrives at the level crossing at finite t � t0, for
example, one can suitably redefine the time variable and
smoothly deform the background variable such that the
period T of the background variable is finite. This is
generally the case in the mathematical analysis of the index
theorem [33] which is based on the compact Euclidean
space-time such as S4. For a finite time interval T, the
topological property of the geometric phase, such as the
topological proof [12] of the Longuet-Higgins phase
change rule, fails as I have shown elsewhere [21] and
also in Sec. II of the present paper. The topological prop-
erty of the geometric phase crucially depends on the very
precise definition of the adiabatic approximation; the
movement of the external parameter must be infinitely
slow, i.e., not only the period T ! 1 but also the variation
of the background variable at each moment is negligible
[11].
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As is clear in the analysis in [24], the quantum anomaly
influences all the states of the Fock space equally, whereas
the geometric phase appears only in the specific states of
the Fock space and does not influence the vacuum state.
The form of the geometric phase is also state-dependent.
See Eq. (2.38). Also, the geometric phase is independent of
the parameter �0 as in (2.33), whereas the analysis of
quantum anomaly in [24] crucially depends on the crossing
of vanishing eigenvalues in chiral gauge theory which
corresponds to the specific choice �0 � 0 in the context
of the model in Sec. II. The general level crossing problem
in the context of geometric phases is regarded to be related
to the vectorlike transformation as is seen in (2.33) and
(2.35). See also (A9). In contrast the chiral symmetry, not
the vectorlike symmetry, is crucial in the analysis of the
anomaly. The level crossing by itself has no connection to
the anomaly.

I also note that all the properties of the chiral anomaly
are understood in terms of the Green’s functions instead of
going to the S-matrix. The Green’s functions are the state-
ments about the local properties of field theory unlike the
S-matrix which involves a subtle limit of the infinite time
interval in field theory. The global SU�2� anomaly by
Witten [34] may appear to depend on the infinite time
interval to some extent, but I note that the global SU�2�
anomaly is also known to be described by the Wess-
Zumino term related to the group SU�3�, which is defined
in the framework of Green’s functions, in a suitable fomu-
lation of the problem [35,36]. The quantum anomaly, as we
understand it in gauge field theory, is a precise statement
and as such it should not depend on the technical details of
the adiabatic approximation, unlike the case of the geo-
metric phase associated with level crossing in quantum
mechanics.

There are well-known odd-dimensional cousins of chiral
anomalies, namely, the Chern-Simons terms which exhibit
topological properties. The Chern-Simons terms induced
by fermions, which are sometimes called parity anomaly,
or added by hand are closely related to the chiral anomaly
not only by the descent formula [2,3] or dimensional
reduction but also in the explicit Feynman diagramatic
calculations. If one provides a precise definition of the
geometric (or Berry) phase in general field theoretical
contexts, possibly asking some association with level
crossing and adiabaticity as minimal requirements, it
would be possible to analyze the relation between the
Berry phase and the odd-dimensional cousins of chiral
anomaly.

As an explicit example of the geometric phase in real-
istic condensed matter physics, I mention the recent works
on anomalous Hall effect [37]. In those works, readers will
find that all the basic ingredients of the geometric (or
Berry) phase, such as level crossing, adiabaticity and ap-
proximate topology, are contained. This class of models
are included in the general model in Appendix of the
-9
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present paper, and thus the analysis in the present paper is
applicable to them.

Finally, I note that the Aharonov-Bohm phase is topo-
logically exact even for a finite time interval T unlike the
geometric phase. The Aharonov-Bohm effect contains an
extra dynamical freedom, namely, the electromagnetic
potential which is time-independent, and the space for
the Aharonov-Bohm effect is not simply connected.
None of these crucial features are shared with the geomet-
ric phase, though certain feature of the Aharonov-Bohm
effect is known to be shared with the geometric phase [10].
I think that a clear distinction between the Aharonov-
Bohm phase and the geometric phase is also important,
since the notion of winding number is defined for the
Aharonov-Bohm phase whereas no notion of winding
number in the geometric phase for any finite time interval
T as the topology is trivial.
V. CONCLUSION

The model in Ref. [18], which is essentially identical to
the simplest example discussed by Berry in his original
paper [10], shows that the Berry phase associated with
level crossing gives the topological phase for certain states
in the Fock space in the precise adiabatic limit. The phase
factor has the same form as the anomaly-induced Wess-
Zumino term appearing in certain field theoretical models.
The key concepts involved in the model, namely, the level
crossing, topology and adiabatic approximation also ap-
pear in the Hamiltonian analysis of chiral anomalies by
Nelson and Alvarez-Gaume [24]. This fact led to an ex-
pectation that the very basic mechanism of chiral anoma-
lies, which have been established by the efforts of various
authors, notably by Bell and Jackiw [29] and Adler [30],
may be identified with the basic mechanism of the adia-
batic Berry phase related to level crossing in the simple
Schrödinger problem. What I have shown in the present
paper is that this expectation is not realized, and the
similarity between the two is superficial. We have first
explained the difference between the two on the basis of
general characteristics of chiral anomaly, such as the fail-
ure of the naive manipulation and the failure of the decou-
pling theorem, by using two explicit examples in Secs. II
and III. Our conclusion is valid for a more general class of
level crossing problems summarized in Appendix. I then
explained the difference between the two from the point of
view of level crossing and topology. The difference be-
tween the chiral anomaly and the Berry phase is simply
stated as follows: The topology of gauge fields leads to
level crossing in the fermionic sector in the case of chiral
anomaly, and the failure of the adiabatic approximation is
essential in the analysis, whereas the (potential) level
crossing in the matter sector leads to the topology of the
Berry phase only when the very precise adiabatic approxi-
mation holds. These two cannot be compatible with each
other.
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In the early literature on the geometric phase, the simi-
larity between the geometric phase and the quantum anom-
aly, though rather superficial one, was emphasized [38].
That analogy was useful at the initial developing stage of
the subject. But in view of the wide use of the terminology
‘‘geometric phase’’ in various fields in physics today [39],
it is my opinion that a more precise distinction of various
loosely related phenomena is also desirable. To be precise,
what we are suggesting is to call chiral anomaly as chiral
anomaly, Wess-Zumino term as Wess-Zumino term,
Chern-Simons term as Chern-Simons term, and
Aharovov-Bohm phase as Aharonov-Bohm phase, etc.,
since those terminologies convey very clear messages
and well-defined physical contents which the majority in
physics community can readily recognize. Even in this
sharp definition of terminology, one can still clearly iden-
tify the geometric (or Berry) phase and its physical char-
acteristics, which cannot be described by other notions, as
the concrete physical example in Ref. [37] suggests.

I believe that a sharp definition of the scientific term
‘‘geometric phase’’, probably by asking some association
with level crossing and adiabaticity as minimal require-
ments, is also important for those experts working on the
geometric phase itself, since then the wider audience can
easily identify the phenomena, which are intrinsic to the
geometric phase and cannot be described by other notions,
and consequently they will appreciate more the usefulness
of the geometric phase.

APPENDIX: GENERAL LEVEL CROSSING
PROBLEM

The general geometric phase associated with any level
crossing in the second quantized formulation exhibits the
same topological properties as the specific example in
Sec. II; approximate monopole-like behavior in the adia-
batic approximation but actually topologically trivial in the
infinitesimal neighborhood of level crossing for any finite
time interval T. This property may be relevant to the
analysis in Ref. [19], where the geometric phase is used
as an analogue of the Wess-Zumino term, and we sketch
the analysis of the general level crossing [21,22] in this
appendix.

We start with the generic Hermitian Hamiltonian

Ĥ � Ĥ� ~̂p; ~̂x; X�t�� (A1)

for a single particle theory in the background variable
X�t� � �X1�t�; X2�t�; . . .�. The path integral for this theory
for the time interval 0 � t � T in the second quantized
formulation is given by

Z �
Z

D ?D expf
i
@

Z T

0
dtd3x� ?�t; ~x�i@

@
@t
 �t; ~x�

�  ?�t; ~x�Ĥ�
@

i
@
@~x
; ~x; X�t�� �t; ~x�
g: (A2)

We then define a complete set of eigenfunctions
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Ĥ
�
@

i
@
@ ~x
; ~x; X�0�

	
un� ~x; X�0�� � 
nun� ~x; X�0��;Z

d3xu?n � ~x; X�0��um� ~x; X�0�� � �nm;

(A3)

and expand

 �t; ~x� �
X
n

an�t�un� ~x; X�0��: (A4)

We then have

D ?D �
Y
n

Da?nDan; (A5)

and the path integral is written as

Z �
Z Y

n

Da?nDan exp
�
i
@

Z T

0
dt
�X
n

a?n �t�i@
@
@t
an�t�

�
X
n;m

a?n �t�Enm�X�t��am�t�
��
; (A6)

where

Enm�X�t���
Z
d3xu?n � ~x;X�0��Ĥ

�
@

i
@
@ ~x
; ~x;X�t�

	
um� ~x;X�0��:

(A7)

We next perform a unitary transformation

an �
X
m

U�X�t��nmbm; (A8)

where

U�X�t��nm �
Z
d3xu?n � ~x; X�0��vm� ~x; X�t��; (A9)

with the instantaneous eigenfunctions of the Hamiltonian

Ĥ
�
@

i
@
@ ~x
; ~x; X�t�

	
vn� ~x; X�t�� � En�X�t��vn� ~x; X�t��;Z

d3xv?n � ~x; X�t��vm� ~x; X�t�� � �n;m:
(A10)

We can thus rewrite the path integral as

Z �
Z Y

n

Db?nDbn exp
�
i
@

Z T

0
dt
�X
n

b?n �t�i@
@
@t
bn�t�

�
X
n;m

b?n �t�
�
n
��������i@ @@t

��������m
�
bm�t�

�
X
n

b?n �t�En�X�t��bn�t�
��
; (A11)

where the second term in the action, which is defined byZ
d3xv?n � ~x; X�t��i@

@
@t
vm� ~x; X�t�� �

�
n
��������i@ @@t

��������m
�
;

(A12)

stands for the geometric term. We take the time T as a
period of the variable X�t�. The adiabatic process means
025017
that T is much larger than the typical time scale
@=�En�X�t��. The result (A11) is also directly obtained
by the expansion
 �t; ~x� �
X
n

bn�t�vn� ~x; X�t��: (A13)
In the operator formulation, we thus obtain the effective
Hamiltonian (depending on Bose or Fermi statistics)
Ĥeff�t� �
X
n

b̂yn �t�En�X�t��b̂n�t�

�
X
n;m

b̂yn �t�
�
n
��������i@ @@t

��������m
�
b̂m�t�; (A14)
with �b̂n�t�; b̂
y
m�t�
� � �n;m. All the information about geo-

metric phases is included in the effective Hamiltonian and
thus geometric phases are purely dynamical.

When one defines the Schrödinger picture Ĥ eff�t� by
replacing all b̂n�t� by b̂n�0� in Ĥeff�t�, the second quantiza-
tion formula for the evolution operator gives rise to [21,22]
�
m
��������T? exp

�
�
i
@

Z t

0
Ĥ eff�t�dt

���������n
�

�

�
m�t�

��������T? exp
�
�
i
@

Z t

0
Ĥ� ~̂p; ~̂x; X�t��dt

���������n�0�
�
;

(A15)
where T? stands for the time ordering operation, and the
state vectors in the second quantization on the left-hand
side are defined by jni � b̂yn �0�j0i, and the state vectors on
the right-hand side stand for the first quantized states
defined by h ~xjn�t�i � vn� ~x; �X�t��. Both-hand sides of the
above equality (A15) are exact, but the difference is that
the geometric term, both of diagonal and off-diagonal, is
explicit in the second quantized formulation on the left-
hand side.

The probability amplitude which satisfies Schrödinger
equation is given by
 n� ~x; t;X�t�� � h0j ̂�t; ~x�b̂
y
n �0�j0i; (A16)
since i@@t ̂ � Ĥ  ̂ in the present problem. In the adiabatic
approximation, where we assume the dominance of diago-
nal elements, we have (see also [15])
-11
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 n� ~x; t;X�t�� �
X
m

vm� ~x;X�t��
�
m�t�

��������T?
� exp

�
�
i
@

Z t

0
Ĥ� ~̂p; ~̂x; X�t��dtg

��������n�0�
�

�
X
m

vm� ~x;X�t��
�
m
��������T?

� exp
�
�
i
@

Z t

0
Ĥ eff�t�dt

���������n
�

’ vn� ~x;X�t�� exp
�
�
i
@

Z t

0

�
En�X�t��

�

�
n
��������i@ @@t

��������n
��
dt
�
; (A17)

by noting (A15).
The path integral formula (A11) is based on the expan-

sion (A13) and the starting path integral (A2) depends only
on the field variable  �t; ~x�, not on fbn�t�g and fvn� ~x; X�t��g
separately. This fact shows that our formulation contains
an exact hidden local gauge symmetry

vn� ~x; X�t�� ! v0n�t; ~x; X�t�� � ei�n�t�vn� ~x; X�t��;

bn�t� ! b0n�t� � e�i�n�t�bn�t�; n � 1; 2; 3; . . . ;

(A18)

where the gauge parameter �n�t� is a general function of t.
One can confirm that the action and the path integral
measure in (A11) are both invariant under this gauge trans-
formation. This local symmetry is exact as long as the basis
set is not singular, and thus it is particularly useful in the
general adiabatic approximation defined by the condition
that the basis set (A10) is well-defined.7 The specific basis
set (A10) becomes singular on top of level crossing. Of
course, one may consider a new hidden local gauge sym-
metry when one defines a new regular basis set in the
neighborhood of the singularity, and the freedom in the
phase choice of the new basis set persists.

The above hidden local gauge symmetry (A18) is an
exact symmetry of quantum theory, and thus physical
observables in the adiabatic approximation should respect
this symmetry. Also, by using this local gauge freedom,
one can choose the phase convention of the basis set
fvn�t; ~x; X�t��g at one’s will such that the analysis of geo-
metric phases becomes simplest.

Our next observation is that  n� ~x; t;X�t�� transforms
under the hidden local gauge symmetry (A18) as
7This symmetry is a statement that the choice of the coordi-
nates in the functional space is arbitrary in field theory. This
symmetry by itself does not imply any conservation law. If one
neglects the off-diagonal parts of the geometric term, the theory
becomes invariant under bn�t� ! b0n � e�i�nbn�t� for a constant
�n with fixed vn� ~x; X�t��, and then the symmetry implies a
(rather trivial) conservation law, namely, no level crossing.

025017
 0n� ~x; t;X�t�� � ei�n�0� n� ~x; t;X�t��; (A19)

independently of the value of t. This transformation is
derived by using the exact representation (A16). This trans-
formation is explicitly checked for the adiabatic approxi-
mation (A17) also.

Thus the product

 n� ~x; 0;X�0��? n� ~x; T;X�T�� (A20)

defines a manifestly gauge invariant quantity, namely, it is
independent of the choice of the phase convention of the
complete basis set fvn�t; ~x; X�t��g. One may employ this
(rather strong) gauge invariance condition as the basis of
the analysis of geometric phases, which is shown to replace
the notions of parallel transport and holonomy [22]. Our
hidden local gauge symmetry is a symmetry of quantum
theory and that the Schrödinger amplitude  n� ~x; t;X�t��
stays in the same ray under an arbitrary hidden local gauge
transformation of the basis set as is shown in (A19).

For the adiabatic formula (A17), the gauge invariant
quantity (A20) is given by

 n� ~x;0;X�0��? n� ~x;T;X�T���vn�0; ~x;X�0��?vn�T; ~x;X�T��

� exp
�
�
i
@

Z T

0

�
En�X�t��

�

�
n
��������i@ @@t

��������n
��
dt
�
;

(A21)

where we used the notation vn�t; ~x;X�t�� to emphasize the
use of arbitrary gauge in this expression. We then observe
that by choosing the gauge such that vn�T; ~x;X�T�� �
vn�0; ~x;X�0�� the prefactor vn�0; ~x;X�0��?vn�T; ~x;X�T��
becomes real and positive. Note that we are assuming the
cyclic evolution of the external parameter, X�T� � X�0�.
Then the factor

exp
�
�
i
@

Z T

0

�
En�X�t�� �

�
n
��������i@ @@t

��������n
��
dt
�

(A22)

extracts all the information about the phase in (A21) and
defines a physical quantity. After this gauge fixing, the
above quantity (A22) is still invariant under residual gauge
transformations satisfying the periodic boundary condition
�n�0� � �n�T�, in particular, for a class of gauge trans-
formations defined by �n�X�t��. Note that our gauge trans-
formation in (A18), which is defined by an arbitrary
function �n�t�, is much more general.

In the analysis of the behavior in the infinitesimal
neighborhood of a specific level crossing, one may truncate
the above general model to a two-level model containing
the two levels at issue, and the present formulation (A14) is
essentially reduced to the model (2.17) or (2.18); one then
-12
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finds the same approximate topological property for any
finite T as in the model (2.17). This is explained in detail in
Ref. [21].

Based on the above general analysis, the essence of
geometric phase may be summarized as follows: One
025017
obtains an interesting universal view such as in (A22)
about various level crossing problems by making an ap-
proximation (adiabatic approximation), which is not
clearly seen in the exact treatment on the right-hand side
of (A15).
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