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We revisit the problem of decay of a metastable vacuum induced by the presence of a particle. For the
bosons of the ‘‘master field’’ the problem is solved in any number of dimensions in terms of the
spontaneous decay rate of the false vacuum, while for a fermion we find a closed expression for the decay
rate in (1� 1) dimensions. It is shown that in the (1� 1) dimensional case an infrared problem of one-
loop correction to the decay rate of a boson is resolved due to a cancellation between soft modes of the
field. We also find the boson decay rate in the ‘‘sine-Gordon staircase’’ model in the limits of strong and
weak coupling.
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I. INTRODUCTION

The decay of a metastable vacuum state is a quite
universal problem in quantum field theory. The decay
proceeds through nucleation and subsequent classical ex-
pansion of the bubbles of the true vacuum. The classical
bubbles can exist only starting from a certain critical radius
at which the energy loss due to the surface terms is com-
pensated by the gain in the volume energy. The formation
of the critical bubbles is thus a quantum tunneling process
[1] which tunneling can be described by an Euclidean-
space configuration of the field, called a ‘‘bounce’’ [2].
The space-time nucleation rate of the critical bubbles, w0,
i.e. the probability of such nucleation per unit time and per
unit volume, is proportional to the exponent of the classical
action on the bounce configuration: w0 / exp��Scl�, while
the preexponential factor requires a calculation of the
functional determinant at the bounce [3]. The exponential
factor is readily found [1,2] in the so called thin wall limit,
namely, when the radius of the critical bubble is much
bigger than the effective thickness of its wall. This limit is
always realized at a small difference � between the vacuum
energy density of the false and the true vacua, with the
other parameter determining Scl being the surface tension
� of the bubble wall, i.e. of the boundary between the
metastable and the stable phases. The preexponential fac-
tor in the bubble nucleation rate is known in a closed form
only in (1� 1) dimensional models [4,5], where in the thin
wall limit it is determined only by the parameter �, with
only partial results found in (2� 1) dimensions [6–8], and
virtually no result known in the (3� 1) dimensional case.

Similarly to the behavior in the decay of a metastable
phase in a thermal setting, the presence of matter in the
false vacuum generally provides ‘‘centers of nucleation‘‘
for the bubbles of the true vacuum. Thus one can consider
the false vacuum decay induced by the presence of a
particle[9–11], by particle collisions [10,11], by matter
with finite density [12], as well as by the matter being in
a thermal equilibrium where the problem goes back to the
more conventional thermodynamic setting [13]. In this
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paper we revisit the calculation of the bubble nucleation
rate associated with the presence of a particle in the false
vacuum. The particle-induced nucleation can also be
viewed as the decay of the particle (albeit in the process
the initial ‘‘vacuum’’ state also gets destroyed), whose rate
� generically can be written in the form � � Kw0, where
the constantK, which can be naturally called the ‘‘catalysis
factor,’’ is the main subject of our consideration. The
catalysis is most efficient for the particles which have
zero modes localized on the boundary between the false
and the true vacua. The reason for this behavior is that in
this case the energy corresponding to the mass of the
particle m in the initial state is fully transferred to the
bubble degrees of freedom, since in the final state the
particle ends up as a zero mode localized on the bubble
wall. This effectively corresponds to the upward shift by m
of the energy at which the tunneling takes place [10], and
results in K being proportional to the exponential factor
exp�2m��, where � is the (Euclidean) time on the tunneling
trajectory. The exponential behavior due to the shift of the
energy for the tunneling trajectory can be found explicitly
both in (1� 1) dimensions [10] and in higher-dimensional
models [11]. However the preexponential factor has been
calculated only for the bosons of the master field in a (3�
1) dimensional case [9], for which bosons the existence of
the zero mode is always true. Here we calculate the pre-
exponential behavior of the catalysis factor for the same
bosons in lower dimensions, and also find a closed formula
for this factor in (1� 1) dimensions for a fermion, whose
field has a zero mode on the intervacua boundary. The
existence of such fermionic mode is a generic phenomenon
and is guaranteed in the case where the mass term for the
fermions changes sign across the bubble wall [14].

Our consideration, similarly to Ref. [9], is generally
limited to models with weak coupling, which implies that
the masses m of the both types of considered particles are
small in comparison with the scale of the surface tension
�. In this case the deformation of the tunneling trajectory
due to the energy shift by m [10,11] can be neglected, so
-1 © 2006 The American Physical Society
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that, in particular, the tunneling time � coincides with the
radius R / �=� of the critical bubble, � � R, as it does in
the spontaneous vacuum decay [2]. Furthermore, we also
assume the applicability of the thin wall limit, which
implies the condition mR� 1, and which is always valid
in the limit of small �.

The catalysis factor K, as defined, has the dimension of
the spatial volume. Thus it would be natural to compare the
preexponential factor in K with the spatial volume of the
critical bubble of the radius R. Under our assumptions we
find that for a fermion in (1� 1) dimensions this factor is
indeed of order R, while the catalysis factor for the bosons
is enhanced in comparison with the volume of the bubble
by inverse powers of the (small) coupling constant.

It should be noted that technically the bosonic catalysis
factor in lower dimensions can be found by a straightfor-
ward application of the treatment of Ref. [9]. Such appli-
cation is fully justified in a (2� 1) dimensional case.
However in (1� 1) dimensions there is a potential com-
plication in estimating the effect of the quantum fluctua-
tions arising from an infrared behavior of the modes of the
bosonic field over the bounce background. We demonstrate
for this case that the large infrared terms in fact cancel due
to the specific properties of the soft modes.

The material in the rest of the paper is organized as
follows. In Sec. II we briefly review the calculation of the
spontaneous decay rate of false vacuum and present a
calculation of the decay rate induced by a boson of the
scalar field, which defines the vacuum states. In Sec. III the
problem of the infrared behavior of the one-loop correction
to the calculated decay rate in (1� 1) dimensions is con-
sidered and it is shown that this problem is resolved due to
a cancellation of the contributions to this correction be-
tween the negative mode and the sum over the positive soft
modes of the field of the bounce. In Sec. IV the catalysis
factor is calculated for a fermion in a (1� 1) model. We
then discuss the decay of metastable states in the sine-
Gordon model with added linear term, the so called ‘‘sine-
Gordon staircase.’’ Using the equivalence [15] of this
bosonic model and the massive fermionic Thirring model
in an external electric field, we find the induced decay rate
for both the weak coupling limit (Sec. V) and for the strong
coupling limit (Sec. VI), the latter corresponding to a weak
coupling in the Thirring model. Finally, in Sec. VII we
discuss possible implications of our calculation for other
models.
II. SPONTANEOUS AND INDUCED DECAY OF
FALSE VACUUM

In what follows we assume a situation where the energy
density of a scalar field �, the ‘‘master field,’’ has a local
minimum at � � ��, which is higher than in a neighbor-
ing minimum at� � ��. The vacuum state defined by the
former minimum is referred to as the false vacuum, while
the latter is the true vacuum. A typical example of such
025015
situation is provided by the well known model of a scalar
field with the potential

V��� �
�2

8
��2 � v2�2 � a�; (1)

where �, v, and a are constants. At a � 0 the potential has
two degenerate minima at �� � �v, while at small posi-
tive a the degeneracy is lifted in such a way that the
minimum at �� has energy density bigger than that of
�� by the amount � � 2av. The vacuum state at ��,
being stable at a 	 0 becomes metastable at positive a
and decays by nucleation and subsequent expansion of the
bubbles filled with the phase ��. At small a the surface
density of the bubble wall can be approximated [1,2] by the
surface density of the soliton with the field profile

��x� � v tanh
mx
2

(2)

interpolating between the two degenerate vacua in the limit
a! 0:

� �
Z �v
�v

��������������
2V���

q
d� �

2

3
�v3: (3)

The mass of the scalar particles of the field � propagating
in either of the vacua is given (also in the limit a! 0) as
m � �v. In a model with the total space-time dimensions
equal to d the ratio md�1=� coincides with the dimension-
less coupling constant for the perturbation theory in this
model. We assume throughout this paper that this ratio is a
small parameter, which thus corresponds to weak coupling.

In the Euclidean-space formulation of the problem of the
false vacuum decay [2,3] the calculation of the spontane-
ous decay rate amounts to a semiclassical evaluation of the
imaginary part of the energy of the false vacuum from the
path integral

Z �N
Z
e�S
�;...�D� . . . ; (4)

where the dots stand for other possible fields present in a
specific model, N is the normalization factor, and the
integration is performed with the condition that the field
� approaches its false vacuum value �� at the boundaries
of the space-time normalization box. The decay rate is then
given by w0 � 2 Im�lnZ�=VT, where VT is the space-time
volume of the normalization box.

The action functional S has a semiclassical saddle point
at the configuration described by the bounce [2]. In the thin
wall limit the bounce is anO�d� symmetric bubble with the
field �� inside and �� outside, and the bubble wall,
separating the two phases has the surface tension �. The
action for the bounce in this approximation is given by

S � �AB � �VB; (5)

where VB is the d dimensional volume of the bounce and
AB is its �d� 1� dimensional surface area. The action (5)
reaches its extremum on a spherical bounce with the radius
-2
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R � �d� 1��=�, which is also the radius of the critical
bubbles capable of classical expansion in the Minkowski
space-time.

The spectrum of small deformations of the bounce
around the extremum contains exactly one negative
mode, corresponding to an overall variation of the radius.
This mode in fact gives rise to the imaginary part [2] of the
path integral in Eq. (4). Furthermore this spectrum also
contains d translational zero modes, the integration over
which introduces the factor of the space-time volume VT
in the contribution of the bounce to the energy of the
vacuum state.

The decay rate of a particle of the field � in the false
vacuum can be calculated[9,10] by considering the imagi-
nary part of the contribution of a bounce to the Euclidean-
space propagator of the excitations ��x� � ��x� ��� of
the field �:

D�x; y� �
1

Z

Z
��x���y�e�S
�;...�D� . . . (6)

in the limit of large separation L � jx� yj. Indeed, the
contribution of the bounce to the correlator (6), as shown in
Fig. 1(a), has the generic form

�D�x;y��
i
2
w0

Z
ddzF�x�z;y�z�D0�x�z�D0�y�z�;

(7)

where D0�x� is the free-particle propagator in the vacuum
��, satisfying the equation

��@2 �m2�D�x� � ��d��x� (8)

and the factor �i=2�w0ddz is the proper measure of inte-
gration over the coordinate z of the center of the bounce, as
�
�

�
�

�
�

�
�
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FIG. 1. The configurations for the bounce contribution to the
propagator (Eq. (7)). A generic configuration (a) and the align-
ment of the bounce position (b), dominating the integral in
Eq. (7) at large jx� yj.
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follows from the consideration of the bounce contribution
to (the imaginary part of) the vacuum energy.

Let us consider the contribution to the integral (7) aris-
ing from the configurations, where the bounce is far (in
units of its radius) from either of the points x and y, i.e.
where jx� zj � R and jy� zj � R. The propagators
D0�x� z� and D0�y� z� in the integral in Eq. (7) describe
the exponential attenuation of the correlation (D�x� �
exp��mjxj� at large separations, while the form factor
F�x� z; y� z� does not have this exponential behavior.
For this reason at jx� yj � L� R the integrand in Eq. (7)
is maximized for z lying on the straight line running
between x and y: z� � s�x� � y��=L, and the integration
can be split into the longitudinal, over the parameter s
along this line, and the transversal, over z?. The integration
over z? can be done by the saddle point method, so that the
form factor F�x� z; y� z� can be replaced by its value at
z? � 0, and the essential configuration to be considered is
the one shown in Fig. 1(b). As will be discussed few lines
below, when the bounce is far from the endpoints of
integration over s, i.e. s� R and L� s� R, the value
of the form factor in fact does not depend on s and is a
constant F0. Since the contribution of the excluded regions
around the endpoints is only of relative order R=L, the
integral in Eq. (7) can be replaced at large L by

�D�x; y� �
i
2
w0F0

Z
ddzD0�x� z�D0�y� z�; (9)

where F0 should be calculated from the configuration
shown in Fig. 1b.

The expression (9) for the modification �D of the
propagator by the bounce can be compared with the first-
order correction to the propagator due to a small shift of
mass by �m2, m2 ! m2 � �m2, in Eq. (8). In the standard
way one finds

�mD�x; y� � ��m2
Z
ddzD0�x� z�D0�y� z�: (10)

Thus the contribution (9) of the bounce to the propagator of
the boson in the false vacuum is equivalent to an imaginary
shift of the boson mass: �m2 � ��i=2�w0F0, which cor-
responds to the particle decay rate given by � �
F0w0=�2m�, so that the catalysis factor K is found as

K �
F0

2m
: (11)

The factor F0 can be readily found [9] for the discussed
here case of the bosons of the classical field of the bounce.
Indeed, consider the classical field just outside the bounce,
i.e. at the distance r > R from the center, such that r�
R� m�1, but still r� R R. The former condition en-
sures that the field is described by its asymptotic approach
to the vacuum value��, while the latter implies that in this
region the curvature of the bounce wall can be neglected in
a calculation of this asymptotic behavior. Thus one can
consider instead the asymptotic behavior of the field in the
-3
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limit �! 0, i.e. of the field of the stable soliton separating
two degenerate vacua. This asymptotic behavior has the
form ��x� ��� � �2v exp
�m�r� R��, where in the
model described by the potential (1) v coincides with the
corresponding parameter in the potential, while in a ge-
neric model v� ��� ����=2. On the other hand in the
O�d�-symmetric problem the asymptotic approach of the
scalar field to its vacuum value is described by the solution
of the linearized spherically-symmetric equation, equiva-
lent to the homogeneous part of Eq. (8), and reads as

��r� ��� � CD0�r�; (12)

where the free boson propagator in d dimensions has the
well known expression in terms of the modified Bessel
function K��mr�:

D0�r� �
md=2�1

�2	�d=2rd=2�1
Kd=2�1�mr�: (13)

The constant C in the asymptotic expression (12) is found
by comparing the two expressions for ��x� ��� in the
discussed region just outside the bounce and using the
standard asymptotic formula for the function K��mr�. In
this way one finds

C � �4�2	�d=2�1m�3�d�=2R�d�1�=2vemR: (14)

Using then the expression (12) for the field with thus
determined constant C, one finds the product of the clas-
sical fields ��x���y� in the integral in Eq. (6) in the
configuration shown in Fig. 1(b), corresponding to the
constant F0 in Eq. (9) given by

F0 � C2 � 16�2	�d�2m3�dR�d�1�v2e2mR; (15)

which indeed does not depend on the position of the bubble
along the straight line connecting the points x and y as long
as both these points are sufficiently outside the bounce.
The catalysis factor thus can be found from the relations
(11) and (15) in the form

K � 2d�1	�d�3�=2�
�
d� 1

2

�
m2�dv2Vd�1e2mR; (16)

where Vd�1 � 	�d�1�=2Rd�1=�
�d� 1�=2� is the spatial
(d� 1 dimensional) volume of the critical bubble. As
discussed in the introduction, it is natural to compare the
catalysis factor with this volume. The result in Eq. (16)
shows that besides the classical exponential factor the
catalysis is additionally enhanced by the factor m2�dv2

in the preexponent, which is the inverse of the small
dimensionless coupling in the theory.
III. BOSON-INDUCED DECAY IN (1� 1)
DIMENSIONS

The formula for the catalysis factor in Eq. (16) reduces
in (3� 1) dimensions to the result of Ref. [9], and in other
dimensions it presents a rather straightforward generaliza-
025015
tion. There is however one point, of a special importance to
a (1� 1) dimensional case, related to the effect of the
quantum fluctuations on the essentially classical result in
Eq. (16). Generally, the effect of the quantum fluctuations
(the loop correction) is expected to be suppressed by a
power of the coupling constant as compared to the classical
contribution. In the discussed problem this expectation is
true at d > 2, however in a (1� 1) dimensional problem
this expectation is potentially jeopardized by an infrared
behavior. Indeed the eigenvalues of the second variation of
the action for the fluctuations of the shape of the bounce,
described by the effective action (5), are proportional to
R�2. The modes with these eigenvalues are localized on the
bounce boundary and describe the soft part of the spectrum
of the modes of the field around the stationary bounce
configuration, as opposed to the modes, whose eigenvalues
start at O�m�, and those ‘‘hard‘‘ modes describe the ex-
citations propagating in the bulk as well as possible defor-
mations of the profile of the field across the bounce wall.
Let us estimate the contribution of an individual soft mode
with the eigenvalue cn=R2 to the correlator (6), with cn
being a number. All such modes originate from local shifts
of the wall of the bounce, so that the field profile of an
individual mode is proportional to the radial derivative of
the field of the bounce, �0�r�. The field �n of a normalized
to one mode in (1+1) dimensions is then parametrically
estimated at the distance r > R, such that r� R� m�1,
but still r� R R, as

�n�r� �
mv��������
�R
p e�m�r�R� �

����
m
R

r
e�m�r�R�; (17)

where it is taken into account that
R
��0�2dr � ��mv2,

and any numerical factors are dropped for a parametrical
estimate. The contribution of such mode to the correlator
(6) is then proportional to

R2

cn
�n�r1��n�r2� � c

�1
n �mR�e

2mRe�m�r1�r2�: (18)

In this estimate the large factor �mR� stands in place of the
factor v2 in the similar product for the classical field. Thus
the magnitude of an individual mode contribution to the
correlator relative to the classical part is described by the
parameter �mR�

v2 , which in spite of the expected suppression
by the dimensionless coupling v�2 is infrared unstable at
large R.

We will show however that the sum over the soft modes
gives zero for this infrared contribution due to a cancella-
tion between one negative and all positive modes. In order
to demonstrate this we consider the parametrization of the
shape of the bounce in the polar coordinates �r; 
� on a
plane, so that the effective action (5) for the soft modes
takes the form
-4
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S �
Z 2	

0

�
�

���������������
r2 � _r2

p
�

1

2
�r2

�
d


�
	�2

�
�
Z 2	

0

�
2
� _�2 � �2�d
�O��4�; (19)

where the latter expression shows the two first terms of
expansion in the small deviation � � r� R of the radial
variable r from its stationary value R � �=�, and the dot
stands for the derivative over 
. The quadratic part in this
expression has one negative eigenmode � � 1=

�������
2	
p

and
the spectrum of zero and positive double degenerate eigen-
modes:

��1�n �
1����
	
p cosn
; and

��2�n �
1����
	
p sinn
; �n � 1; 2; . . .�:

(20)

The spectrum of the eigenvalues is proportional1 to �n2 �
1� with the negative mode corresponding to n � 0.

Let us consider now the configuration shown in Fig. 1(b)
with the bounce located on the line connecting the points x
and y. Let the angle 
 be defined as measured counter-
clockwise from the downward vertical connecting the cen-
ter of the bounce with the point x, so that 
 � 	
corresponds to the upward vertical connecting the same
center with the point y. Clearly, the contribution of the
fluctuations of � to the propagator (6) is proportional to

h
��0� � ��	��2i /
X
n


�n�0� � �n�	��
2

n2 � 1
: (21)

Note however that the sum ��0� � ��	� is not vanishing
only for the negative mode and for the positive modes of
the first type, ��1�n , with even n, i.e. n � 2k. Thus the sum in
Eq. (21) is proportional to the numeric sum

�
1

2
�
X1
k�1

1

4k2 � 1
� 0; (22)

where the first term is due to the negative mode and the
sum runs over the positive modes. The arithmetic identity
(22) explicitly demonstrates that the infrared contribution
in a (1� 1) dimensional model cancels between the nega-
tive mode and the sum over the positive ones.

Let us also remark on the decay of a moving particle in
the false vacuum. If particle moves with a constant velocity
then the probability depends on the velocity through the
standard Lorentz factor. However if it moves with the
constant acceleration situation is more subtle since in the
particle frame vacuum behaves as the thermal bath due to
Unruh effect. The effective temperature is defined through
the acceleration as
1The proportionality coefficient is not important for this dis-
cussion. It can be noted however that in terms of the normalized
modes for the field � the eigenvalues are �n2 � 1�=R2.
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Teff �
a

2	
; (23)

hence probability of the particle decay is modulated by the
thermal effects. The most essential effect corresponds to
the possible deformation of the classical bounce. Since the
temperature corresponds to the periodicity in the Euclidean
time, the deformation of the bounce happens when the
corresponding period is comparable to 2R. Thus a defor-
mation of the bubble is essential when the acceleration is
larger than

acrit �
	�
�
; (24)

and our approximation fails.
IV. FERMION-INDUCED DECAY IN (1� 1)
DIMENSIONS

The very existence of fermions in a model is known to
modify (without any fermions being present in the initial
state) the preexponential factor in the rate of the false
vacuum decay in the situation where the complex fermion
field  has a zero mode on the boundary between the vacua
(in the limit �! 0). Such situation takes place when the
mass term for the fermion changes sign between the two
vacua [14]. In particular the rate w0 for the spontaneous
decay of the false vacuum in (1� 1) dimensions receives a
factor of 2 in comparison with purely bosonic theory
[16,17]. This doubling corresponds to the existence of
two final states in the false vacuum decay in (1� 1)
dimensions viewed as a spontaneous creation of a kink-
antikink pair: one state where both the kink and the anti-
kink are created with the fermion zero mode empty, and the
other state is where is a zero-energy fermion on the kink
and a zero-energy antifermion on the antikink.

In what follows we assume that the interaction of the
fermion field with the scalar field of the bounce is such that
there exists a zero fermion mode on the kink separating the
two vacua. In order to find the effect of a fermion on the
probability of nucleation of a critical bubble we consider
the bounce contribution to the fermion propagator
G�x; y� � h �x� �y�i in the configuration shown in
Fig. 1(b). Clearly, the exponentially enhanced factor
exp�2mfR�, where mf is the mass of the fermion, arises
from the contribution of the zero mode, whose propagation
from the lower point of the bounce to the upper one does
not contain any exponential attenuation. Assuming for
definiteness that the fermion mass is positive (and equals
mf) in the false vacuum, and choosing the � matrices as
�1 � �1 and �2 � �2, one finds the solution for the Dirac
equation for the field of the zero mode of  in the back-
ground scalar field ��r� of the bounce,


�i@i �m���� 0 � 0; (25)

in the form
-5
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 0�r; 
� � Cf

����
R
r

s
exp

�
�
Z r

R
m
��r0��dr0

�
�‘� e�i
=2

ei
=2

 !
;

(26)

where �‘� is a one-dimensional fermion field living on the
bounce boundary and (nominally) depending on the length
parameter ‘ � R
 along the boundary. Notice that the
classical equation for  reads _ � 0. Finally, the constant
Cf in Eq. (26) is the normalization factor relating the
normalization of  and  and satisfying the condition

2C2
f

Z
exp

�
�2

Z r

R
m���dr0

�
dr � 1: (27)

In what follows we rather use a related factor ~Cf defined as
the coefficient in the expression

Cf exp
�
�
Z r

R
m
��r0��dr0

�
� ~Cf exp
mf�R� r��; (28)

which is valid sufficiently far outside the bounce where
mmin�r� R� � 1 with mmin being the minimal mass scale
in the model. Generally the factor ~Cf can be estimated as

~C 2
f �

mf

2
f
�mf

m

�
; (29)

where f is a dimensionless function of the ratio of mf to
masses of other particles in the false vacuum. In the limit
where mf is much smaller than other masses one has
f�0� � 1. In the model, where the scalar ‘‘master field’’
is described by the potential (1) and the mass of the
fermion is proportional to �, the function f can be found
explicitly:

f�u� �
22u����
	
p

��u� 1=2�

��u� 1�
: (30)

The contribution of the fermion zero mode on the
bounce configuration shown in Fig. 1(b) can be written,
using the asymptotic behavior of the zero mode (26), in
terms of the one-dimensional propagator of the field  on
the boundary, g�‘1; ‘2� � h�‘1�

y�‘2�i, as

�G�x; y� � �
i
2

w0

2
d2z ~C2

fe
2mfRR

e�jx�yj�����������������������������
jx� zjjy� zj

p
� �1� �1�g�0; 	R�: (31)

Notice that for a complex fermion there is only one path for
propagation of  along the boundary from the bottom of
the bounce to its top (assumed here for definiteness to be
counterclockwise in terms of Fig. 1(b)], corresponding to
the final state, where the fermion is a bound state localized
on the kink. The other path (clockwise) would be relevant
for the vacuum decay induced by an antifermion, which in
the final state is localized on the antikink. The expression
in Eq. (31) contains an extra factor 1=2, due to the fact that,
as mentioned before, the spontaneous nucleation rate w0 in
025015
the theory with fermions contains extra factor of 2, due to
the existence of two final states in the decay, which is to be
compensated in the proper measure of integration over the
coordinate of the center of the bounce d2z. The propagator
g has a very simple explicit form in terms of the sign
function: g�‘1; ‘2� � �1=2�sign�‘1 � ‘2�, so that
g�0; 	R� � �1=2.

The expression in Eq. (31) can now be compared with
the corresponding change of the free propagatorG0 under a
shift �mf of the fermion mass:

�mG�x; y� � ��mfd
2zG0�x� z�G0�z� y�

! ��mfd2z
m
4	
�1� �1�

e�jx�yj�����������������������������
jx� zjjy� zj

p ;

(32)

where the asymptotic expression takes into account the
explicit form of the free propagator:

G0�x; y� �
1

2	
���i@i �m�K0�mfjx� yj�: (33)

Using this comparison and Eq. (29) one finds the imaginary
part of the fermion mass shift corresponding to the decay
rate of the fermion

�f �
	
2
f
�mf

m

�
Rw0 exp�2mfR�

�
�
2
f
�mf

m

�
exp

�
�
	�2

�
� 2mfR

�
: (34)

Here in the latter transition are used the explicit expres-
sions: w0 � ��=	� exp��	�2=�� and R � �=�. One can
readily see that in the fermion case, as expected, the
preexponent in the catalysis factor, Kf �
�	=2�f�mf=m�R exp�2mfR�, is indeed of the order of the
spatial size of the critical bubble.
V. MESON DECAY IN WEAKLY COUPLED
SINE-GORDON MODEL

In order illustrate the universality of the derived results
let us discuss one more example where the particle decay in
the false vacuum happens in two dimensions. We shall
derive the probability of the decay of the electrically
neutral meson bound state in the Thirring model with the
preexponential accuracy.

Consider the sine-Gordon theory with the Lagrangian

LSG �
1

2
�@��2 �

�

�2 cos���� (35)

and add a term ���=2	�� which yields the situation with
the metastable states. This theory upon the two-
dimensional fermionization is equivalent to the massive
Thirring model with the Lagrangian
-6
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LTh � i � @��� �
1

2
gj�j� �� �  � A0j0; (36)

where �2

4	 � �1�
g
	�
�1, and j� � � �� . One can identify

� with the soliton mass in the sine-Gordon model, and
@xA0 � �. In what follows we shall assume that �2 < 4	
which is the condition for the bound state of fermions to
exist in the Thirring model. The solitons in the sine-Gordon
model get mapped into the fermions in the Thirring model
while the field� gets mapped into the fermion-antifermion
meson bound state.

The linear perturbation term in the sine-Gordon model
corresponds to the constant electric field in the Thirring
model realization, so that the problem of false vacuum
decay can be discussed in both formulations. In the
Thirring model it corresponds to the Schwinger pair pro-
duction. The probability of the spontaneous vacuum decay
in the sine-Gordon model and equivalent Schwinger pro-
cess in the Thirring model has been found in [15]. The one-
loop result coincides with the general formula wTh �
��=2	� exp��	�2=��, while in the special case of �2 �
4	, corresponding to g � 0, the exact result is found as

wTh � �
�

2	
ln�1� e�	�

2=��: (37)

Note that in this case the bose-fermi equivalence allows to
perform the summation over the multiple bounces in the
sine-Gordon theory.

Now we can discuss the decay of the false vacuum in the
presence of a particle corresponding to the field � in the
sine-Gordon model. In the weak coupling regime for the
bosons, i.e. at small �, the soliton is much heavier than the
boson particle, which corresponds to the situation where
the external particle does not deform the classical bounce
configuration. Hence the decay rate can be immediately
read off Eq. (16). In this case the process corresponds in the
Thirring model to the nonperturbative decay of the light
electrically neutral meson in the electric field and the
catalysis factor of this process is

KTh �
32

�2

�
�
e2mb�=�; (38)

where mb is the meson mass. Note that this process is the
two-dimensional counterpart of the induced Schwinger
processes discussed in four dimensions in [18,19] in the
exponential approximation.
VI. MESON DECAY IN STRONGLY COUPLED
SINE-GORDON MODEL

The boson-fermion correspondence in this model ac-
tually allows to find the meson decay rate in the limit,
opposite to what has been considered so far in this paper,
namely, for strongly coupled bosons, when the boson mass
is close to the kink-antikink threshold. This limit corre-
sponds to a small positive g, and the boson mass (at �! 0)
025015
is mb � 2���g2. The near-threshold dynamics of the
soliton-antisoliton pair can be considered nonrelativisti-
cally as a motion of a pair with the reduced mass �=2 in
the local potential U�x� � �2g��x�, which correctly re-
produces the energy of the bound state (the boson). For a
nonzero � the nonrelativistic Hamiltonian for this system
takes the form:

H �
p2

�
� �x� 2g��x�: (39)

The problem of the boson decay in the false vacuum is
reduced in terms of this equivalent nonrelativistic system
to that of ionization of the bound state in the external
electric field �.

In order to solve the ionization problem we start with
considering the Euclidean time propagator (‘‘the heat ker-
nel’’) defined as K�x; y; �� � hxj exp��H��jyi, and the
corresponding energy dependent Green’s function at the
negative (i.e. below the threshold) energy E � ��2=�:

G
�
x; y;�

�2

�

�
�
Z 1

0
K�x; y; �� exp

�
�
�2

�
�
�
d� (40)

at x � 0 and y � 0. We remind that if only the kinetic term
is retained in the Hamiltonian (39), i.e. at � � 0 and g � 0,
these functions are K0�0; 0; �� � �4	�=���1=2 and
G0�0; 0;��2=�� � �=�2��. At � � 0 and a nonzero g
the Green’s function for the Hamiltonian (39) is found as

G��0�0; 0;��2=�� �
G0�0; 0;��2=��

1� 2gG0�0; 0;��2=��

�
�

2�
1

1� g�=�
: (41)

The latter expression contains explicitly the pole at � �
�g corresponding to the bound state.

When both the � and g are nonzero the Eq. (41) is
modified by replacing the Green’s function G��0 by that
for a nonvanishing �: G�. The latter Green’s function can
be expressed in terms of the corresponding propagator
K��0; 0; �� which can be found in the textbook [20]:

K��x; y; �� �
���������
�

4	�

r
exp

�
�
��x� y�2

4�
�
��x� y�

2
�

�
�2

12�
�3

�
; (42)

G�

�
0; 0;�

�2

�

�
�
Z 1

0

���������
�

4	�

r
exp

�
�2

12�
�3 �

�2

�
�
�
d�;

(43)

and the pole position is thus determined from the equation

2gG�

�
0; 0;�

�2

�

�
� 1: (44)
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FIG. 2. The contour of integration for the integral in Eq. (43).
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The peculiarity of the latter equation is that the integral
in Eq. (43) is formally divergent, which is the usual situ-
ation in a calculation of the energy of an unstable state. In
order to make physical sense, both that energy and the
integral in Eq. (43) should be understood as a result of an
analytical continuation in the parameters of the model from
the region where the considered state is stable. In terms of
Eq. (43) this corresponds to a continuation from the region
of (formally) negative �2 where the integral is convergent.
The result of such analytical continuation to physical posi-
tive �2 can be formulated as follows [2]: The integration
runs along the real axis of � from � � 0 to the value of �
where the integrand has minimum, i.e. to �0 � 2�=�. From
that point the contour of integration should be turned
parallel to the imaginary axis of �, corresponding to the
direction of the steepest descent (see Fig. 2). This contour
rotation gives rise to an imaginary part of the integral, and
hence to an imaginary part of the energy of the resonant
state, corresponding to the decay width of the resonance.
Following this procedure one can readily find the real and
the imaginary parts of the integral in Eq. (43) and reduce
the Eq. (44) for the position of the pole to the form

g
�
�

�
1�

i
2

exp
�
�

4

3

�3

��

��
� 1; (45)

which corresponds to the decay rate of the bound state

� � 2�g2 exp
�
�

4

3
g3 �

2

�

�
: (46)

It can be noted that the exponential factor in this formula is
the standard WKB tunneling exponent in a linear potential,
while the preexponential factor is a new result. The de-
scribed derivation of the formula (46) assumes that the
integral in Eq. (43) can be evaluated in the saddle point
approximation, which implies that the parameter in the
exponent in Eq. (46) is large, i.e. that g3�2 � �.
VII. DISCUSSION

In this paper we have refined the calculations of the
decay rate of the boson in the false vacuum and have found
025015
the decay rate of fermion in the false vacuum in (1� 1)
dimension with the preexponential factor. All calculations,
except for the one in Sec. VI, have been performed in the
approximation when the back reaction of the exter-
nal particle on the Euclidean bounce solution can be
neglected.

The account of the back reaction amount gives rise
to several new effects which are different for d � 2 and
d > 2. In the (1� 1) dimensional case the back reaction
deforms the classical solution which deformation has
been described classically in Ref. [10] however the calcu-
lation of the preexponential factor is beyond our approxi-
mation. Such calculation could be potentially interesting
from the stringy perspective. Indeed, the worldsheet
theory on nonabelian string in several models can be
identified with the CPN model (see [21] for a recent
review) which has one true vacuum and a set of metastable
ones. At large N this theory can be treated perturbatively
and the issue of the decay of metastable vacua or in other
terns exited strings can be discussed, Similarly one can
discuss the fate the different excitations on the exited
vacua, or in other terms, of the excited strings can be
discussed, thus considering the fate of excitations over a
metastable string which is just the problem we have con-
sidered. In some situations the preexponential factor is of
the prime importance, since in some range of parameters
the N dependence disappear from the exponent [21].
However it is unclear if the regime with the negligible
back reaction could exist in the worldsheet theory. It seems
that the analysis similar to the one in Sec. VI could be
applicable in this case.

In higher dimensions the situation is more compli-
cated. The point is that the initial particle evolves along
a trajectory in the complexified Minkowski space [11].
At the first stage of the process the initial particle ‘‘pro-
duces’’ the oscillating bubble in the Minkowski space
which later develops the path in the Euclidean space.
The overlap of the initial particle and the bubble
happens out of the real axis. Let us also note that there is
a possibility of the resonant decay of the particle in the
false vacuum when the particle mass coincides with the
energy levels of the quantized bubbles in the Minkowski
space.
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