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We present a simple formalism for the evaluation of the Casimir energy for two spheres and a sphere
and a plane, in case of a scalar fluctuating field, valid at any separations. We compare the exact results with
various approximation schemes and establish when such schemes become useful. The formalism can be
easily extended to any number of spheres and/or planes in three or arbitrary dimensions, with a variety of
boundary conditions or nonoverlapping potentials/nonideal reflectors.
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I. INTRODUCTION

In 1948 the Dutch physicist Hendrik Casimir predicted
the existence of a very peculiar effect, the attraction be-
tween two metallic uncharged parallel plates in vacuum
[1]. The existence of such an attraction has been confirmed
experimentally with high accuracy only recently [2,3].
However, nearly all modern experiments (the noted excep-
tions are the two-cylinder work of Ref. [4] and the two-
plate experiment of Ref. [5]) study the attraction between a
metallic sphere and a metallic plate which are much sim-
pler to align than two plates, but much harder to calculate.
In fact, with the exception of the proximity-force approxi-
mation [6,7], which is only applicable for vanishing sepa-
ration, there does not exist a theoretical prediction for the
Casimir energy of the sphere-plate system as a function of
the distance.

The origin of this attractive force can be traced back to
the modification in the spectrum of zero point fluctuations
of the electromagnetic field when the separated mirrors are
brought into close distance. Similar phenomena are ex-
pected to exist for various other (typically bosonic) fields
[8,9] and the corresponding forces are referred to as
Casimir or fluctuation-induced interactions. A related in-
teraction arises when the space is filled with fermions,
which is particularly relevant to the physics of neutron
stars [10—15] and quark gluon plasma [16].

Since the Casimir effect between a sphere and a plate is
the experimentally interesting but theoretically difficult
case, because of the electromagnetic nature of the fluctuat-
ing fields, the corresponding Casimir effect for a real scalar
field between two spheres or one sphere and a plate came
into the focus of theoretical research [17—-25]. Therefore
we will here focus on the exact and semiclassical calcu-
lation of this scalar Casimir effect between spheres or
spheres and plates in three spatial dimensions, where we
assume Dirichlet boundary conditions on the spheres and
plates. This scenario can be trivially extended to the case of
Neumann or other boundary conditions, to two-
dimensional systems of disks and/or lines and to analogous
systems in arbitrary dimensions. We will show that the
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Casimir force calculation for the two-sphere case incorpo-
rates the sphere-plate geometry as a special case. Note that,
with the exception of the numerical results of Refs. [19,20]
(see also [21]), which do not yet extend to large separa-
tions, no exact result exists in the literature for the Casimir
effect for a real scalar field under Dirichlet boundary
conditions, neither between a sphere and a plate nor be-
tween two spheres. For small separations between the
sphere and the plate, the above-mentioned proximity-force
approximation [6,7] can be applied. Its justification at
small separations has been provided by many authors
using various theoretical techniques. For instance, in
Refs. [17,18] semiclassical methods in the framework of
the Gurzwiller trace formula [26] have been used, in
Ref. [27] the proximity-force approximation for the elec-
tromagnetic case has been derived from the multiple scat-
tering expansion of Ref. [28], in Refs. [19,20] the world-
line approach in the framework of the Feynman path
integral has been applied, and in Refs. [22-25] a ray-
dynamical approach in terms of optical paths (i.e. closed
but not necessarily periodic orbits) has been employed.

Here, we will present an evaluation of the scalar Casimir
problem that is based on quantum mechanics, without any
semiclassical approximation made beforehand. It utilizes
the Krein formula [29,30] as a bridge between the spectral
density on the one hand and the problem of scattering of a
point particle between spheres in three dimensions (or
disks in two dimensions) on the other hand. It has to be
emphasized that in this case the Casimir calculation is not
plagued by the removal of diverging ultraviolet contribu-
tions. This is related to the fact that the Krein formula is
exact, and that the determinants of the S-matrix and the
corresponding inverse multiscattering matrix for a system
of N nonoverlapping spheres (or disks), which both are
manifestly known, are finite [31-33]. In this work we do
not consider the material dependent stress of, e.g., the
deformation of a single spherical shell which was dis-
cussed in Ref. [34].

The paper is organized as follows: first, we formulate the
problem in terms of the density of states of the scalar field
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and relate it to the S-matrix of the system using the Krein
formula. In Sec. III we focus on the particular realization of
the Casimir effect for the sphere-sphere and the sphere-
plate system. Section IV is devoted to investigations of the
large-distance limit between spheres where the asymptotic
expressions are derived and discussed. Section V discusses
the link between the presented approach and the semiclas-
sical methods based on the Gutzwiller trace formula.
Finally, the numerical results, approximate expressions
and conclusions are presented in Secs. VI and VII. For
the sake of completeness, the derivation of proximity-force
approximation for the sphere-sphere and sphere-plate sys-
tem is given in Appendix A and a comparison to the two-
dimensional two-disk and disk-line systems can be found
in Appendix B.

II. THE MODIFIED KREIN FORMULA

Our main goal is to reach a qualitative understanding of
the scalar Casimir energy at zero temperature in the case of
more complicated geometries than the original two-plate
system. For that purpose let us consider the fluctuating real
scalar field between N nonoverlapping, nontouching, im-
penetrable spheres of radii @; (i = 1, ..., N). It is assumed
that the scalar field is noninteracting and is subject to
Dirichlet boundary conditions on the surfaces of the
spheres. The spheres are positioned at fixed relative dis-
tances r;; = L;; + a; + a; > a; + a; between their cen-
ters; L;; is then the shortest relative distance between
their surfaces, and 7;; is the center-to-center distance vec-
tor, which includes also the information about the spatial
orientation. In order to calculate the Casimir energy we
shall represent the smoothed bosonic density of states of
the scalar field as a function of the energy & (smoothing is
over an energy interval Ae larger than the level spacing in
the big volume V of the entire system):

N

gledah {7i) = gole) + D gwle, a)) + gele {ah {7;)}),
i=1

(1

where g(e, {a;}, {F;;}) is the total density of states of the
scalar field, go(e) is the density of states in the absence of
all scatterers, and gy (e, a;) is the correction to the density
of states arising from the presence of one sphere (sphere 7).
Clearly Y¥  gw(e, a;) is the correction due to the N
spheres infinitely far apart from each other that sums up
the excluded volume effects, surface contributions and
Friedel oscillations caused by each of the obstacles sepa-
rately. Finally, gc(e,{a;},{7;;})) is the remaining part,
which is of central interest to us here. It vanishes in the
limit of infinitely separated scatterers and is the only term
in the density of states which reflects the relative geometry
dependence of the problem. Only this term contributes to
the Casimir energy.
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Strictly speaking, only the smoothed level densities
gw(e) and gc(e) are finite, whereas the level densities
g(e) and g((e) are infinite, as they are proportional to the
volume V of the entire space. This redundant divergence
can be handled easily by considering the smoothed quan-
tities first in a very big box, the volume of which is
subsequently taken to infinity [31].

Now we will use the Krein formula [29,30] which
provides a link between the (N-body) scattering matrix
Sy(&) of a point-particle scattering off N spheres and the
change in the density of states due to the presence of N
scatterers, namely

og(e, {a;}, {?ij}) = g(e,{a;}, {Fij}) — 8o(e)
1 d

=5 de In detSy(e, {a;}, {7;}). (2
Note that In detSy (e, {a;}, {7;;})/2i is nothing else than the
total phase shift of the scattering problem. The geometry-
dependent part of the density of states can now be extracted
from the genuine multiscattering determinant. In this way
the calculation is mapped onto a quantum mechanical
billiard problem that classically corresponds to the hyper-
bolic (or even chaotic) point-particle scattering off N
spheres [33] (or N disks in two dimensions [35—-42]).

As shown in Refs. [31-33], the determinant of the
N-scatterer S-matrix, Sy(e, {a;}, {7;;}), factorizes into the
product of the determinants of the single-scatterer S-
matrices and the ratio of the determinants of the inverse
multiscattering matrix [31-33] of Korringa-Kohn-
Rostoker (KKR) type [43-46] M(k) = M(k,{a;},{7;;}) in
the complex wave number (k = k] plane:

detM(k*)t

e @

N
detSN(S, {Cli}, {?U}) == [l_[ detSl(S, a,-)]
i=1

The formula (3) holds in the case when the scattering
modes are free massless fields as well as in the case of
free nonrelativistic fields with a mass m. Both cases imply
different energy dispersion relations, ¢ = hiw = hck in the
massless case or & = h2k?/(2m) in the nonrelativistic sce-
nario, respectively.

Although the involved matrices are infinite dimensional,
all determinants are well defined, as long as the number of
spheres is finite and the spheres do neither overlap nor
touch. This follows from the trace-class property [47,48] of
the matrices Sy — 1, S; — 1 and M — 1 which was shown
in Refs. [31-33].!

Inserting the exact expression (3) into the original Krein
formula (2), using the decomposition (1) and identifying

"Trace-class operators (or matrices) are those, in general, non-
Hermitian operators (matrices) of a separable Hilbert space
which have an absolutely convergent trace in every orthonormal
basis. Especially the determinant det(1 + zA) exists and is an
entire function of z, if A is trace-class.
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the “Weyl-type” density of states with the phase shift of
the corresponding single scatterer

1 d
)= ——1 . 4
gwle, a;) 51 4 n detS, (e, a;), 4)

one finds a new Krein-type exact formula [13] which
directly links the geometry-dependent part of the density
of states with the inverse multiscattering matrix

el fah ) = £ m In deth(k(e), a7,

or
J
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NeleAah (7)== Tm In deth(k(e), {a) {7,
o)

for the integrated geometry-dependent part of the density
of states

Nele, fa} 7)) = [) “de'ge(e! {ak 7). (6)

The exact formula (5) is the central expression of this
paper. The Casimir energy itself follows via the integral

€C=fmdslsgc(s)=—ljwds.’]\fc(s)
0 2 Jo

2
1 00

_ ! ] de Im In detM(k(s))
27 Jo

4ri

1 oo(1+i0) oo(1—i0,.) .
= [ ] de In detM (k(g)) — f de In detM (k*(e))t } (7)
0

0

In the massless case € = hck, this expression can be Wick-rotated (i.e., k — ik, for the first term and k — —ik, for the

second term of the last relation) to give®

ke
€ on

" dky In detM(iky), (®)
0

since detM (k) = detM((—k)*)T and therefore detM(ik,) = detM(ik,)' if k, real.?
Using the explicit formulas for the KKR-type matrix from Refs. [31-33], one can compute numerically & for various
arrangements of hard spherical (or circular in 2D) scatterers. For a point-particle scattering off N nonoverlapping

nontouching spheres (under Dirichlet boundary conditions),

i ‘ol Pl . l \2 Jilka;
M= 8188, + (1 = 81)Nam 2n =L/l + 121 + 1)<ﬂ> jilka;)

00 14

aj) i (kay)

o — Y A AR R B
xS S D! LGPk Y (r@’.))\/21"+111< )( ] _m> ©)

ll/ l//

1T=0 m''=—1'

is the inverse multiscattering matrix [33]. Here j, j/ =
1,2,...,N are the labels of the N spheres, [, l" =
0,1,2,... are the angular momentum quantum numbers,
and m, m', m" the pertinent magnetic quantum numbers.
Di; + i j') is a Wigner rotation matrix which transforms
the Tocal coordinate system from sphere j/ to the one of
sphere j, j;(kr) and hll) (kr) are the spherical Bessel and
Hankel functions of first kind, respectively, Y;ﬁ%*mﬁ(?yj),) isa
spherical harmonic (where f(f), 1s the unit vector, measured
in the local frame of sphere j, pointing from sphere j to
sphere j'), and the 3j-symbols [49] result from the angular
momentum coupling.

>The Wick rotations are allowed, since detM (k) has poles in
the lower complex k-plane only, whereas detM(k*)t has poles in
the upper half-plane [31-33]. Furthermore, the integrals over the
circular arcs vanish, since In detM (k) and In detM(k*)t are
exponentially suppressed for Imk — *oo, respectively; see,
e.g., the semiclassical expression (40).

1]

0 0 O

m—m'" m

[
By definition, the inverse multiscattering matrix incor-

porates the pruning rule that two successive scatterings
have to take place at different scatterers [see the (1 —
8/7') term in Eq. (9)]. This alternating pattern between a
single-scatterer T-matrix and the successive propagation to
a new scatterer [31,44,45] distinguishes the KKR-type

3For the same reason, one can show the corollary that all the
corresponding integrals over odd powers of k have to vanish:

ke

* dkk2* ! Im In detM (k)
T Jo

i o0
- i(—l)"ﬂi ﬁ dk4k2"* [In detM (iky) — In detM(iky)t].

Thus, the Casimir energy over modes with a nonrelativistic
dispersion € = A?k?/(2m) integrates to zero, unless there exists a
finite upper integration limit, as e.g. the Fermi momentum in the
fermionic Casimir effect studied in Refs. [13,15].
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method from the multiple
Refs. [27,28].

scattering expansion of

III. THE TWO-SPHERE AND THE SPHERE-PLATE
PROBLEM

In the case of two spheres the system possesses a con-
tinuous symmetry, i.e. Cy,, in crystallography group theory
notation [50], associated with rotations with respect to the
axis joining the centers of the spheres (and an additional
reflection symmetry with respect to any plane containing
|

Al "(m) _

. (_l)l/il’ l

/l/(j

If the spheres have moreover the same radius a; = a, = a,
there exists also a twofold reflection symmetry with
respect to the vertical symmetry plane. This additional
symmetry makes the total symmetry of the system to
be D, in the crystallography group notation [50],*
which is a simply product of the C,, group and the
inversion (and rotation by 7r) with respect to the point of
intersection between the symmetry axis and vertical sym-
metry plane.

Therefore the global domain of the two-sphere
system can be split into two half-domains, separated by
this plane, see Fig. 1, and all the (scattering) wave func-
tions can decomposed into symmetric and antisymmetric
ones with respect to the vertical symmetry plane. The
symmetric wave functions are subject to Neumann bound-
ary conditions and the antisymmetric are subject to
Dirichlet boundary conditions on this symmetry plane.
Thus there exist two KKR matrices in the half-domain
[33], one corresponding to the Neumann case (N) and the
other, with the additional minus sign, to the Dirichlet case
(D):

MM =8, + A, (12)
MM, = 8, — A (13)
w1 = 0w = Ay
_ 412 21
where A;;’f) = A”,(m)la]:%za = Azz'(m)|a1=azfa' Fur-

thermore, the KKR determinant detM°°(k, a,r) =
detM®®:(k, a; = a, a, = a, r) of the full domain factor-
izes into the product of the determinants of these Neumann
and Dirichlet KKR matrices

“Note that Fig. 1 is rotated by 90 degrees relative to the
conventions of Ref. [50], such that our vertical symmetry plane
is called “‘horizontal” there.

;J(’lg e ner e +
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this symmetry axis). As a consequence the KKR-matrix is
separable with respect to the magnetic quantum number m
(in fact, it depends on its modulus |m| only) [33]. In the
global domain, it is given as

Mll M12 6”1 Al2(m)
= mw
(M21 M22)[m,l’m’ 6 <A12;(m) 5”/ ) (10)
with
[ UN\/I" o1 Iy
Do 0 00 m w @ an

[

detM°°(k, a, r) = 1_[ detM ™ (k, a, r)

m=—00

= 1_[ detM°" (k, a, r)|y

X detM*°" (k, a, r)|p
= detM®°(k, a, r)|y detM°°(k, a, r)|p. (14)

Thus the two-sphere system contains the Dirichlet sphere-
plate system as a special case, namely, in the symmetric
limit a; = a, = a, the sphere-plate system is equal to the
Dirichlet case in the half-domain, and the pertinent multi-
scattering determinant detM°®! of the sphere-plate system is
just given as

detM°l(k, a, L°) = detM°°(k, a, r = 2(L° + a))lp. (15)

Note that the shortest surface-to-surface distance in the
symmetric two-sphere case is given by L° =r — 2aq,

vertical symmetry plane
half—domain I half-domain II

' 00
L
-
« o>
0"
---- - - - J: ——————————— >
ro.

FIG. 1. Two identical spheres of radius a at a center-to-center
separation r. The vertical symmetry plane, the two half-domains
and the surface-surface separation L°° in the global domain and
L° in one of the half-domains are shown.
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whereas the shortest surface-to-surface distance in the sphere-plate case is Lo = 5T — a, see Fig. 1.
The exact expressions for the Casimir energy of the two-sphere Dirichlet problem, the symmetric two-sphere Dirichlet
problem and the sphere-plate Dirichlet problem are given by the following integrals, respectively:

he

8%102((11, as, L) = ET jooo dk4 In detMoloz(ik4, ay, ay, r = L+ ap + az),

he

£90(a, L) = 1€ [ " dk, In detM™(iky, a, r = L + 2a),
27 Jo

(16)

h 00
gdar) =22 /0 dk, In detM*(iky, @, r = 2(L + ))lp.

In practice, these expressions have to be numerically inte-
grated up to an upper value k7™ which should be chosen
large enough, such that the numerical value of the integral
is stable for some specified range of decimal places. For the
sphere-plate case, k§** ~ 10/L specifies a good choice. In
order that the evaluation of the determinant of the matrix
M2 (m;k, a, r = 2(L + a))lp is stable, the upper value of k
induces a maximal value I, for [, I’ and m (with |m| =
L I' = l,.), namely [31,46]

[ = %kﬁ{‘a"a ~ 14a/L. (17)

For small values of the separation L, the maximal angular
momentum and therefore the size of the KKR matrices
(which scale with /2 X [ where the last factor results from
the separable m quantum number) becomes rapidly very
large and limits the range of applicability of this numerical
computation of the exact integral to medium and large
values of L, say, L > 0.1a, chiefly because of the handling
of the 3j-symbols which scale with /4.

IV. LARGE-DISTANCE LIMIT

As shown in Ref. [13], it is possible to obtain signifi-
cantly simpler expressions for the (integrated) density of
states in the limit of very large separation or very small
scatterers. If the wave length A = 277/k is much larger than
the radii of the scatterers, one can show that the KKR-
matrix M(k) is given by

exp(ikr;;) (18)

[M()YT = 81" — (1 = 817) f,(k)
iy
(see [51] for the analog in the 2D case), where the indices
J,j'=1,..., N denote the scatterers, rj is the distance
between their centers and f;(k) is the s-wave scattering
amplitude on the jth scatterer.
In the case of two identical spheres of radius a, with their

centers located at the distance r apart, one obtains

2
detM(k) = 1 — f—z expl[ik(2r — 2a)] (19)

= detM (k)| y detM (k)|

- {1 + %eik(’“)Hl - geik“a)}. (20)

As usual, the determinant of this two-sphere system in the
global domain factorizes into two subdeterminants calcu-
lated for one of the half-domains, one subject to Neumann
boundary conditions and the other (with the minus sign)
subject to Dirichlet boundary conditions.

As mentioned, this expression can be derived from
Eqgs. (12) and (13) in the case of large center-to-center
separations of spheres, kr >> 1: we can make use of the
asymptotic expression for the spherical Hankel function
[52]

exp(ikr)

h{"(kr) ~ :
r kD)~ e

2

which is actually exact for h(()l)(kr), such that the inverse
multiscattering matrix becomes

L dn(ka) @I, + DL + 1)
2 = hgzl)(ka) i11+lz

exp(ikr) « L L 1
X — 21+ 1
ikr ;}( )<m -m 0
L L, 1
! (22)
0O 0 O

Using now the orthogonality relation for the 3j-symbols

[49]
Lo oIl L I
my m)\mj mh m

Mlolol(zm)(k, a, r) ~ 8111

Z(zz +1) l
=0 i

we get the asymptotic result
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oo(m)(k a, r) Jl ka) \/(le 1)(212 + 1)
h(l)(ka) jlith
% exP(lkr) " (23)
ikr
Since for kr > 1 the only nontrivial matrix MOO(O) is

separable in /; and /,, the corresponding determmant is
simply given by

detM°°(k, a, r) ~ —%
Jl(ka)
[Z( D21+ 1) (1)(ka)i|
=1~ exfk(z)lf”[ iA(ka)P. (24)

for the identical two-sphere case and by

detM°\(k, a, L) = detM®°(k, a, r = 2(L + a))|p

exp(lkr ji(ka)
> e s
=1- eXp(””)( iA(ka)) (25)
for the sphere-plate case. Here
Alka) = S (— 121 + 1) 3 26
(ka) IZO( )'( )h§1>(ka) (26)

is the multipole expansion of the scattering amplitude. For
ka << 1, the ratio j,(ka)/h\" (ka) becomes [52]

ji(ka) _ i(ka)X T leika
hD(ka) 12X 32X -~ X (21— )2 X (20 + 1)
+ O((ka)?*+2+0w), 27)

Thus the dominant effect comes from the s-wave scattering
only and the / > 0 terms can be neglected. Consequently,
the scattering amplitude becomes

Jo(ka)
" ka)
ka exp(—ika) + O((ka?)), (28)

—iA(ka) = + O((ka?))

which implies that (24) becomes (19) and (25) becomes the
Dirichlet part of (20).

If the determinant in the global domain (19) is inserted
into the modified Krein formula (5), we get the following

PHYSICAL REVIEW D 73, 025007 (2006)

result for the integrated geometry-dependent part of the
density of states in the s-wave limit of the two-sphere case
[13] (note r = L°° + 2a):

a2
(L + 2a)?
+ O((ka)?). (29)

N 0 avele) = sin[2k(L®° + a)]

Analogously one gets the s-wave limit for the Dirichlet
sphere-plate system by inserting the Dirichlet determinant
of the half-domain, namely, the second term of Eq. (20),
into (5):

N ave(e) = sin[k(2L° + a)] + O((ka)?)

¢
27 (L + a)
(30)

[note r = 2(L° + a)].

Now, the Casimir energy for two identical Dirichlet
spheres in the large L = L°° limit follows simply by
inserting IN'%,.ve» EqQ. (29), into the integral (7) and per-
forming the Wick rotation as in (8):

a2

h
“4n(L + a)(L + 2a)°

ma’ (90 4
e (e R )
Kﬁ(ﬁxHﬁm+%ﬂ GD

Efv)gwave(ar L)=—

where

he =t hear?

— T _ 32
“ 1672 90 1440 (32)

is the prefactor of the Casimir energy

hem? A

W) =~ 0

(33)

of the corresponding scalar (Dirichlet) two-plate system
where A is the area of the plates. Instead of performing the
Wick rotation, one can compute these integrals along the
real axis, too. In this case, one would have to include a
convergence factor exp(—ne) and take the limit 5 — +0
at the end of the calculation (in a similar manner to the
Feynman prescription for propagators).

Similarly, the Casimir energy for the Dirichlet sphere-
plate case in the large L = L°! limit follows by inserting
N ?l—wave, Eq. (30), into the integral (7) and performing the
Wick rotation:
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C47T(L + a)2L + a)

Tra (90 2
_KF<F>(1+%)(1+ﬁ)' (34

The large-distance scaling is therefore proportional to
a/L?, in contrast to the Casimir-Polder energy between a
molecule and a conducting plane which scales like a’/L*
[53]. The difference is associated with the fact that the
Casimir-Polder energy results from the induced dipole
moment, whereas in the scalar scattering the monopole
term gives the dominant contribution. In fact, if one omits
the s-wave scattering term and starts instead with the
p-wave term in the scattering function A(ka), the scalar
Casimir energy for the sphere-plate system would show a
large-L behavior

ggl-wave(a: L) = —h

3
o )= TE %); 35
gp wave(@, L) = K 2 <7T4 (a1 +%)(1 +&)2 (35

which is compatible with the a®/L* scaling of the Casimir-
Polder energy. Thus the correct large-distance behavior of
the scalar Casimir energy has nothing to do with missing
diffraction contributions (see Refs. [39—42]) to the semi-
classical trace formula as conjectured in Ref. [17] and
repeated in Ref. [23]. It is rather based on the replacement
of the semiclassical summation, which we will discuss in
the next section and which is valid when many partialJ
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amplitudes contribute, by the leading term(s) in the multi-
pole expansion [13,51].

In summary, the asymptotic expressions for the Casimir
energy are given by

K’TTCl2

L3

90 kma?

(36)

in the symmetric two-sphere scalar Dirichlet case and by

90 kma KmTa
EML > a) ~2x S S L8 6D

in the sphere-plate scalar Dirichlet case.

V. THE SEMICLASSICAL APPROXIMATION

The semiclassical approximation of the scalar two-
sphere problem in the framework of the Gutzwiller trace
formula [26] was pioneered in Refs. [17,18]. Here we will
focus on the link between the scattering approach and these
semiclassical methods.

The sphere-plate system at surface-to-surface separation
L is a special case of the sphere-sphere case for two spheres
of radii a; and a, at center-to-center separation R = L +
a; t+ a, in the limit @, — o0. As shown in Ref. [13], the
integrated density of states for the two-sphere system
follows semiclassically from the Gutzwiller trace formula
[26]

N;’éoz(al, aj, L, k) =

3=

1
n

3=

Im i
n=1
Im i
n=1

exp(ni2kL) 1
n | det((M(ay, ap, L)I" — 1)|'/?
exp(ni2kL)

|As(ay, ar, L)" + A_(ay, ap, L)" — 2|

sin(n2kL)

=1
B nZlE |Ai(ay, ap, L)' + A_(ay, ap, L)" = 2|’

where the periodic orbit is the bouncing-orbit between the
spheres and the summation is over the repeats of this
orbit. The matrix M(ay, a,, L) is the monodromy matrix
of the sphere-sphere system and A (a, a L) =
1/A_(ay, a,, L) is the double-degenerate leading eigen-
value of this matrix, i.e.,

1 1 L2
Ai(ay,a, L) =1+ 2L<_ + _> 19
a, a aa,

1 1 L? \2
sfien(te ez ly oy
a as aja

(39

which is identical to Eq. (3.11) of Ref. [17].

(38)

In fact, the semiclassical expression (38) is consistent
with the semiclassical limit to the exact expression (5): In
Ref. [33] it was argued for the two-sphere case and in
Ref. [31] it was shown for any N-disk case that semiclas-
sically

einkl,—iv, /2

|
detM (k) — eXP[‘g ; n [det(M, ] — D72

} (40)

where [,, M, and v, are the total geometrical length, the
monodromy matrix and the Maslov index of the pth primi-
tive periodic orbit, respectively. The right-hand side of (40)
is the Gutzwiller-Voros zeta function [54]. Note that for our
scalar Dirichlet case there exists only one orbit, the
bouncing-orbit for the two-sphere (two-disk) system with
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l, = 2L, and that the Maslov index is simply v, = 4 because of the two Dirichlet reflections (per repeat).’
If the semiclassical expression (38) is inserted into the Casimir energy integral (see [13])

1 00 d 1 o0
Ee==h dkk— N (k) = —=h dkN (k) 41
o= ghe [T dkk g Nl = e [T @kl @)
one gets for the scalar sphere-sphere case, after a Wick rotation [as in the transition from (7) to (8)]:°
1 00 1 201 [ dky exp(—n2k,L)
EX%(ay, ar L) = —<he | dkNE™(ay, ap L k) = —zhe Yy — )
(a1, a5, L) 2 Cfo (a1, a ) 2 anl na |Ai(ay, ar, L)' + A_(ay, ay, L)* — 2|
h =1 2 L 1 2+ 42
~ e . aay 2_4 1_2 (2 —1)—-L ay T a; (2 — 1)
167 L*(a; + a, + L) &n 3a,+a 3 ajay(a; + ay)

ke aa, t .- 2L (5 1\ L@j+a) (5 1 42)
167 Lz(al + as + L) <90>|: a + a, (’7T2 3) alaz(al + az) <772 3>i|
Here we applied the following identity:

L L L*> 2 1? 1/L> L? L3
Ai(ay, a) L)'+ A_(ay, ap, L)' — 2 = 4n2|: +—+—+—m -1+ 7<—2 + —2)(n2 -1+ (9<3>}
a; a3 a;

a, a aa 3aa 3\qaj ;
(43)
which is exact for the case n = 1, and used
00 1 4 00 1 77.2
nZl nt 90 nZl nr 6

Particularly, in the case of two identical spheres of radius a at center-to-center separation R = L + 2a, one gets a
simplified expression

he a’ 774 5 1\L L?
00 = géoz . a, = - [ — —2l——=—+ —
£Rla L) = &8 a, a L) 167 L>(2a + L) <90>[1 2(772 3) a @<a2>}

ma® 5 1\L L?
“ w7 3)a @) A

>For the asymptotic case ka; >> 1 the scattering amplitude (26) of the previous section simplifies under the Debye approximation of
the Bessel and Hankel function [52] and the replacement of the angular momentum sum by an integral:

< Jitka;) . ka; .
Alka) =S (—=D'Q1+1) ~ exp(—i2ka;).
IZ:(:) hﬁl)(ka,-) 2
This implies
detM°12 =~ 1 — ﬂA(ka VA(kay) =1 — Meﬁk(r—al—az)
(ikr)? R 4r ’

such that

1 .
Ngé;rzn = = ; Im ln[l — L“-lrazz e'Zk(’*alfaz)i| ~ Zla

7Tr22 sin[2k(r — a; — ay)]

The next term in the 1/kr expansion of the Hankel function (21) generates the correction
aa;
47r?

which is the n = 1 term of the Gutzwiller formula (38), consistent with the asymptotic limit L > a; > 1/k. This is Eq. (13) of [13] in
the case a; = a,.

aay

010y __
Nagyrzn"‘

(1 + a—r] + a_:) sin[2k(r — a; — a,)] sin[2k(r — a; — a,)]

= 4ar(r — a; — ay)

5The first line of Eq. (42), after the trivial integration over k4, is identical with Eq. (3.20) of Ref. [17] if the latter is divided by a
factor of 2, as the zero modes are weighted there with a factor of 1 instead of 1/2.
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It is remarkable that the leading term is exactly equal to the
plate-based prediction of the proximity-force approxima-
tion for two identical spheres [17] (more details in
Appendix A):

77612

& Dhute PEA = K7L2(2a L (45)

As mentioned above, the sphere-plate system is a special
case of the two-sphere system:

EMa, L) = lim E2(a, ay, L)

ay—00

T
+ @([L/a]ﬂ

- K%P - (% - %)g + @([L/a]z)} (46)

This expression agrees with Eq. (11) of Ref. [55]. Note that

ma

—&%a, L) < —k s (47)

Moreover, the leading x7a/L* behavior of (46) agrees
with the leading terms of the plate-based and sphere-based
proximity-force approximations for the Dirichlet sphere-
plate problem, respectively (see Refs. [19,22,23]):

TTa 1

E ol verra = K i+Lja (48)

Ta L L\2
gsllaherePFA = K?{l - 35 - 6(5)

x [1 - (1 + §>1n(1 + a/L)}}. (49)

More details about the proximity-force approximation of
the Dirichlet sphere-plate system can be found in
Appendix A.

The sphere-plate result (46) can also be derived from the
Dirichlet part of the identical-two-sphere result using

N =Nl
i 1 explin(r — 2a)k]
SinlAi(ar)"+ A (ar)" —2|

Im (50)

1
T

where [compare with Egs. (38) and (39)]
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2
o= (f - 1> —1
a a
Lol Lol\2
:m_i\/(m_) .
a a

= lim As(a; = a,ar, L = L) (51)

aAr— 00

Ai(a» r) =

under r = 2(L°! + ). Note that
Ai(a’ r)2 = Ai(al =aq, a2 = a:L = LOO) (52)

for r = L° + 2a, such that for two identical spheres the
integrated density of states is semiclassically

21 exp(in2(r — 2a)k)
e =—1Im - P .
oom AnlAi(a )+ A (a ) =2
(53)

VI. RESULTS

The results and approximations discussed in the pre-

vious sections for the Casimir energy Sgl(a, L) for the
scalar Dirichlet sphere-plate case in units of kwa/L*> =
—hem3a/(1440L2) are shown in Fig. 2 as a function of the
ratio L/a. This figure should be compared with Fig. 8 of
the world-line approach of Ref. [19] and with Fig. 4 of the
optical approach of Ref. [23] which both only present data
for L/a = 4. The circles (a) represent the numerically
calculated exact expression (16) for the sphere-plate sys-
tem between L = 0.1a and L = 512a (the line is only
there to guide the eye), the curve (b) shows the s-wave
approximation (34), the line (c) represents the asymptotic
limit 1.847 of (37), the curve (d) represents the numerically
calculated (Wick-rotated) integral (41) over the semiclas-

—herda
1440L2

“(a, L)/

of
C
—_
X
X
X
x

0.8 | ot

0.001  0.01 0.1 1 10 100 1000
Lia

FIG. 2 (color online). Predictions for the scalar Casimir energy
Eocl(a, L) of the sphere-plate configuration with Dirichlet bound-
ary conditions are shown in units of k7a/L? as a function of the
ratio L/a. The points and curves are explained in the text, see
Sec. VL.
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sical expression (50) including all repeats, and the line (e)
shows the analytical semiclassical formula (46) valid mod-
ulo O((L/a)?) corrections. The curve (f) is the result of the
plate-based proximity-force approximation (48), and the
curve (g) represents the result of the sphere-based
proximity-force approximation (49).

Our numerically calculated data (a) agree for L/a < 1
with the Ref. [19] published data of the world-line ap-
proach, within the quoted (statistical) error bars which
are already sizable at L/a = 1. We have included these
world-line data, which cover the range from L = a/256 to
L = 4a, in Fig. 2 and marked them by stars (h). Note that
their central values are systematically on the low side in
comparison to ours. All our data beyond L = 4a are pre-
dictions. In the meantime, after the first version of this
paper was submitted, there appeared in [56] new data in the
world-line approach with improved systematics which
cover the extended range from L = a/512 to L = 16a
and which have smaller, but still sizable, error bars for L =
a [see the crosses (k) in Fig. 2]. In the region of overlap,
thus now also for the points L/a = 2,4, 8, 16, the new
world-line data do nicely agree with ours when the quoted
statistical error bars are taken into account, although their
central values are now systematically higher. It should also
be remarked that our smallest point L = 0.1a is already
affected by a sizable truncation error in the integration. Of
course this problem is a matter of numerics and not a
matter of principle.

Note that the s-wave approximation becomes a reason-
able approximation to the exact data from L = 4a [it
works very nicely for L > 15a in agreement with the
estimate (17)] and, moreover, that the exact data indeed
converge to the predicted asymptotic value 180/7* of
Eq. (37) and do not show any Casimir-Polder a/L* scal-
ing. It is also interesting that the exact data, at least for the
L values for which they could be calculated, are larger than
1 (in units of k7a/L?), whereas the semiclassical approxi-
mation and the proximity-force approximations are strictly
less than 1 (in the same units). It should be noted that (at
least) the upper error ranges of the old world-line data of
Ref. [19], the complete new world-line data of Ref. [56]
(with the exception of the lower error ranges of the points
L/a =1/64,1/128) and—below L ~ 0.1a—the results
of the improved optical approach of Ref. [23] are larger
than 1 as well.

The semiclassical calculation, starts out at a value 1 (in
units of k7ra/L?) for L/a — 0, which was predicted by the
proximity-force approximation(s) [6,7] and confirmed in,
e.g., Refs. [17-19,22,23]. Then, for intermediate values of
L/a, however, the semiclassical results, even though
smaller than 1, are superior to the results of the
proximity-force approximation which become ambiguous
[19,22,23]. For L > a, the contributions of the repeats of
the bouncing-orbit are strongly suppressed and the numeri-
cally calculated semiclassical expression converges to the

PHYSICAL REVIEW D 73, 025007 (2006)

one-bounce result —hca/(16wL?) = (90/7*) X kma/L?
which is smaller by a factor 1/2 than the exact asymptotic
answer (37).

VII. CONCLUSIONS

We presented here an exact calculation of the scalar
Casimir energy for the case of two spheres and a sphere
and a plane. It is based on a new Krein-type formula which
directly expresses the geometry-dependent part of the den-
sity of states by the inverse multiscattering matrix of the
pertinent scattering problem. Thus the corresponding
Casimir energy follows from the energy integral over the
multiscattering phase shift (the logarithm of the multiscat-
tering determinant). The calculation is therefore not
plagued by subtractions of the single-sphere contributions
or by a removal of diverging ultraviolet contributions. The
asymptotic limit (37), the presented s-wave approximation
(34) and all data with L > 4a are totally new results. More-
over, contrary to claims in the literature, the Casimir-
Polder scaling of the scalar Casimir effect is excluded by
our numerical and analytical calculations.

The two-sphere and sphere-plane cases are only two
examples, and the formalism presented can be easily ex-
tended to any number of spheres and planes as well (or
disks and lines in two dimensions). We have exemplified
the calculation of the scalar Casimir energy only for the
case of Dirichlet boundary conditions. One can replace the
Dirichlet with Neumann boundary conditions or with any
other conditions easily, or even replace the scatterers with
arbitrary nonoverlapping potentials/nonideal reflectors.

Aside from the exact results we have also discussed
several approximation schemes, the large separation limit,
the semiclassical limit and the proximity-force approxima-
tion. The exact results (which are easy to calculate and are
definitely simpler to evaluate than in a path integral ap-
proach) should be looked upon as test examples for other
approximate methods. These results already show that the
proximity formula and the semiclassical/orbit approaches
are limited to small separations only, typically much
smaller than the curvature radii of the two surfaces.

One can make the argument that the dominant momenta
of the fluctuating fields contributing to the Casimir energy
at a separation L are of the order k = 1/L [see Eq. (17)]
and thus for large separations only the s-wave scattering is
important. This is the main reason why the semiclassical
approximation (which is valid when many partial ampli-
tudes contribute) fails at large separations.

Just the opposite is true at small separations, where
semiclassics is pretty good and so is the proximity formula,
when the separations are smaller by one or, respectively,
two orders of magnitude than the curvature radii. The same
type of analysis can be straightforwardly extended to cyl-
inders, or even objects with less symmetry [in which case
the corresponding individual T-matrices appearing in the
inverse multiscattering matrix (see Ref. [31,44,45]) be-
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come somewhat more complicated, due to the loss of
spherical symmetry].
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APPENDIX A: AMBIGUITY IN THE PROXIMITY-
FORCE APPROXIMATION

The proximity-force approximation (PFA) for the
Casimir energy Ec of two arbitrary smooth surfaces (with
Dirichlet boundary conditions for the scalar-field case) is
given by the surface integral over the Casimir energy per
area which belongs to an equivalent parallel-plate system
that locally follows the two surfaces [6,7,19,22,23], i.e.,

EPFA:j]AdU'E[Z(O-)]-

Here A is the area of one of the opposing surfaces which
are locally separated by the (surface-dependent) distance
z(o) and €[z(o)] is the corresponding Casimir energy per
area. In general, the plate segment do is tangential to only
one of the surfaces and therefore the local distance vector
Z(o) is perpendicular only to this surface and not to the
other one. Thus Epg, is not uniquely defined, since the area
A can be either one of the two opposing surfaces (or even
one ficticious surface somewhere in between). Particularly,
for the case of a sphere of radius @ and a plate at shortest
surface-to-surface separation L, we get the following ex-
pression for the “sphere-based PFA” [19,22,23], where the
local distance vector Z(d) is perpendicular to the sphere:

(AD)

1
& = Kj] a*dQ@ ——
sphere PFA half-sphere |Z (Cl) | 3
/2 )P
— Ka2277/ dé sin(9) [cos(0)] 2
0 [L +a— acos(0)]
L L\2
— Kﬁ—?{l —3-2 - 6(—)
L a a
L
X [1 - <1 + —>ln(1 + a/L)M. (A2)
a
The coefficient « is again the prefactor k = — ’{ZZ; of the

. . )
Casimir energy EIl(L) = — Jer A

scalar (Dirichlet) two-plate system.
On the other hand, the ‘“‘plate-based PFA” [19,22,23]
[i.e., the local distance vector Z(o) is perpendicular to the

of the corresponding
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plate] follows from

1
ERlate PEA = ff dxdy ———
plate PFA K Phyima y |Z(X, y)|3
21 a 1
B Kf d¢f dpp 2 213
0 0 [L+a—Ja® — p*f
Ta 1
=K T 7 A3
“I?1+ L/a (A3)
Note that
ma
_gs;lyhere PFA < _gg{ate PEA < TK Iz (A4)

Finally, the PFA for two spheres of a common radius a
and shortest surface-to-surface separation L can be derived
from the plate-based PFA (A3) of the sphere-plate case,
with the fictitious plate on the vertical symmetry plane as
in Fig. 1, as follows:

1
=K dxdy ——=
[

2T a 1
= KT dd)[ dpp
,/;) 0 8[% +a—+a*— p’P
ma 1 ma*
K = K .
845 1+ L/2a L*2a + L)

00
gplate PFA

(A5)

APPENDIX B: COMPARISON WITH THE
TWO-DIMENSIONAL TWO-DISK AND DISK-LINE
SYSTEMS

The two-dimensional analog of the N-sphere matrix in
three dimensions (9) is [31,32]

aij(ka])

X (=1)meimaymmanyg (),

M7 = 807§, + (1 — i)

(BI)

where j, j/ = 1,2,..., N are the labels of the N disks. The
integers m, m’' with —oo < m, m’ < oo are the angular mo-
mentum quantum numbers in two dimensions, a; and r;;
are, as usual, the radius of disk j and the distance between
the centers of disk j and j/, respectively. J,(kr) and HEI)(kr)
are the ordinary Bessel and Hankel functions of first kind,
and «a; is the angle of the ray from the origin of disk j to
the one of disk j' as measured in the local coordinate
system of disk j.

The two-dimensional analog of the two-sphere KKR-
type matrix (10) is [39,40]

MUSMEN (e AL gy
M2] M22 m,m’ Afnlm' Smm’

with
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HY(kn),
aj/HE,i,)(ka 1)

A{ﬁ]m' = (_1)m m m

(B3)

where r = r{, = r,;. The general two-disk system is char-
acterized by a C,, symmetry. If the two disks have a
common radius a, the global domain of this system is
separated by the vertical symmetry axis (instead of plane)
into two half-domains. The corresponding symmetry group
is now C,, and the KKR-matrix splits into two KKR
matrices valid for the half-domains, one corresponding to
Neumann (N) boundary conditions of the scattering wave
functions on the vertical symmetry axis, the other, with the
additional minus sign, corresponding to the Dirichlet (D)
case:

MOO

mm' |N

= Opm' + Apmts (B4)

M;Omle = Bmm’ - Amm” (B5)

where Amm’ = Arlnzml|a,:a2 =a — A |a1 =ar,=a-
The two-dimensional KKR- matrlx in the large-distance
limit reads

exp(ikr;;)

(MR = 67" = (1 = 87)f3P(e) ——=">  (BO)

Ji’
instead of (18). Here fJZ-D(s) is the s-wave scattering am-
plitude in two dimensions.

Since the asymptotic expression of the ordinary Hankel
function reads [52]

HY (kr) ~ \/ﬂzhexp[i<kr - mg - gﬂ ~ (—i)"HY (kr),

(B7)
Egs. (B4) and (B5) become asymptotically
I (K
M3y (ks @, 1) ~ 8y = (= 1) —’?;)( D i) k)
Hmz (ka)

(B8)

instead of (23). This expression is separable in m; and m,.
Therefore, the corresponding determinant is asymptoti-
cally given by

o0 o ( ) > _1\m Jm(ka) 2
=1 - [H (knP[A(ka) . (B9)
for the identical two-disk case and by
. o dolio
=1- H{})(kr)[A(ka)] (B10)

for the disk-line case. Note that the asymptotic relation
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(21) is actually exact for h(ol)(kr) and therefore holds also
for small k-values. For the ordinary Hankel function
H(()l)(kr), however, the corresponding formula (B7) is
only an asymptotic relation. Since the Casimir energy
receives contributions from all £ < 10/L, it severely wor-
sens the s-wave result if Hf)l)(kr) were replaced by its
asymptotic form from (B7). Here

= dulka)

> (=1

A(ka) =
o HY (ka)

(B11)

is the multipole expansion of the scattering amplitude in
two dimensions. For ka << 1, the dominant effect comes
from the m = 0 (s-wave) contribution and the |m| >0
terms can be neglected. The scattering amplitude becomes
(51]

Jo(ka)

A(ka) = H(l)(k )

+ O((ka)*)

1

"1+ i2[n() + ] + O((ka)®),

(B12)

where yp = 0.577 - - - is Euler’s constant. For the asymp-
totic case kr > ka; >> 1, one finds

> J(ka; Tk
Alka) = S (i Ltk TR o,
m=—oo Hm (ka,») 2
for the scattering amplitude, such that
0 Q2ikr
detM®1% =~ 1 — — —— A(ka,)A(ka,)
7 ikr

~1- Va1 ei2k(r—a|—a2)

2r '

In fact, the two-dimensional analogs of the semiclassical

expression (44) for the identical two-sphere case and (46)
for the sphere-plate case are given by

(B13)

he
£90 ~
8w L3/2\/2a +L Z
fic \/5 a
=——0(03)— [——F— B14
167T§( ) L VL(] + L/2a) (B14)
for the two-disk case and
e 1 1 1 [a
ol . Ny - ¢
2 2 HZ:I n 2nL 2n\/;
hel(3)2
_ _hed@BR Ja N g

for the disk-line case, where

(o)

1
D — = 1.20205.
n

n=1

ko =~ ¢(3) and £() =

(B16)
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The corresponding proximity-force approximation reads in
the line-based scenario

ol _ a 1
€ line PEA = K2D f—adx(L +a— Va — 2P
2 arctan(—L2a_) + VELF20)

— o’k JL(L+a) a

2 L(L + 2a)\/L(L + 2a)

T a Va
= Kop—= ——= = Kyp 2.22144 ——. B17
ZD\/EL\/Z 2D L\/Z ( )

The proximity-force approximation for the disk-line sys-
tem in the disk-based scenario is given by

/2 [cosgp*
E lpra = d
disk PFA — K2pd f—w/z ¢ (L +a— acosg)?
N Ja
~ Kyp—= ——— = Kp2.22144 Y (BI8
ZD\/EL\/Z 2D L\/Z ( )

(1]
(2]

(3]

(4]
(5]

(7]

(8]

PHYSICAL REVIEW D 73, 025007 (2006)

as well. Note that in the limit L/a — 0 the two-
dimensional semiclassical approximation (B15) and the
proximity-force approximations (B17) and (B18) do ap-
proximately agree, but are not identical. Furthermore, the
exact result, in the range where it can be calculated, i.e., for
L >0.1a, does not scale as +/a/L/L, but rather as
(a/L)'/°/L. The s-wave result is a good approximation
to the exact result for L > 10aq, if H(()l)(kr) is not replaced
by its asymptotic form (B7).
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