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The standard Hartree-Fock approximation of the O(N)-invariant ¢* model suffers from serious
renormalization problems. In addition, when the symmetry is spontaneously broken, another shortcoming
appears in relation to the Goldstone bosons: they fail to be massless in the intermediate states. In this
work, within the framework of out-of-equilibrium Quantum Field Theory, we propose a class of
systematic improvements of the Hartree-Fock resummation which overcomes all the above mentioned
difficulties while ensuring also exact Renormalization-Group invariance to one loop.
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I. INTRODUCTION, SUMMARY, AND OUTLOOK

The research in out-of-equilibrium dynamics of quan-
tum fields has received, in recent years, a great impulse by
cosmology as well as by particle and condensed matter
physics. Indeed, a first-principle theoretical treatment of
many important phenomena, such as the reheating of the
Universe after inflation or the thermalization of the quark
gluon plasma in the ultrarelativistic heavy-ion colliders
(RHIC, LHC), requires for a good qualitative and quanti-
tative understanding of the late time and strongly coupled
evolution of quantum field systems.

In particular, this necessity has encouraged the study of
nonperturbative approaches to Quantum Field Theory
(QFT) that could provide all-orders partial resummations
of Feynman diagrams [1,2]. In fact standard perturbation
theory does not yield satisfactory results, except for very
short times, when nonequilibrium conditions are involved.

Mean-field approximations such as leading-order
large-N expansion [3—6] and Hartree, or Hartree-Fock
(HF) variational method [7—12] are the simplest and most
studied [13—18] resummation schemes. Their main fea-
tures are well known: they do provide a backreaction
term on the evolution of quantum fluctuations that stabilize
dynamics after parametric amplifications or spinodal in-
stabilities. On the other hand they fail to reproduce impor-
tant properties of late time dynamics such as
thermalization as well as thermodynamical properties
such the order of the unbroken/broken symmetry phase
transition. A more powerful tool is the 2PI (or 2PPI)
effective action [19,20] whose expansions at two (or
more) loops order or at next-to-leading order in 1/N
provide resummations that go beyond mean-field ap-
proaches [21-24] and yield, indeed, approximate numeri-
cal thermalization at strong coupling.

More formal aspects of resummed approximations, such
as their renormalization properties, have been studied as
well [25-27]. Recently a systematic method has been put
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forward [28-32] that removes divergences in the
®-derivable approximations by applying a Bogoliubov-
Parasiuk-Hepp-Zimmerman (BPHZ) subtraction proce-
dure to diagrams with resummed propagators.

In [33] we considered the simple HF approximation of
the O(N) ¢* model in the unbroken symmetry phase. It is
known that it cannot be consistently renormalized by the
usual renormalization of bare coupling and mass [8,25,26].
We showed that this nonrenormalizability is due to the
absence of leading logarithmically divergent contributions
coming from diagrams which do not have a “‘daisy” to-
pology and therefore are not present in the standard HF
resummation. The inclusion of these contribution together
with suitably chosen finite parts led us to the definition of a
renormalized and Renormalization-Group invariant ver-
sion of HF equations.

In the present paper we further develop this analysis,
making it more systematic and transparent, and then apply
it to the subtler case of spontaneously broken O(N) sym-
metry. In this case, together with the shortcomings as far as
pure renormalizability is concerned, the HF approximation
shows an unphysical nongapless behavior. Namely, the
effective resummed propagators of the Goldstone bosons,
as defined by the HF equation of motion, are not massless.
This is a well-known problem which has been cured by
defining suitably modified approximations [34,35]. In this
paper we define a systematic improvement of the standard
HF approach which ensures gaplessness together with
renormalizability and RG-invariance. In practice we in-
clude all leading logarithmically divergent contributions
needed to render finite the resummed propagator masses
(which are log A dependent in standard HF) while choosing
the finite parts in such a way to have massless transverse
degrees of freedom.

More in detail, we proceed as follows. First, by analyz-
ing the diagrammatic resummation performed by the HF
approximation, we identify the missing leading logarithmi-
cally divergent contributions that cause the nonrenormaliz-
ability. As will be apparent below, this analysis closely
parallels that in [33] since, after all, the UV behavior of the
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theory is the same regardless of the breaking of the O(N)
symmetry. Then we construct our modified HF approxi-
mation, including the missing contributions, while choos-
ing the corresponding finite parts by means of the
following recipe

(a) determine the general features of the HF approach

that must be shared by the modified approximation,
such as mean-field structure, O(N) Ward identities,
leading-log structure and more, and parameterize
the class of resummations having such properties.

(b) identify amid this family of approximations the

one(s) with suitable properties of renormalizability,

RGe-invariance, gaplessness and infrared finiteness.
One important difference from [33] is that, when the O(N)
symmetry is spontaneously broken, the above procedure
does not lead to a unique result except for the N = 1 case
(Z, symmetry). When N > 1 we find a whole class of
approximations, corresponding to different choices of fi-
nite parts, that share the required characteristics. Like in
[33] the improved equations have, by construction, a mean-
field structure but, unlike the standard ones, are nonlocal in
space and time.

In Sec. II we review some general concepts. We intro-
duce the closed time path (CTP) formulation of out-of-
equilibrium problems and define the HF approximation as
resummation of bubble diagrams recalling the correspond-
ing, well-known, equations of motion [see Eqgs. (2.4)].
Some important general features of the mean-field approx-
imations are pointed out.

In Sec. Il we study, as an illuminating example, the case
of spontaneously broken Z, symmetry. Subsection Il A is
dedicated to a general analysis of the approximation. In
Subsection IIIB we apply the standard renormalization
procedure and point out its shortcomings. In
Subsection III C we define our modified HF approximation
which is renormalizable and RG-invariant. As we already
said in this case we are led to a unique result [see
Egs. (3.19) and Egs. (3.22)].

In Sec. IV we generalize to N > 1, that is to a continuous
O(N) spontaneous symmetry breaking, by first analyzing
some general features [Subsection IV A] of the standard HF
approximation and its renormalization properties
[Subsection IV B] and then defining our modified approxi-
mation by the general recipe given above
[Subsection IV C]. The final results will be a set of con-
straints that should be satisfied by renormalizable and RG-
invariant Hartree-Fock-like approximations together with
two examples [see Egs. (4.27) and Eqgs. (4.28)].

There are several possible developments along the lines
of this work. First of all it would be interesting to study
other properties of the different improved approximations
that we have constructed in the N > 1 case and, hopefully,
identify further constraints that would allow to single out a
unique result. Secondly, a numerical study of the modified
HF field equations found in this paper and in [33] would be
needed to investigate how the space-time nonlocalities
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affect the time evolution as compared to the standard HF
approximation, which is known to fail even qualitatively at
late times.

The aim of this paper is to develop the formalism and
further investigations are needed to understand whether the
improvement of the HF resummation field-theoretic prop-
erties reflects in a physically improved behavior. Moreover
the work on the HF approximation must be regarded as
preliminary to the application of similar analysis to more
sophisticated resummation methods or to more phenom-
enologically interesting theories. For example a challeng-
ing task would be the extension of our approach to the full
two-loop 2PI effective action, through the inclusion of the
nonlocal sunset diagram which is absent by definition in
any mean-field approximation. In fact one should expect
that, even if such an inclusion allows to recover renorma-
lizability as compared to the conventional HF approxima-
tion, the two-loop 2PI self-consistent equations still lack
RG invariance with the two-loop beta function, since the
2PI effective action does not contain all the diagrams
which contribute to the next-to-leading ultraviolet
divergences.

II. GENERALITIES

Out-of-equilibrium QFT is defined as the study of real-
time dynamics of quantum fields and provides the general
setup for the calculation of in-in matrix elements (i.e.
expectation values of operators on a given initial state).
In this section we briefly review some generalities about
nonequilibrium QFT, define the Hartree-Fock approxima-
tion, and point out some useful properties. We deal with the
scalar field theory in 3 + 1 dimensions with quartic inter-
action and spontaneously broken O(N) symmetry,

m2

i)~

Slel= [ d'af3 8,0 01 -
X le (e F|

m? and A are the (negative) squared mass and the coupling
constant, respectively.

In QFT, the general approach to nonequilibrium dynam-
ics was developed by Keldish and Schwinger and it allows
to use standard functional methods (see [19,20,36,37]) by
introducing path integrals on a CTP going from ¢ = 0 to
t = +o0 and back. Field integration variables for the path
integral forward and backward in time are denoted as ( + )
and (—)-components, respectively. Given an initial state ¥
one writes down the functional integral for the connected
Green functions generator

W) = f@%l)go_\lf[mﬁ[so—]
% eis[gaJr]—jS[(p,]Jﬁi(jJr|(0+>7i<j'7|¢’7>’ (21)

where we have used an obvious short-hand notation for the
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current terms. Integration in Eq. (2.1) is on trajectories
from t = 0 to t = +oo (with the condition ¢, = ¢_ at
t = +o) and ¢+ in the wave functional is the t =0
section of ¢.. The effective action I'|p; is the Legendre
transform of "W from the currents j. to the fields ¢ .. The
equation of motion for the background field ¢(x) =
(¥]@(x)|¥) then reads

5F1P1| o —0
6(]5.,_(){) br=¢_=¢ .

(2.2)

In our present discussion we consider an initial wave func-
tional having the following Gaussian form

Wle] = N exp{i{d(0)le — ¢(0)
— (0= dOIG" +iSlle — 40}

whose free parameters are the ¢ = (0 background field
¢(x,0), the + =0 background momentum ¢(x, 0), the
real symmetric positive kernel G;;(x, y), and the real sym-
metric kernel S;;(x, y).

The perturbative diagrammatic expansion in the CTP
formalism proceeds as in vacuum QFT. However, sensible
results in out-of-equilibrium contexts can be obtained only
going beyond plain perturbation and performing (partial)
resummations to all orders in the coupling constant. A very
successful tool in this sense is the 2PI effective action (see
[19,20]). It is defined as the double Legendre transform of
the W generating functional with respect to the usual
current one-point j+ and to the two-points current
K,p(x,y) quadratically coupled to fields. It yields two
equations of motions

81p

BFZPI
=0, — | =0.
5¢a(x) * aGaﬁ(x’ )’) *

Here the notation |, indicates that, by their physical mean-
ing, the (*)-component fields and propagators have to
satisfy, on the solutions of motion, the following relations

d_(x) = p_(x) = d(x),
Gr(x,y) = G4_(3,x)0(xg — yo) + G4 _(x, ¥)0(yo — Xo),
Grlx,y) = Gy _(x,y)0(xg — yo) + G4 - (3, x)8(yo — Xo).

Hence the system Eq. (2.3) reduces to two coupled equa-
tions for ¢ and G, _ only. The I';p; at a certain perturbative
loop order corresponds (i.e. gives the same equations) to a
resummed diagrammatic approximation of the 1PI effec-
tive action. In the present scalar theory I';p; has the general
form

(2.3)

Tyl b, G] = S[6] + %Tr[logG] 4 éTr[G&lG]
+ F2[¢’ G],

where S is the complete classical action of the double time
path (i.e. S = S, — S_). Traces are taken over all indices
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i,a,and x. G 1is the second derivative of the action in a ¢
background, I'; is the sum of all vacuum 2PI diagrams with
G propagators and vertices defined by the classical action
in a ¢ background. To two-loops level the diagrams con-
tributing to the I'; are the “8” and “‘sunset’ diagrams. The
Hartree-Fock approximation is obtained considering only
the 8 graph. In the 1PI framework this corresponds to a
resummation of all vacuum 1PI diagrams with daisy and
superdaisy topologies. The corresponding equations of
motion are conveniently expressed in terms of mode func-
tions uy, (k is the wave vector and a the O(N) polarization)

{{O+md + A0 r(x) y(x)]68;;
+ 307t Gm (%, X)} b (x) =0,
{(O+md)8;; +IoTijml dr(x) b, (x)
+ Gy, (%, x)]}uk,a.,- =0,

(2.4)

where the cutoffed correlation G and the tensor 7 are
defined

&’k
Gij(x,y) = Re[|

< 2m)3

Tijim = 3(0:1i0km T 858 + 8,08 ).

()Tt (),
(2.5)

The ¢ = 0 mode functions are

Uk,qi(X, 0) = [G(K)'/?] €™,
g, qi(x, 0) = [_%G(k)_l + Zg(k)]ijuk,aj(x’ 0).

Notice that, for simplicity, we have supposed that the initial
(t = 0) kernels are translationally invariant.

We conclude this section by introducing the physical
representation (see [37]) of the CTP formalism. It is de-
fined by the field redefinitions

d)A = ¢+ - (JS_, ‘}Sc = _(¢+ + d)—)
or

1
2
—_—  — =0.
Oba | gs=04.~¢
The equations of motion written above are obtained using
the property that variations of I" with respect to ¢, fields
alone vanish when ¢, = 0. Notice that 2n-legs vertex
functions with one ¢, leg and 2n — 1 ¢, legs are the
only ones contributing to these equations of motion. One
can show that these vertices are time ordered in such a way
to ensure causality. As stated above, the HF approximation
consists in the resummation of diagrams with daisy and
superdaisy topologies thus it is easy to verify the following

general structure of the effective action

el da, ¢.1 = —(palOld.) — FLE x. 1],

where F is a functional of the following composite matrix
fields
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fij(x) = ¢c,i(x)¢c,j(x)’ Xij(x) = ¢c,i(x)¢A,j(x):
ﬁij(x) = ¢A,i(x)¢A,j(x)-

Then the equation of motion in the HF approximation takes
the form

oI
Oba | pr=0.6.=¢

f’[f]ij(x) =

= {5ij + fo][f]}¢j =0,

2 5Xij(-x) )(27]:0.

We will consider this as a general form for mean-field-type
background field equations and it will be that base for our
definition of a modified HF approximation.

III. THE CASE N =1

We begin by considering a single scalar field theory with
spontaneously broken Z, symmetry. The study of this
simpler case provides valuable insight into the general
features of the diagrammatic resummation performed by
the HF approximation. In particular, this allows to under-
stand the origin of the HF shortcomings with respect to
renormalizability and RG invariance and to determine the
general recipe for the definition of a modified renormaliz-
able and RG-invariant mean-field approximation. Many of
the results of this section will hold true also in the more
general case of a theory with N scalar fields.

A. Analysis of the HF approximation

We begin by the HF equations of motion [see Egs. (2.4)]
reduced to the N =1 case. So far these are still the
equations of the bare theory written in terms of Ay, m3,
and explicitly dependent on the sharp cutoff A. The phase
with spontaneously broken symmetry is defined by assum-
ing the existence of a static homogeneous vacuum solution
with nonzero background field ¢(x) = v. The correspond-
ing mode functions u"* have the following plane wave
form

ei(k~x—wkt)

ugfvac) ()C) _
Wi

o=k +m (3.1

where m* = 12yv? and the vacuum expectation value v of
the background should satisfy the gap equation

dp 1
0=m2 + Igv? + 11, f b (3.2)

p<a 2m)? ﬂ

The values of bare parameters for which this equation
admits a nonzero solution v are those corresponding to
spontaneously broken symmetry and are those we are
considering here.
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We now introduce the mean field 'V according to

V(x) = m} + tAov? + JA0AE(x)
d*p
+1A — 2,
o [ Gl

where A¢é = & — v? (we recall that £(x) = ¢?(x)). Notice
that V = 0 on the static solution ¢ = v and u = ",
This definition allows us to rewrite the equations of motion
in the form

{0 = J0A¢00) + V(0)}e(x) =0,
{O+m* + V(0hu(x) = 0.

(3.3)

(3.4)

Comparing Eq. (2.6) with the first of Egs. (3.4), we read out
FTEI=3V — hoAL.

Notice that 'V is regarded here as a functional of & = ¢2.
The implicit dependence on ¢ is determined by solving the
second equation in (3.4) with a generic background. To
obtain a self-consistent equation for the functional V[£]
from the HF equations of motion we cast the equation of
motion for the mode functions into a convenient integral
form

(3.5)

g () = 1 (x) + j &yGO(x = y) Vi),

where the free mode functions uio) defined as solutions of
the free equation with mass m? = {Aov? and with the same
initial conditions of the exact mode functions, while the
free retarded (and advanced) Green functions reads

GY'(x =) =G~ x)
_ d*p 1
Qm)* p* — m? +iepy

e P6TY) - (3.6)

In this equation, and everywhere else from now on, all
fields (¢, mode functions, F’, V, etc.) are to be thought as
defined only for positive times (initial conditions are at the
limit point = 0*) and all time integrations are restricted
to positive values, as appropriate in an initial value prob-
lem. Moreover it is convenient to introduce a more com-
pact operator notation with implicit space-time integration,
that is

we = ul + GOV, (3.7)
where the caret”turns a vector of the functional space into a
multiplication operator

o) = 0(x y) = v(0)8W(x — y).

From now on we shall use this notation throughout the
paper. We can formally solve Eq. (3.7) and obtain an
expression for the correlation [see Eq. (2.5)]
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up =[1—G¥ VI,
G=G[V]l=[1-G69V]'¢o1 - Vc?1,

where 1 stands for the space-time delta function and G is
the correlation in Eq. (2.5) evaluated in the free mode
functions. Substituting into the definition of V in
Eq. (3.3) we obtain the sought self-consistent equation

Vo= md + Mgt + La(AE + I[V),

3.9
I V](x) = G[ V], x). G:9)

Notice that Eq. (3.9) depends parametrically on the initial
kernels (i.e. the mode functions initial conditions) through
the explicit form of G¥). Now, before going any further in
the discussion, we fix a particular choice for these kernels
by considering equilibrium initial conditions for the mode
functions. By this choice follows that the free mode func-
tions coincide with the vacuum mode functions u* at
every time (by the self-consistent equation we have V = 0
at the point £(x) = v?) the free correlation function turns
to be translationally invariant in space-time. However let
us stress that, in spite of this choice, we are still considering
an out-of-equilibrium problem since we allow for generic
initial conditions for the background field.

At this point some observations on the integral term / are

in order.

(1) I depends on the free retarded (and advanced) Green
function and on the free correlation function. We
can see that their definition corresponds to the re-
summation of all tadpole corrections and they play
the role of internal dressed propagators.

(2) By expanding I in powers of 'V we can see that the
term proportional to the nth power contains loop
with n + 1 free propagators. Up to the linear term

V=19 +[@V+ .

in terms of the tadpole and of the two propagators
loop

IV = GO(x, x),
19(x — y) = +2GR(x, »)GO(x, ).

(3) One can easily realize that IV diverges as A? and
logA, I® diverges as logA and the loops with more
than two propagators are convergent. It is therefore
useful to introduce a new functional J containing
only the convergent part of / according to

JV]=1V]-1V - [V, (3.10)

The previous observations lead us to rewrite the self-
consistent Eq. (3.9) in a particular “‘quasirenormalized”
form, more suitable to analyze the diagrammatic resum-
mation of the effective action and determine its divergent
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graphs and subgraphs structure. The quasirenormalized
form is obtained by expanding the self-consistent
Eq. (3.9) around the point £(x) = v> (V = 0), explicitly
solving the linear terms and writing a self-consistent equa-
tion for the higher A ¢ powers dependence of V. Doing so
one obtains

V =1[Ae+ IV 0=A1-1AI?T7". (3.11)

We can now use Eqgs. (3.11) and (3.5) to calculate the vertex
functions relevant for the background equation of motion
i.e. those with one ¢, leg at the point x; and n — 1 ¢, legs
at the points x; (i > 1). These are built from the functional
derivatives of J/ w.rt. ¢ at the point ¢ = v?. To ease
notation we rename such variations by

SF'[€](xy)
55(362) ‘e 5§(xk) §:vz'
We can see that Q) = 0. So that 'V = 0, which is just

the statement that v is the vacuum solution of the back-
ground equation. Moreover we have

Q(k)(xl, [SEN )Ck) =2

0@ =19 — 101 = 1rg1 — 12311 — 1A 1]
(3.12)

Expanding the above expression in powers of A, we see
that Q@ is the sum of a classical term %/\0 plus the

resummation of all the chains of I® loops. The Q® with
k>?2 are obtained by taking variations of the self-
consistent Eq. (3.11). One can easily see that they are built
up with loops having three or more propagators and are
therefore finite in the limit A — 0. The loops are attached
to each other and to the external legs by the effective vertex
0 [see Eq. (3.11)]. Some graphical examples are

|

\
\

The vertex 6, by its explicit definition in Eq. (3.11), is the
sum of the classical term A, plus chains of I? integrals.

B. Renormalization

Let us now apply the standard renormalization proce-
dure to the HF approximation of the effective action. As we
will see it fails to render all the vertex functions finite.

The first renormalization condition fixes the physical
value v of the vacuum expectation value. Then the gap
Eq. (3.2) defines m3 as a function of A, v, and the cutoff A
in such a way to remove all the A? dependence in the
vertex functions. The second renormalization condition
fixes instead the value of the quartic coupling at some
energy scale s by taking the Fourier transform of the vertex
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I'® at the symmetric point (p,, ps, p4 are the momenta

entering the ¢ legs)

gl =s
(3.13)

—iP1=P2=P3=ps=3qs 4,=(0,9),

and requiring it to be equal to the renormalized coupling

constant A

1+ )\Oi(2)(Q\“)

1= 30I?(q,)
(3.14)

A =T9(p,, py, p3) = 60%(g,) = A,

Notice that in the above formula we have omitted the
contributions to the quartic coupling originating from the
superficially convergent Q) and Q®. Compare with the
corresponding formula of unbroken symmetry case in
Ref. [33] (pay attention to the opposite sign convention
for 1),

As already stated above, this renormalization procedure
fails to define a sensible renormalized theory and, in par-
ticular, we can individuate the following shortcomings.

The effective quartic coupling A as a function of the bare
parameter A, at fixed cutoff A exhibits an unphysical
nonmonotonic behavior that spoils the one-to-one corre-
spondence between bare and renormalized parameters (at
fixed cutoff) which holds true only for small coupling. This
is to be compared with the standard 1-loop-renormaliza-
tion-group improved relation which is monotonically in-
creasing with Ay, at fixed A, as required by physical
consistence. Moreover, we see that imposing a finite value
to A at the chosen scale s fails to render finite the running
coupling (i.e. the generalization of Eq. (3.14) to any value
of momentum) at any momentum p # ¢, and even at any
gy with s’ # s.

For what concerns the higher order terms Q® with k >
2 we can see that they still depend on logA even after
renormalization This happens for two specific reasons

(1) The internal (free) propagators mass m? = Agv?

introduce an explicit dependence on A,. Notice
that, unlike the unbroken symmetry case, here the
internal propagators differ from the external ones
(i.e. the functional inverse of the two-legs vertex
function). To the latter contribute also diagrams with
chains of I® loops as can be seen from its explicit
form

[ ®(p) = —p? + IA(p)v?
=—p*+m?— %/\%f(z)(p)[l
=X I@(p)] 12 (3.15)

This is finite at momentum ¢, while, according with
what we said above about A(p), logarithmic diver-
gences appear as p # ¢;.

(2) In the HF definition of Q® with k > 2 there appears
the effective vertex 6. By the relation
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6(p) = IA(p) +2x,

we can see that an unresolved A, dependence per-
sists even when p = ¢g,. For p # ¢q, further cutoff
dependences appear due to the problems concerning
the renormalized running coupling.
We conclude that the HF approximation cannot be renor-
malized by the standard renormalization procedure: there
is an unphysical bare-to-renormalized coupling relation
and a plain failure to eliminate divergences in the sub-
graphs which can be traced to incomplete resummation of
Leading Logarithms of the cutoff. In the next subsection
we will define a modified HF resummation by explicitly
requiring renormalizability and a 1-loop-renormalization-
group improved relation between A e A.

C. Improved HF approximation

As stated in the introduction our recipe for the improve-
ment of the HF resummation consists in two fundamental
steps

(1) Fix some HF-likeness properties that we want to
maintain throughout the modification and provide
a parametrization of the class of approximations
having such defining features.

(2) Require explicitly renormalizability and RG invari-
ance in order to fix the form of the arbitrary
parameters.

In conclusion, once the result is obtained, we will be able to
establish a diagrammatic interpretation of our modified
approximation.

The main features of the HF approximation are encoded
in the general mean-field form of the background equation
of motion, Eq. (2.6) and in the self-consistent definition of
' (through the mean field V), Eqgs. (3.11). They provide a
general recipe for building up all vertex functions using
Q@ the effective vertex #, and the free propagators.
Moreover, the self-consistent definition of F’ corresponds
to the following general form of the equation of motion for
the mode functions

{O0+m* + V(0hyx) =0,
V=1o{a¢ +1 -1V -1V}

with the usual definition of the integral / in terms of the
mode functions.

We now regard Q?), 4, and the effective mass m? of the
free propagators as tunable parameters defining a class of
approximations that share the same general diagrammatic
structure. We abandon the HF definitions for these parame-
ters and look for new ones that ensure proper renormaliz-
ability and RG invariance.

We can actually further specify the form of the tunable
parameters. By looking at the HF definitions of Q) and 6
we see that they must have the general leading-log struc-
ture
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QOO = N F,(0I?), 6= AF2(AI?)  (3.16)

in terms of two functions, F; and F,, of a single variable
(the evaluation of these functions on the operator I? is
obvious if we consider the Fourier transform). We assume
that the same holds true for m?. This can be understood
looking at the explicit form of the two-legs function in
Eq. (3.15). We consider m? as a function of I evaluated at
zero momentum since we do not want to introduce any new
mass scale dependence, that is

m? = \yF3(AgI?(0))02. (3.17)

Notice that changing m? corresponds to changing the
equilibrium solution according to Eq. (3.1). To conclude
we observe that the HF approximation resums correctly the
1-loop perturbative order. To maintain this feature we
should require the following matching conditions on the
F’s

Fi(x) =i+ x + 0(x?), Fy(x) =1+ O(x),

F3(x) = 1 + 0(x). G-18)

Now we have to define our modified HF approximation by
fixing new explicit definitions for the functions F’s. We
obtain renormalizability with the correct 1-loop beta func-
tion, by assuming the following logarithmic dependence
for the bare coupling A,

o 3
dlogA 1672

A+ O0(A™h

and requiring that the parameters Q?, 6, and m? do not
depend on logA. Using
2 1
A L 1+0(Y
d logA 8
we have a unique solution that fulfills the matching con-
straints in Eqgs. (3.18),

0 = 60@ = A1 — 31,1171,

2 1 3y 72 ()] 14,2 (3.19)

These are the explicit forms of the parameters in our
improved HF approximation.

Now applying the renormalization condition we obtain
the following bare-to-renormalized relation

Ao

A=—F7 —. (3.20)
- %AOI(Z)(‘IS)

We can see that our procedure has reproduced the correct
1-loop-renormalization-group improved behavior while at
the same time fixing the finite parts. The manifestly finite
form for the parameters reads

6 =60 = A[1-3AJO],

i (3.21)
m* = 1A[1 = 3AJP(0)] 1v?
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in terms of A and of the subtracted integral J®
J@ =10 — ]~(2)(qv)1'

Now, for what concerns RG invariance, one verifies from
Eq. (3.20) that the parametrization of Ay does not depend
on the renormalization scale. In fact, renormalizing at scale
s with constant A = A(g,) or at scale s’ with constant A’ =
A(gy) indeed defines the same A,. Therefore Egs. (3.19)
can be regarded as manifestly RG-invariant definitions of
the parameters.

Finally let us observe that, since /?' depends on m?, we
have here an implicit definition of the physical mass by the
finite self-consistent relation in Eq. (3.21), rather than an
explicit definition, such as the tree-level m?> = %/\vz, which
can be recovered only if s = 0.

We give now a brief diagrammatic interpretation of the
results just derived. First of all, with the new form of m? in
Eq. (3.19), the free propagators are no longer defined as the
resummation of tadpole corrections. In fact they are in-
cluded contributions from graphs as those contributing to
HF definition of the external propagator together with all
leading-log contributions included in such a way that the
logA dependence of m? (at fixed A,) corresponds to the
correct 1-loop-renormalization-group improved series.
Notice that the contributions of these diagrams are in-
cluded in a “local’’ fashion (i.e. with no momentum pass-
ing through the loops) in order to maintain the mean-field
feature of a momentum-independent self-energy.

Now, for what concerns the new form of Q@ in
Eq. (3.19), we can see that it corresponds to the inclusion,
in addition to the chain diagrams of the pure HF approxi-
mation, of all the leading-log contributions from diagrams
to all orders. As before their logA dependence is taken
while their finite part is fixed by our procedure to be the
same of 1.

In conclusion, the modification of the effective vertex 6
in Eq. (3.19) corresponds to include, in the diagrammatic
resummation that defines the Q® (k> 2), leading-
logarithmic contributions from graphs of the form

@ ﬁ
The finite parts of these diagrams are chosen in such a way
to maintain the main Hartree-Fock-like features of the

effective vertex, namely, the single channel structure and
its form as a function of 1.

2
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Let us make some observations on the obtained result.
The equations of motion of this modified Hartree-Fock
approximation read

{0+ V() —10Aé)}(x) =0,
{O+ %5(0)v2 + V(x)jug(x) =0,
V=lofa¢ +1-1V -1V},

(3.22)

As we can see, in order to obtain renormalizability and RG
invariance, we had to introduce space-time nonlocality in
the equations of motion. Causality in this nonlocal evolu-
tion is guaranteed by the analyticity in the upper half-plane
of I®(p). Actually in the third equation in Egs. (3.22) the
definition of "V is implicit and it should be solved for 'V in
order to have a manifestly causal form. This can be done
paying the price of losing manifest finiteness

V =11 - (@ =3O (g)D] {AE + 1 - TV}

To conclude we may ask whether and how we can choose
different initial conditions for the mode functions without
spoiling the properties of renormalizability and RG invari-
ance. We already considered this problem in [33] treating
the unbroken symmetry case and the conclusions made
there still hold in this case. That is, that all divergent terms
are cancelled by renormalization provided one removes the
initial time divergences by a Bogoliubov transformation on
the initial state (see [38]). Such transformation redefines
the initial kernel in such a way that it has the correct short-
distance behavior.

IV.THE CASE N>1

We are now ready to consider the more general case of a
scalar field theory with spontaneously broken O(N) sym-
metry. In doing this we proceed following closely Sec. II1.

Before we begin we fix some notational conventions that
will help us to handle O(N) index structures while keeping
formulas simple and similar to those in Sec. III. In particu-
lar we will use the standard matrix notation for objects with
one and two indices

[MV] = MgV, IMOMO; = MM, @.1)
L; =6y [VVT]ij =V, VZ=V,V,

When objects with four indices are concerned, we will use
the following conventions

[(TM];; = T;jmMins
H,jpm = 5048 jm + 80 1),

_ (1) 72
[TOT@ ]y, =TT
T\ T =TT =11,
4.2)

where the last relation is regarded as restricted to tensors
with the symmetry T;jx, = Tijmi = Tjikm- Moreover we

PHYSICAL REVIEW D 73, 025012 (2006)

will use also the following definitions

1ny) =189 —y), Ty =T6W(x —y).

A. Analysis of the HF approximation

The Hartree-Fock equations of motion for a scalar O(N)
theory are shown in Eqgs. (2.4). As a first example of the use
of the notational conventions in Eq. (4.1) and Eq. (4.2) we
rewrite them in a compact indiceless form

dp
{[D +m + fAptré ]l + %AUTL2<AWMPMP()C)T}¢ =0,

d3
{[—i—m(z)]l + %Aor[f + fp2<A (2771;3 upu;r,ﬂuk =0,
4.3)

where we recall that £(x) = ¢(x)@”(x) and the definition
of 7 in Eq. (2.5).

Exactly as in Sec. Il A we select the values of bare
parameters corresponding to the broken symmetry phase
by requiring the existence of a vacuum solution with non-
zero constant and uniform background field, ¢(x) = v.
Notice that here v is a O(N). The direction © = v/ Vo?
of the vacuum background field provides the definition of
longitudinal and transverse projectors

PL:ﬁﬁT, PT:1_PL'

The vacuum mode functions now are
U™ (x) = Q)2 explilk - )1 — iwgt]
=[Qawy) e ionetpy
+ Quyp) " V2em ikt p etk x,

where in the first line the power and the exponentiation are
operations on matrices and w, w;, and wy are defined as

w? = w,%,LPL + w,zc’TPT =k’1+ M?,

M2 = m%PL + m%PT
The longitudinal mass has the same value as in the N = 1
case, namely m; = %)\OUZ, while the transverse squared

mass m%, as a function of Ay, v?, and A, is obtained by
solving the self-consistent equation

Bp (1 1
0=mj +1A -
O /pZ<A (2m)? {Zwk,L 2w 1

}. (4.4)

The vacuum expectation value v satisfies a gap equation
which generalizes the one in Eq. (3.2)

dp 1
0=t b+ o [ L0,
my T gAoV 270 D<A (277)3 zwk‘L

dPp 1
+HN = 1)A — .
ol ) Of,,2<A m)? 2w 7

4.5)
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Notice that the gap equation involves only v?. In fact
varying the direction of ¥ we obtain different static solu-
tions that correspond to the equivalent distinct vacua of the
theory in the broken symmetry phase.

The mean field V [see Eq. (3.3)] is now an object with
two O(N) indices, defined by

V(x) =mil — M*> + %/\OT[f(X)

d’p
[ w1

Notice that again 'V = 0 on the vacuum solution. In terms
of 'V Egs. (4.3) read

{01+ M? = 1r€ + Vi) =0,
{01 + M? + Viug(x) = 0.

Recalling the general mean-field form of the background
field equation (F' here is a O(N) matrix), Eq. (2.6), we
have

FIEN =V + M~ bage

which should be compared with Eq. (3.5) in Sec. IIT A.

In order to derive a self-consistent equation for 'V like
the one in Eq. (3.9) we introduce the free mode functions as
solutions of the free equation with mass matrix M. We also
define the free retarded propagator with a straightforward
extension of Eq. (3.6) to the case of a mass matrix M.
Equation (3.7) gives the cutoffed correlation as a functional
of 'V (now O(N) indices multiplication is understood). In
conclusion we have the self-consistent equation for 'V

V = mil — M? + (& + IV,
V1) = G[ V], x).

This should be compared with Eq. (3.9)

We keep on following closely the Sec. III A by fixing
vacuum initial conditions for the mode functions. By this
choice follows that u© = 4" for all times and the free
correlation is translationally invariant.

Moreover we can repeat, with little changes, the obser-
vations made in Sec. IIT A about the structure of the inte-
gral I[ V). We can still interpret the free Green functions as
effective internal propagators obtained by resumming all
tadpole corrections to the bare ones. We can introduce the
tadpole integral

(4.6)

M =GO%x) =1"P, + 1P,
and the two propagators loop integral
Lon(x =) = Gl (= y)Gyj(x.y)
+ Gyt =GR (x,y)
= I(LZL)(x - y)PL,ikPL,jm + I(TZ;(X - y)PT,ikPT,jm
+%I;"212(x_y)(PL,ikPT,jm + PriPrjm)- (4.7)
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In terms of these Eq. (3.10) defines the functional J which
contains only the cutoff convergent part of I [here O(N)
indices contraction according to the rules in Eq. (4.2) is
understood]. Notice also that, by using the two propagator
loop integral of Eq. (4.7), we can cast the self-consistent
definition of m? in Eq. (4.4) into a more compact form

my = = I3 0)m3[1 — 1A I3 (0)] . (4.8)
The quasirenormalized form is obtained by manipulations
identical to those in Sec. III A

F'=100+[10@ - 1gla¢ + 1V,
V =1oA¢ + 100 V]

The matrix Q) and the four-indices objects Q) and  are
defined as

QW =miPr, 0= Agrlll = o7 ®] 7,

o 1 oA (4.9)
The vertex functions contributing to the equation of
motion can be expressed in terms of functional derivatives

of F/

SF'£1(x)

a¥
5fil,j] (x)... 5§ikjk (x) =12

i1k

(xl,...,xk) =2

as in Sec. IIT A. Notice that Q) is completely transverse
[see Eq. (4.9)] which implies that 'V = Qy =0,
namely, the statement that the vector v is the vacuum static
solution.

Of course all the diagrammatic interpretations made in
Sec. III A still hold true, now with diagrams carrying O(N)
indices.

Before going further, we should introduce some nota-
tions that will be useful later on. Four-indices tensors,
functions of v, and of other scalar quantities, with the
following symmetry properties (e.g. 6 and Q?)) admit a
general decomposition

Tijkm(v) = Tjikm(v) = Tijmk(v) = Tkmij(v):

(4.10)
Tjkm(v) = Ta(vz)fgkm(ﬁ)
in terms of the five elementary tensors
tlljkm = 0,0;0,7,, f%jkm = XPriPrjm + PrimPr 1)
Bitm = Pr,iiPriom Bim = (PLijPTom + Pr.iiPL i),
t?jkm = XPLiPr jm + PLinPrjx + PruPr jm

+ PrimPr ji)-

Notice that the coefficients of the decomposition are func-
tions of v? alone. As an example, by Eq. (4.9) the coef-
ficients 6, of the decomposition of 6 are
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0, = Ao[1 — XN + 2)AIF 11 — YN + DAL
- %AOI(LzL)[l — 5N + DAl

0y = 200[1 = 21T,

0y = 2Ao[1 — A1) 17,

05 = 10,[1 — §(N + 20517,

65 = 0s[1 — Ao I T — L0l 1"

4.11)

Notice that using Eqs. (4.11) the compact form of the self-
consistent definition of m% in Eq. (4.8) can be rewritten as

m% = %/\Ovz - %54(0)112. (412)

The coefficient of () can be determined from those of 6 by
Eq. (4.9) and the decomposition of the II tensor.

B. Renormalization

Now we apply the standard renormalization procedure
as we did in Sec. III B for the N = 1 case. We will see that
the same problems are present also in this case and some
others will arise due to the presence of the spontaneously
broken continuous O(N) symmetry.

By fixing the equilibrium value of the background field
we provide the first renormalization condition that defines
the bare mass m% as a function of Ay, v, and A. This
removes all A? dependence from the vertex functions.

The second renormalization condition is conventionally
obtained by evaluating at the symmetric point [see
Eq. (3.13)] the “‘all-longitudinal’’ component of the four-
legs vertex function I'® and requiring it to be equal to the
renormalized coupling A

A =60P(q,)

3A0[1 — %2217 (q,)]
1= N T2 (g,) — TP (g1 — Y2001 (q,)]
— 2, (4.13)

where, as in Sec. III B we have dropped the contributions
from Q) and Q@. This has to be compared with the
corresponding relation of the N =1 case.

First of all Eq. (4.13) shows the same pathological
dependence of A on Ay, at fixed A and v, that we found
in Sec. III B. As already discussed this prevents a consis-
tent map between bare parameters and renormalized ones
unless we restrict to a small coupling regime. For what
concerns the cutoff dependence of 12 we can see that not
only the logA dependence is not removed by the renor-
malization condition from Q?(p) for p # ¢, but also, for
components (), with a # 1 logarithmic divergences al-
ready appear at p = ¢,. Regarding the cutoff dependence
of the Q® with k > 2 as in Sec. III B renormalization does
not remove logA dependence in the masses of the free
propagators and in the effective vertex 6.

PHYSICAL REVIEW D 73, 025012 (2006)

Besides these renormalization problems analogous to
the N = 1 case, another very important aspect, which is
peculiar of the N >1 case, must be pointed out.
Equations (4.3) are manifestly O(N) symmetric and so it
should be for the effective action. Therefore the standard
Ward identity, stating the masslessness of the external
transverse propagator (the inverse of f‘(Tz)(p)), is indeed
satisfied by the HF approximation

1o =r1%p, +?p,
[P(p) = —p? + 20 (p)v?,
[P (p) = —p? + QF + QP (p)v?
= —p* + my + [304(p) — 3210

(4.14)

thanks to the self-consistent definition of the transverse
mass, Eq. (4.12). But the transverse mass itself, which
enters the internal transverse propagators GES)T and G§9)
does not vanish at all (it actually diverges as logA), pre-
venting a consistent interpretation of the transverse modes
as Goldstone bosons. This is a well-known problem of the
HF approximation (see for instance Ref. [35]).

C. A class of improved HF approximations

We shall now try and improve the HF approximation to
recover the correct properties of renormalizability and RG
invariance. We shall also require that this improved resum-
mation is gapless; that is, we shall impose that the internal
transverse propagators are massless. To this end we follow
closely the procedure of Sec. III C, while stressing some
important new features which appear due to the continuous
O(N) symmetry and the presence of two kinds of fields
(transverse and longitudinal) with different masses. Let us
anticipate that in this case our procedure does not single
out a unique solution but rather an extended class of
resummations that share all the required properties.

As in Sec. IIIC the first step consists in fixing some
fundamental properties of the HF approximation that we
want to preserve. First of all the general structure of the
diagrams resummation which is encoded in the general
mean-field form of the background equations of motion,
Eq. (2.6), and in the self-consistent definition of F’,
Eqgs. (4.6). The latter implies the following mean-field-
type equations of motion for the mode functions

[O1 4+ M? 4+ V]u, =0,
(4.15)
V=10Aé+ 110 - 1PV}

As in Sec. IIIC we now regard Q1 QW 4, and the free
propagators masses m? and m% (in matrix form M?) as
tunable parameters that we are going to change with regard
to (w.r.t.) to their HF definitions.

The first important difference with the N = 1 case is that
now Q@ 6, and M are not independent, but must fulfill
certain O(N) symmetry constraints. In fact the equations of
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motion covariant under contemporaneous rotations of the
field ¢, of the mode functions u,, and of the vacuum
expectation value v which enters in the definitions the
propagators and of Q® and 6. We have to explicitly
require symmetry under rotations of ¢ and u, alone or,
equivalently, invariance under rotations of v. Explicitly we
have to impose

SM>+ V]=0, SF =0, (4.16)

where & is the operator generating the infinitesimal varia-
tion under an O(N) rotation of v. Equations (4.16) require
invariance in the mode functions Egs. (4.15) and of the
background field equation, Eq. (2.6), respectively. Solving
explicitly for "V the second equation in Egs. (4.15) we can

rewrite the first condition in Egs. (4.16) as
0= 8M>+ 8{[1 + 1011 19[AE + 1 — 1V (4.17)

Notice that ¢ and u; are independent and by hypothesis
invariant variables (i.e. they must depend only on v?). Then
Eq. (4.17) implies

8{[1 + 10191716} = 0,
0= oM>+[1+101@]!
X g[—v*6P, — 61V

(4.18)

By some easy algebraic manipulations we can rewrite the
first equation above as

80 = 1061%0

which has a simple and natural diagrammatic interpreta-
tion. Making the tensorial structure explicit, we obtain the
following conditions on the coefficients 6,

6, = 6,1 - (1<2> — I

65 = [0, — 6, + 36,6, (157 — IFDIL + 30,157 — I7)],
05 = 65[1 + %04(1222 — I + L0, (17 — 1E)1 .

(4.19)
J

v =16, — 6, -
= [1+10,[17) -

2 = 60,0+ 4T
7(2) — 109 - 19,
7(22) 1 9(2) _1 94,
2v(”(O)[ 2+ 11—

— 102000 + 16, (0)v>.

pO = m2
©@ = —Lm

16,6,(1%) — IHI1 + Lo,(1F) —
NIZTN + 16,181 -

AN OIUE
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Notice that these relations uniquely fix the form of 6 once
6 and 6, have been specified. Now, using these relations
and the following rules for the explicit variations

OM? = (m? — m3)8P,,

81 = (1) — I"YoP, = (m} — m})I) (0)8P,
we can rewrite the second equation in Egs. (4.18) as
m? —m3 = lv 26,(0). (4.20)

The second condition in Egs. (4.16) can be written as

s80? =150, 80V - sM? — (QP —1)v?5P;.
Explicit tensorial calculation yields
Q(zz) = 9512) + 1[0, — 641,
0(2) — Q(z) (2) 1[0 —0,+ 6 ]
3 1 3 1 4 @21)

0P =P - QP +1[65 - 6, + 6,]
Q0 = —02(0)v2P;.
In conclusion, according to Egs. (4.19), (4.20), and (4.21),

the actual independent parameters are 6, 64, m3, Q(lz), and

Qflz). The integrated versions of Egs. (4.16) are obtained by
writing M? + V and F’ in a manifestly O(N) symmetric
form

M2+ 7V = uW1 + LyW[g + 1],
F = M(Z)l + %Y(Z)g + l[Mz + V]
Y = V8,80 + 5 (848 )m + 81l
a=172

with y@ and u'® defined in terms of the free parameters
as follows

1(2))][1 1041(2) lA*l’
NG IR + 10,1517,

(4.22)

+18 + (v = D],

One can verify that the standard HF definitions of the tunable parameters indeed satisfy these conditions.
Now, as in Sec. III C, we require that # and ® have the same general leading-log structure characteristic of their HF

definitions namely
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2 2 2 2
QP = XF (NI, XI5, AIF3: N),

61 = AOFZ(AOIE,ZI)J A()Ig‘z[)} )L()I(7~27)~,N), (4 23)
QP = AgF3(12, A1), AT N),

2 2 2
0y = AF4(AoI(, Aol Aol N),

where the F4(x, y, z; N) are generic functions of commut-
ing arguments since the operators I(LZZ, I(TZL) and I(TZT) are
diagonal in Fourier space. We assume a similar structure

also for m7 as we did in Eq. (3.17) for the N = 1 case
m} = Agu?Fs(AI}(0), AT (0), AT 7)(0); N).  (4.24)

We have thus reduced our parametrization freedom to five
functions F, of three variables. We still have to require that
these functions fulfill some further properties that hold true
in the HF approximation.

Hartree-Fock matches perturbatively at 1-loop order.
This requires that § and m? match at tree level and that

Q@ matches at 1-loop order (the tree-level term never
appears in the vertex functions). Explicitly we have

Fi(x,y,zN) =t +x+ (N — Dz +...,
F3(x,y,z3N) = co + gy + ...,
Fy(x,y,zzN) =1+ ...,
Fyx,y, sN) =3+ ...,
Fs(x,y,zzN) =3+ ...,

where ¢, is a purely numerical arbitrary constant.

In the N — oo limit the HF resummation reproduces
correctly the equations of the usual large N approximation.
This can be done as follows. First we restrict to the special
case of a background field which maintains a fixed direc-
tion (i.e. the direction of the vacuum expectation value v),
that is ¢;(x) = ¢(x)?D;. Then we can reduce the equations
of motion into a projected form

[0+ V. +(Q —10)A¢l8 =0,

[O+mi+ Viluyr=0  [O+mi+V Ju =0,
L=30[AE+T ] +HN 165y,

Vr=30s[Aé+7,]  +[3N—1)0;+10,1r.

Now let us rescale the coupling, the background field, and
the vacuum expectation value as prescribed by the standard
large N procedure and then by taking the limit and using
the symmetry conditions one can see that the correct large
N equations are recovered, provided the limits of the free
parameters satisfy the following relations

%U2§4(0) - m% — 0,
N(O; — 64) = $A0[1 — %/\ol(rz%]_l,
NQ(lz) — %)\0[1 - %Aoi(TzT)-]_l

(4.25)
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Suitable conditions on the functions F, then follow from
Eqs. (4.23). Notice that in the integrals 1'% in Egs. (4.25)
we have m7 = 0, as consistent with the limits of the
parameters.

To conclude, in the HF approximation Q(lz) and the 6,
fulfill positivity conditions. More precisely they are real
and positive when evaluated at the purely spatial value of
the momentum ¢, [see Eq. (3.13)].

We now proceed in defining our modified HF approxi-
mation by making some further sensible requirements that
are not satisfied by the HF approximation. First of all we
require our approximation to be gapless. That is to say we
require that the transverse mass of the internal propagator
is zero. As a consequence by Eq. (4.20) we have

mi = $v20,(0) — Fs(x,y, z:N) = §F4(x, y, z; N).
(4.26)

Because of this condition the transverse internal propaga-
tors are now massless and therefore the Goldstone bosons

loop integral 1 (TQT) is logarithmically IR-divergent. The sym-
metry relations in Eq. (4.26) and Eq. (4.21) define the
longitudinal mass m? and Q") in terms of the zero mo-
mentum values of 6, and Qf), respectively. To avoid IR
divergences we then require that 6, and ng) do not depend
at all on I(Tz% Thus we can write

F3(x,y,z3N) = K;(x, y; N),

Fy(x,y,z3N) = Ky(x, y; N),
where K4 (x, y; N) (A = 3, 4) are arbitrary functions of two
variables only (plus N). The same argument applies to the
parameters ! and u® of the manifestly symmetric form
in Eq. (4.22): we require that 16, — Q? and y? do not
depend on I(TZT) which in turn implies

K,(x, y; N
Fy(x,y, zN) = — 4 Y )
1+ 3K,4(x, y; N)(y — x)
Ky(x, y; N)

bl

(145K, (0 y:N) =)

N — + K>(x, y; N
( 3K (V) 5—2) 2l yiN)
1
Fi(x,y,z;N) = ~3
% K4(x, y;N)
(142K, (o ysN) =) P
N — 1)—22P 00 L ko (x, vi N
( ) 1+%K4(x,y;N)(y—z) 2( Y )
+ Kl (X, Vs N),

where, again, K, (x, y; N) (A = 1, 2) are arbitrary functions
of two variables (and N). Now, as in Sec. I[II C, we require
the renormalizability with the 1-loop beta function. That is,
we assume the following RG equation for the bare cou-

pling A,
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oxg _N+8
dlogA 2472

A3+ O

and ask that the free parameter function K, do not depend
on logA. By the same procedure of Sec. III C and using

2 2
/7 L B L AP
dlogA dlogA dlogA

1

== _Wl + O(Ail),
we obtain the general forms
/ ) ’N
Ky = AW sy

1 =N+ 8)x’
K>(x, y;N) = falalx, y); N),

where

(6y) = —F—=

CE TN 8

Recalling that x = )\OI(LZL) and y = AOI(TZL) we see that the

Fourier transform of « positive definite for purely spatial

value of the momentum. Notice also that « vanishes when

v — 0 since I(LZL) and I(Tzz coincide in this limit.

Notice that now, in contrast to the N = 1 case studied in
Sec. I C [see Egs. (3.19)], the requirement of renormaliz-
ability does not fix completely the form of the free parame-
ters. This occurs because for N > 1 there exists three
distinct finite parts associated with the logarithmic cutoff
divergence of If,z, I(TZL), and I(TZT) So now we are left with
four arbitrary functions f, of one variable (and N) to
determine. One last requirement is that the N = 1 case
should be recovered for all the parameters that have mean-
ing also in this case. These are Q(z), 0,, and 6, (that,
evaluated at zero momentum, determines the longitudinal
mass according to Eq. (4.26)). When N = 1 they should
have the following form [see Egs. (3.19)]

0, = 120 = 30, = Ao[1 — %)‘01222]7'

that is, in terms of the functions f’s,

2 2-2
fla) =5 plah=-T—
o
@
fl(a,1)=9_3a.

Notice also that all the possible choices of free parameters
coincide when v — 0, since « vanishes in this limit and the
perturbative constraints uniquely fix the form of the f’s
when @ = 0. Moreover one can verify that the resulting
v = 0 improved HF coincide with the massless limit of the
improved approximation in the unbroken symmetry phase
defined in Ref. [33].

In conclusion all possible forms of the functions f’s that
fulfill the above matching constraints define improved

PHYSICAL REVIEW D 73, 025012 (2006)

Hartree-Fock resummations with the required features of
gaplessness and renormalizability. One simple choice for
the f’s is

fala;N) =2/3,
1—1la
falasN) = =N+ D7+ (N = Da
o« 4.27)
fl(a9N) - 9 — 2a;
f3(a;N) = 2 !

3(N + 8) 1+NT+8a'

As already remarked, this choice is not unique. For ex-
ample we can consider a second form

2/3
sN) = ————,
f4(a ) 1+NT_ICY
1—1ia _ 1+ 4£8y
fala;N) = —(N +1) I —3a +4(N3 Dal +éa’
6
a
iN) = ,
fila;N) 9—2a
2 1
f3(a;N) = (4.28)

3(N+8) 1+ 28"

As already explained in Sec. III C, our modified resumma-
tion adds leading-logarithm contributions of diagrams that
are not present in the usual HF approximation; then the two
forms just provided of the free parameters, as well as all the
other possible ones, correspond to different choices of the
associated finite parts.

Given one specific choice for the free parameters, we
can proceed in applying the coupling constant renormal-
ization condition in Eq. (4.13). Notice that the consistence
of this renormalization requires that Q(lz) is monotonically
growing with A, for any given purely spatial momentum.
We have omitted to include this requirement in the pre-
vious general discussion since it would lead in general to
rather complicated constraints. It holds true for the two
simple examples given in Eqs. (4.27) and Egs. (4.28), as
one can explicitly check. Moreover it holds true in general
(i.e. for any improved HF resummation) for scales such
that s2 > v2, since we have in this limit

A
67'0
1 — LN+ 8)A,1(q,)

07(q) = + 0 /s?),

where I® stands for anyone of I(LZL), I(TZL) and I(TZT) The
renormalization condition thus defines the Dbare-to-
renormalized relation

Ao

A= =
1 - NTMAOI(2)(qs)

+ 0(m?/s?)

which is the usual 1-loop RG-invariant relation up to
O(m?/s?) terms. This shows that the direct coupling re-

025012-13



ANDREA SARTIRANA AND CLAUDIO DESTRI

normalization condition is approximately scale invariant
for high renormalization scales. To obtain complete scale
invariance it is enough to slightly modify the bare-to-
renormalized parametrization by changing the renormal-
ization condition in the following way

602(q,) = 6A0F1 (W12 (g,), 1T (g,), AT (q,); N)
= 6AF1<AJ<2> (g,), ATE (q), ATE(q,); N)

= A+ O(m?/s?), (4.29)
where
TOp) =12 - 1%g)1, T2 =12 — T2(g)1,

) = Iy = T} (g1

are the properly subtracted finite loops (notice that the
subtraction term is always the purely longitudinal
(2) 1(q,)). Then, using the parametrization of F, in terms
of the fi(a;N), one can verify that the bare-to-
renormalized relation reads exactly

A
A= e 0 5 (4.30)
1 - /\OI (qs)

We can see that this has the correct 1-loop-RG improved
behavior with a specific choice of the finite parts. Then all
the free parameters take the following manifestly finite
forms
QY = AR, (A, AT A2 N),
0, = AF,(AJE), AT AJELN),
QP = AR, (WP, AP, ATELN),
0, = AF,(AJE, AR, ATEN).
Moreover, consistently with the renormalization condition

in Eq. (4.29), we can define the running coupling constant
by means of the following equation

A(P)FL(A(P)TE (p), Ap)TE (), A(p) T3 (p); N) = QP (p)

whose solution is simply the extension of Eq. (4.30) to
arbitrary momentum
A

Mp) = —— e
1= NI (p)

In terms of this and of the subtracted integrals we can write
the renormalized form of the Fourier transform of a:

PHYSICAL REVIEW D 73, 025012 (2006)

a(p) = A(p)TA (p) — T2 (p)].

Notice that & becomes small for large (but smaller than the
Landau pole) spatial momentum ¢g,. More precisely it is of
order O(A(g,)v*/s?). Because of the Landau pole, the
cutoff of the theory cannot be removed but should be fixed
to values suitably smaller than the pole (i.e. such that A(g )
is of order one). The mass scale of the theory, that is v, is
much smaller than the cutoff itself. Therefore for spatial
momenta with values near the cutoff « is small. Then the
perturbative (in «) matching conditions assure that the
different allowed choices of the free parameters give the
same results to order O(A(g,)v?/A?). In this sense we can
say that all the class of improved HF approximations shares
the same UV behavior.

One can easily check that if we renormalize at scale s
with coupling constant A and at scale s’ with coupling
constant A’ = A(gy) we define the same bare coupling
constant. That is to say that the bare-to-renormalized rela-
tion in Eq. (4.30) is RG invariant. As a consequence the
expressions of the parameters in terms of Ay and I in
Egs. (4.23) can be thought as manifestly scale invariant
definitions.

V. CONCLUSIONS

In this paper we extended to the case of spontaneously
broken symmetry the improvement of the HF approach to
the O(N) scalar theory that was proposed in Ref. [33]. In
contrast to the standard HF approximation, our improved
one is renormalizable, RG invariant, and correctly gapless
in the Goldstone sector. However, it is not unique, except
for N = 1, because the mass difference between the lon-
gitudinal sector and the transverse Goldstone sector allows
for a richer structure of renormalization finite parts that
cannot be fully restricted by the requirements of renorma-
lizability and RG invariance. As a consequence, an entire
class of improvements is identified, parametrized by the
four functions f4(a; N) which must satisfy some further
constraints explicitly written in the previous section. It is
important to stress that, albeit of functional type, the re-
maining freedom is much smaller than what simple dimen-
sional analysis would allow even when simple momentum-
independent observables are concerned (the momentum
dependences in our approximation are anyway fixed by
construction to be of mean-field type). This makes it
difficult, although not a priori impossible, to identify con-
sistent schemes to further constrain the functions f(a; N)
by requiring agreement in suitable calculations beyond one
loop. Work on this direction is in progress.
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