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Deformed defects with applications to braneworlds
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In this work we investigate two distinct extensions of the deformation procedure introduced in former
works on deformed defects. The first extension deals with the use of deformation functions which can
assume complex values, and the second concerns the possibility of making the deformation dependent on
the defect solution of the model used to implement the deformation. These two extensions bring the
deformation procedure to a significantly higher standard and allow to build interesting results, as we
explicitly illustrate with examples of current interest to high energy physics.
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L. INTRODUCTION

The study of defect structures is of great interest to high
energy physics, and have been the subject of many inves-
tigations, as we see in Refs. [1-3]. They also play impor-
tant role in condensed matter physics, as shown for
instance in Refs. [4,5].

In condensed matter, an example of importance is the
presence of kinklike defects in the quasi-one-dimensional
organic system trans-polyacetylene [6,7], which may be
responsible for tremendous increase in the conductivity to
almost metallic level of this insulator, when charged de-
fects are introduced by doping [8]. A general issue con-
cerning defect structures in condensed matter is the
interpretation of spontaneous symmetry breaking as the
opening of a gap in the mass spectrum of the charge
carriers. Thus, if we search for a mechanism to control
spontaneous symmetry breaking, we also search to control
the mass gap for fermionic carriers, and this is of direct
interest to applications in condensed matter. For this rea-
son, we stress that the deformation procedure set forward
in Ref. [9] is of direct interest to condensed matter, because
it is an important mechanism to control how spontaneous
symmetry breaking arises in the system.

Another important issue concerning defect structures in
high energy physics is connected with gravity with warped
geometry involving a number of extra dimensions, which
directly depends on the specific defect structure under
consideration. For instance, if one deals with warped ge-
ometry with one, two, or three extra dimensions, the inter-
est gets to kinks, vortices, or monopoles, respectively,
since kinks, vortices, and monopoles are defect structures
that require one, two, and three spatial dimensions, respec-
tively. Works that illustrate the subject can be found for
instance in Refs. [10—24]. Several distinct braneworld
scenarios are connected to defects which appear in diverse
dimensions. If one considers kinks generated by scalar
fields, the system may be driven by the ¢* or sine-
Gordon model. But we can also deal with vortices, using
the Maxwell-Higgs [25,26] or Chern-Simons-Higgs model
[27]. Moreover, if we deal with monopoles, we may use the
"t Hooft-Polyakov model [28].
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The above reasonings encourage us to further investigate
the deformation procedure presented in Ref. [9], trying to
bring it to a higher standard, focusing mainly on applica-
tions to braneworld scenarios with a single extra dimen-
sion. To do this, in the next Sec. II we turn attention to
defect structures which appear in (1, 1) space-time dimen-
sions, that is, we investigate kinks and lumps in models
described by a single real scalar field. There we present two
distinct extensions for deformed defects, one which con-
siders more general deformation functions, and the other
which deals with deformations that directly depend on the
static solutions supported by the model to be deformed. In
Sec. III we use some of the results obtained in Sec. II to
investigate braneworld scenarios involving thick brane
with internal structure. Finally, in Sec. IV we present our
comments and conclusions.

II. THE DEFORMATION PROCEDURE

Before dealing with the deformation procedure, let us
consider two distinct models described by a single real
scalar field in (1, 1) space-time dimensions. The first model
is the starting model, which is described by the Lagrange
density

L=10,40r¢ - V(g), (1)

where V(¢) is the potential. Our metric is (+, —) and we
work with dimensionless fields and coordinates, for sim-
plicity. The potential has at least one critical point at ¢,
that is, V/(¢) = 0, for which we also set V(¢) = 0. The
equation of motion for static field is

&’ ¢
— =Vi(¢) 2)
dx? ¢

where the prime stands for the derivative with respect to the

argument.
The equation of motion (2) allows us to write

¢ _  pve 3)

dx

where ¢ is a real constant.
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First, we search for static solutions ¢ = ¢(x) which
obey the boundary conditions:

p(x = —00) — ¢, (4a)
d
—¢(x — —00) = 0. (4b)
dx
This implies that ¢ should vanish, leading to
¢ _ 4 v 5)
dx

giving a necessary condition for the presence of finite
energy solutions.

We consider another model, the deformed model, which
is described by the real scalar field y

L,=30,x0*x = V(x). (6)
Here the static solution has to obey
d’y ~
2 =V(y). @)
dx? X

We suppose the model supports field configurations obey-
ing boundary conditions similar to the former ones, such
that

d_X = +4/2V, ()
dx

where we have set to zero the integration constant, leading
to a necessary condition for the presence of static solution
of finite energy.

In the first work on deformed defects, one has started
with a model which supports finite energy defect structures
[9]. The deformation procedure relies on using real, inver-
tible and differenciable deformation function, f = f(y),
from which we could write the potential V() in the form

Vi — f)
[af/dxP

In this case, we get that static solutions to Eq. (7) are given
by x(x) = f'(¢(x)), for ¢(x) being a static solution to
Eq. (2). In the second work, we extended the procedure
with the inclusion of more general deformation functions.
In the present work, however, we consider two new possi-
bilities of extending the deformation procedure used in [9],
as we show below.

Vix) = (€))

A. Type-1 family of deformations

We first deal with the case ¢ = 0, which is identified by
Eq. (5). In this case, we suppose the two models (1) and (6)
are connected by deformation function which is not every-
where real-defined. We name this kind of modification as
the type-1 deformation. It does not modify the deformation
procedure itself, but enlarges the possibilities by changing
the specific characteristics of the function we need to
implement the deformation. The type-1 family of defor-
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mations was initiated in the second work in Ref. [9]. We
illustrate this case with some interesting examples.

Consider the starting model as the ¢* model, with the
potential given by

V(g) =31 — &2 (10)

where we are using dimensionless fields and coordinates. It
supports the kinklike solutions ¢ . (x) = = tanh(x).

We now use as deformation one of the functions
f+(x) = /T £ x. Although these functions are not real-
defined for y spanning the real line, the deformed model is
still well defined: the potentials are given by

Vi) =2x* =2x% (11

They are of the y* type, and the deformed models have
solutions given by y. (x) = *sech?(x), which are directly
obtained from the deformation procedure. The static solu-
tions are lumpslike solutions; they are unstable, and have
found recent interest as a toy model to mimic properties of
tachyonic  excitations of non-Bogomol nyi-Prasad-
Sommerfield (BPS) branes in string theory [29].

Another example is given by f(y) = +/1 — x*. In this
case the deformed model has the potential

7 — 1.2 )
V(x) =3x*(1 = x°), (12)
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FIG. 1. Potentials of Eq. (14) in the case of n = 4 and 2/3
(upper panel) and the corresponding kinks (lower panel), plotted
with thinner and thicker lines, respectively.
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which is an inverted y* model, solved by x(x)=
*+sech(x), as we can directly obtain from the deformation
procedure.

We invent other models with the help of the more
general deformation functions

f+(x) = F1=2x", (13)

which are good for n real, positive, such that y" € R for
X € R. Interesting examples are givenbyn = 1,2,3, - - -,
and n =1/3,2/3,1/5,2/5,---. In the general case the
potentials are given by

. 2
V() = 5 x(1 = x")* (14)
They have static solutions
Xo= (1) = £[5(1 = tanh(x))]"/" (15)

which are also obtained from the deformation procedure
above. In Fig. 1 we plot the potentials and their respective
static solutions for n = 4 and n = 2/3 to illustrate how
they behave in terms of the scalar field.

B. Type-2 family of deformations

In the type-2 family of deformations we modify the
deformation procedure itself. This is done with ¢ # 0
starting with static solutions for which the energy diverge.
This possibility was never investigated before. The system
is now identified by Eq. (3), and we can use it to get to
deformed models, which support finite energy static solu-
tions. In this case, we may start with model and static
solutions which are not of interest to physics, but we end
up with deformed model and static solution which are well-
behaved and of interest. An example of this is given by the
model

V(¢) =14 (16)

This model represents the free Klein-Gordon field, and it is
known to have no finite energy static solution. However,
we can easily check that it supports the set of static
solutions

¢(x;a,b) = %ae" — %be”‘, a7

where a and b are real parameters. These solutions should
be discarded, since they are not finite energy solutions.
However, we can use them to generate solutions in other
models, using the deformation procedure above. We have
found a nice way to get to this possibility with the pre-
scription

1 2V(f) + ¢
2 [df/dxT

for field configurations which solve Eq. (3). For instance,
we consider the deformation function

Vix) = (18)
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f =—2=. (19)
1—x°
This gives the potential
V(x) =HYab + (1 —ab)x*11 = x>  (20)
and the static solutions

X(x) = iM_ (21)

J1+ ¢*(x;a, b)

In the above manipulations, consistency between Eq. (3)
and the solution (17) imposes the restriction ¢ = ab, which
makes the product ab the control parameter for the poten-
tial of the deformed model. This procedure leads to three
distinct scenarios. The first case is obtained for ab = 0 and
we get to the class of potentials depicted in Fig. 2(a), for
ab =0, —1/2, —1. For ab = [0, 1], the class of potentials
goes from the x°, for ab = 0, to the x*, for ab = 1 as we
show in Fig. 2(b), where we plot the potential for ab = 0,
1/9, and 8/9. The third case is for ab = 1, and now the
potentials are depicted in Fig. 2(c), for ab = 1,4/3,5/3.
We illustrate the presence of static solutions in Fig. 3,
where we plot the kinklike solutions corresponding to the
potentials shown in Fig. 2(b), for ab = 0, 1/9, 8/9.

The potentials depicted in Fig. 2(b) were already con-
sidered in Ref. [30] as examples of one-dimensional bags
[31], with the identification of quarks as defect structures.
An important feature of the two-kink solution is that it does
not terminate at ¢ = 0, unless we take ab = 0, in this case
getting to the ¢® model which supports two distinct but
degenerate sectors for static solutions. Evidently, for ab €
(0, 1) the two-kink state approaches but is not a true two-
kink, because ¢ = 0 is not a minimum of the potential.
True two-kink states were recently found in Ref. [32]; they
are here reproduced as the solutions show by Eq. (32), for
the potential of Eq. (29) with p = 3,5, 7, - - - . An interest-
ing issue concerns the fact that to attain the Bogomol'nyi
bound, vortices in the Maxwell-Higgs model requires a ¢*
potential, and in the Chern-Simons-Higgs model they need
a ¢% model. Thus, we can use the above deformation to
present unified picture for vortices in generalized
Maxwell-Higgs model, to map the Maxwell-Higgs and
Chern-Simons-Higgs models, as done in Ref. [33].

Another class of potentials of interest can be obtained if
we change the deformation function (19) to the new one

f()() — earctanh[sin()()]' 22)

The procedure is similar to the former one, and gives the
deformed potential

V(x) = Yab — 1)sin*(x) — absin(y) + (ab + 1).
(23)

The corresponding static solutions are obtained in the
form, in the case where a = b, for kink
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FIG. 2. Three distinct classes of potentials obtained as de-
formed potentials, depicted for ab = 0, ab € [0, 1], and ab =
1 in the upper, middle or lower panel, respectively. The plots
correspond to the values ab = 0, —1/2, —1, for ab =0, ab =
0,1/9,8/9, for ab € [0,1], and ab =1, 4/3, 5/3 for ab = 1.
The thickness of the lines increases with increasing |ab|.

_ [—arcsin[gx)] + 2k — D)7, x=0
(%) {arcsin[g(x)] + 2k, x=0 24)
and for antikink
oy _ [aresin[g(x)] + 2k, x=<0
Xi) { —arcsin[g(x)] + 2k — D@, x=0, 25
where k =0, =1, +2, ..., and
a?sinh?(x) — 1
glx) = o (26)

a?sinh?(x) + 1°
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0.5+

0.5

—14

FIG. 3. Plots of the deformed defects corresponding to the
potentials depicted in the middle panel of the former Fig. 2.
The thickness of the lines increases with increasing ab.

In general, the product ab gives rise to three distinct
classes of models, for ab =0, ab € [0, 1], and ab = 1.
We illustrate these possibilities in Fig. 4(a), where we
depict potentials for some values of a and b, such that
ab € [0, 1]. Also, in Fig. 4(b) we plot the kinks corre-

(b)

FIG. 4. Deformed sine-Gordon potentials obtained in Eq. (23),
corresponding to the values ab = 0, 1/4, 1, (upper panel) and the
corresponding static kinklike solutions (lower panel). The thick-
ness of the lines increases with increasing ab.
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sponding to the potentials depicted in the upper panel.
Evidently, the static solutions are all obtained via the
deformation procedure given above.

As we already know, both the ¢* and sine-Gordon
models can be nicely used to give rise to thick brane
[13-15]. Thus, we can use the above deformed ¢*, @
and sine-Gordon-like models to induce modifications in
the internal structure of the branes investigated in [13—15].
This study is initiated in the next section, where we show
explicitly how to use deformed defects in braneworld
scenarios. The subject will be part of a specific work on
thick branes, in which we follow the lines of Ref. [21],
taking advantage of the approach introduced in Ref. [9] to
investigate how to deform a model asymmetrically, to
extend the investigations to the case of asymmetric branes
[20,22-24]. The motivation is to interpolate between
space-times with different cosmological constants, in the
form of an alternative mechanism for geometric transition,
well distinct from the one guided by thermal effects [34].

ITI. APPLICATIONS TO BRANEWORLDS

We now focus attention to the braneworld scenario
described by a single real scalar field. In this case, the
Einstein-Hilbert action for defect structures in the AdSs
space-time geometry, warped with a single extra spatial
dimension, can be written in the form

I= / dydx[IglCR + L($,8,8), QD)

where R is the scalar curvature, g is the determinant of the
metric tensor, described by the line-element

ds* = e AWy dy*dy’ — dx*, (28)

where u, v vary from O to 3, 7, stands for the Minkowski
metric tensor, and exp(—2A) is the warp factor. Here x
represents the extra dimension.

For scalar fields, an interesting work [16] has recently
shown how to generate thick brane with internal structure
dependent on the temperature. This thick brane behavior
has inspired another work [21], in which one shows how to
mimic the temperature effects with unusual self-
interactions, described by the potential

V,(¢) = %(d,(p—l)/p — pr+1/p)2 (29)

invented in Ref. [32]. An important point here is that the
self-interactions has been built with the help of the defor-
mation procedure of Ref. [9]. The issue is that we can
deform the ¢* potential of Eq. (10) with the deformation

) = x"r, (30)

which behaves appropriately for p odd integer, p =
I,3,5,- -, leading to the deformed model, driven by the
potential
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V00 = 3 PV = )R 3

which presents the kinklike solutions
x(x) = tanh?(x). (32)

These solutions are plotted in Fig. 5(a) for p =1, 3, 5.
Also, in Fig. 5(b) we depict the energy densities of the
solutions given in Fig. 5(a). We notice that p = 3,5, - - -
represents two-kink solutions, and the corresponding en-
ergy densities show the appearance of internal structure,
which persists in the braneworld scenario investigated in
Ref. [21].

We now consider the deformation (20), for ab € [0, 1].
This modifies the ¢* model as shown in Fig. 2(b). We use
these models in the braneworld scenario with warped
geometry involving an extra, infinity dimension. We illus-
trate the calculation with the case a = b, for a*> = 1, 1/2,
and 1/4.

In the presence of gravity, we modify the potential
according to [13]

V(x) = (—)2 - -W? (33)

where dW/dy = 2(1 — x*)\/1 + a®x?. This form of po-
tential allows the presence of first-order equations, which
are given by

N

—4 -3 -2 —1 o 1 2 3 4

FIG. 5. Kink solutions of Eq. (32) for p = 1, 3, 5 (upper panel)
and the corresponding energy densities (lower panel) in flat
space-time. The thickness of the lines increases with increasing

p.
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1

o.s‘ \ (b)

—0.2

FIG. 6. Warp factor for a> = 1, 1/2, and 1/4 (upper panel) and
the corresponding energy densities (lower panel) for the scalar
field in curved space-time for the model described by Eq. (20)
with a = b. The thickness of the lines increases with decreasing
a.

o Ldw

X'(x) =3 I’

We notice that gravity does not modify the static field ¢(x),
but it gives rise to warp factor which we plot in Fig. 6
together with the corresponding energy density for the
scalar field in curved space-time. There we see the warp
factor getting thicker, and the energy density splitting into
two distinct parts, showing the opening of a gap inside the
brane. Here the mechanism is similar to the one presented
in [21], but it is different from the case explored in
Ref. [16], which relies on the presence of thermal effects.

AW =-IW. G
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IV. ENDING COMMENTS

In this work, we have brought the deformation procedure
introduced in Ref. [9] to a higher standard, including two
distinct extensions, the type-1 and type-2 family of defor-
mations. These extensions rely on modifications of the
deformation function in the type-1 case, and of the defor-
mation procedure itself for the type-2 family. The inves-
tigations were motivated by the possibilities of
applications both in condensed matter and in high energy
physics. In condensed matter, the deformation procedure
may provide a new way to control spontaneous symmetry
breaking, giving rise to a mechanism which can be used to
tune the mass gap of the fermionic charge carriers. In high
energy physics, an important motivation springs concern-
ing braneworld scenarios produced by coupling gravity
with scalar fields, in the warped AdSs geometry with a
single extra spatial dimension. The applications presented
in Sec. III show how the deformation parameters induce
modifications in the internal structure to the brane.

The present investigations have shown several results, in
which one obtains interesting generalizations given by the
potentials (11), (12), and (14), together with their respec-
tive defect structures. The type-2 family of deformations
also gives important results, as we show with the general-
izations obtained with the potentials (20) and (23), together
with their respective defect structures. These deformations
can certainly be used in several contexts, for instance in the
recent investigations concerning the presence of tachyons
on branes from ¢* and Abelian Higgs sphalerons, which
appear when one compactifies extra dimensions [35,36],
and in the general braneworld scenario with a single extra
dimension, as explicitly illustrated in Sec. III.
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