
PHYSICAL REVIEW D 73, 025006 (2006)
QCD plasma instabilities: The non-Abelian cascade
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Magnetic plasma instabilities appear to play an important role in the early stages of quark-gluon plasma
equilibration in the high-energy (weak coupling) limit. Numerical studies of the growth of such
instabilities from small seed fluctuations have found initial exponential growth in their energy, followed
by linear growth once the associated color magnetic fields become so large that their non-Abelian
interactions are nonperturbative. In this paper, we use simulations to determine the nature of this linear
energy growth. We find that the long-wavelength modes associated with the instability have ceased to
grow, but that they cascade energy towards the ultraviolet in the form of plasmon excitations of ever
increasing energy. We find a quasi-steady-state power-law distribution fk / k�� for this cascade, with
spectral index � ’ 2.
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I. INTRODUCTION

One of the surprises which has emerged from the heavy
ion experiments at RHIC is that the medium or plasma
which is produced in a heavy ion collision appears to
display collective behavior analogous to a fluid with a
very small viscosity (the so-called ‘‘quark-gluon liquid’’)
[1]. In particular, hydrodynamic treatments taking the me-
dium to be an ideal fluid give the correct flow description
[2]. To clarify, we remind the reader that ‘‘ideal fluid’’ is
the opposite of ‘‘ideal gas’’; it means that scatterings or
interactions so efficiently maintain local equilibrium (or at
least isotropy), that the stress tensor remains everywhere
isotropic when measured in the local rest frame. Gases
behave like ideal fluids on distance and time scales that are
large compared to transport mean free paths and mean free
times.

The most popular, and perhaps most likely, explanation
for the small viscosity is that the quark-gluon plasma at the
energy densities achieved at RHIC is very far from weak
coupling. The strong coupling �s is large, interactions are
very strong, and the collective behavior is natural. To
secure this interpretation, we would need to see that the
observed behavior really differs from the expected weakly
coupled behavior. Most treatments to date of weakly
coupled hot QCD show that equilibration is slow [3]
(see, however, [4]). However, we have recently shown [5]
that even the most complete of these, the ‘‘bottom-up’’
scenario of Baier, Mueller, Schiff, and Son [6], is incorrect:
it ignores plasma instabilities [7], which in fact dominate
the physics of weakly coupled anisotropic plasmas, in
QCD or in ordinary QED.

Plasma instabilities arise as a result of two pieces of
physics. First, Lorentz contraction of the nuclei means that
the initial region of plasma is a flat pancake shape. It is
reasonable to expect at weak coupling that quarks and
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gluons will for a time fly in nearly straight lines at near
the speed of light (at least, once the system has expanded
enough that the densities of quarks and gluons are pertur-
bative). Consider particles scattered in all directions in the
initial moments of the collision. The starting geometry
dictates that the momentum distribution of particles will
subsequently become highly anisotropic with time, as il-
lustrated in Fig. 1. Second, in the presence of such aniso-
tropic momentum distributions, certain soft gauge-field
configurations grow exponentially, at least if they are small
enough for a perturbative treatment to be reliable.

Not only have plasma instabilities not been fully taken
into account in studying the evolution of the quark-gluon
plasma; instabilities in Yang-Mills theory, in general, are
not yet well understood or well characterized. Therefore, at
the current juncture we cannot say whether the experimen-
tal results at RHIC are in contradiction with weakly
coupled predictions, because we simply do not know
what the predictions of isotropization in a weakly coupled
quark-gluon plasma actually are. This rather embarrassing
gap in our knowledge needs to be filled. In particular, the
behavior of plasma instabilities in a non-Abelian theory
such as QCD is expected to be intrinsically different from
the case of an ordinary QED plasma, because non-Abelian
gauge fields can directly interact with each other, and
because charge carriers can have their colors rotated by
intervening QCD fields.

Recently there has been substantial progress on this
problem, though it is far from settled. The growth of
QCD plasma instabilities when the soft colored gauge
fields are small has been well characterized [5,8]. Arnold
and Lenaghan [9] conjectured that exponential growth
would continue after QCD fields became large. 1� 1
dimensional simulations [10,11] confirmed this behavior,
but 3� 1 dimensional studies [12,13] showed something
different: when soft colored gauge fields become large due
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FIG. 1 (color online). Cartoon of why the momentum distribution becomes anisotropic. The starting region is thin along the beam
axis (vertical in this figure). Since particles fly in a straight line at the speed of light, particles at point 	 at time t originated at time 0 on
a sphere of radius t centered at 	. But only part of this sphere was in the plasma; so only particles with small beam-axis momenta can
get to point 	 at time t, and the momentum distribution is anisotropic.

1If the initial occupancies were � 1=g2, then the magnetic
screening length they would provide would be larger than the
imputed typical momentum. However, the concept of momen-
tum for an excitation of a gauge-dependent field is only well
defined and robust under gauge fixing prescriptions to an accu-
racy set by the magnetic screening length. These ideas are
central to the idea of the saturation scale. However, this argu-
ment does not depend on the saturation scenario as such.

2In previous work we have referred to m as m1, but here we
will drop the subscript.
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to instability growth, exponential growth shuts off and the
energy in soft gauge fields instead grows linearly with
time. Recent partial attempts to explore the consequences
of instabilities for thermalization may be found in
Refs. [14].

The goal of this paper is to further investigate the
behavior of an anisotropic quark-gluon plasma, after soft
gauge fields have become large. We will show that the soft
gauge fields with wave numbers which should make them
unstable instead enter a dynamical quasi-steady state, gain-
ing energy from the instability but losing energy, via their
non-Abelian interactions, to more ultraviolet field excita-
tions. The energy released into infrared gauge fields by the
instability then cascades towards higher wave-number
gauge-field modes, with occupation number f�k� / k��

up to a time-dependent cutoff kmax�t�. Through simula-
tions, we measure the spectral index to be � ’ 2.

II. SETUP AND FORMALISM

We will carry out a numerical study of non-Abelian,
classical Yang-Mills theory coupled to an anisotropic bath
of high-momentum particles. The numerical tools were
already presented in detail in [12], and this paper is a
continuation of that work. To make our presentation
more self-contained, we will briefly review the setup and
formalism here.

Our treatment is founded on two assumptions about the
system under study. The first is that the coupling �s � 1.
The second is that there is a separation of scales between
the momentum of the typical excitation, p, and the screen-
ing scale k� p. The screening scale is set by the momen-
tum p and number density n of the typical excitations as
k2 � g2n=p. The number density is given by n �

R
p fp �

p3 �fp, where fp is the occupancy of momentum state p and
�fp is its angular average. Therefore there is a scale sepa-
ration k� p provided that the angular-averaged occu-
pancy �fp of typical excitations is � 1=g2. This is
essentially a diluteness condition on the typical excitations
in the system.

In the context of heavy ion collisions, the condition
�s � 1 is formally valid for the collision of extremely
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large and high-energy heavy ions [6,15]. The initial
angular-averaged occupancy is at most �fp � 1=g2, which
is the saturation limit [6,15]1 (corresponding to number
and energy densities n� p3=g2 and �� p4=g2). The den-
sity n of the original particles, and so �fp � n=p3, will fall
with time as the system expands. So the scale separation
condition �fp � 1=g2 will be satisfied at least for �� �0

(up until the much later time when the particles of momen-
tum p lose their energy and the plasma thermalizes—see,
for example, the discussion in the original bottom-up sce-
nario of Ref. [6]).

If we have a clean separation between the screening
scale k and typical momenta p, then we can describe the
physics on length scales x� 1=k in terms of (i) classical
fields with wave vectors �k and (ii) a distribution of
classical particles (possessing well-defined momenta and
positions) representing excitations with momenta�p. This
is a Vlasov equation treatment. With a little more work
[12,16,17], one may work in terms of a classical field
variable Aa��x�, a variable Wa�v; x�, which represents the
net (adjoint) color of all particles moving in direction v at
point x, and a background colorless particle density with
angular distribution ��v; x� and polarizability character-
ized by a screening mass m2,

m2 �
X
g2tr

Z d3p

�2��3p0 f�p�; (2.1)

with the sum over spin and particle type (including anti-
particles).2 Here tr is a color group factor [defined in terms
of color generators T by tr�TaTb� � tr�

ab and equal to 3
for gluons]. For an isotropic medium, m2 � 1

2m
2
D �

3
2!

2
pl,
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4In three dimensions, there should be no important qualitative
difference between using a smeared thermal distribution for the
initial conditions, as here, or a smeared Gaussian noise distribu-
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where mD is the Debye mass and !pl is the plasma
frequency.

We argued in [5] that the intrinsic length and time scales
for the instability to develop are short compared to the
length and time scales on which the heavy ion system as a
whole evolves. Therefore we will restrict our attention in
this (still somewhat exploratory) study to a nonexpanding
system with spatially uniform ��v�. The evolution equa-
tions for A� and W are

D�F
���x� �

Z
v
v�W�v; x�; (2.2)

�Dt�v 
Dx�W�m
2�E 
 �2v�rv��B 
 �v�rv�
��v�:

(2.3)

The first equation is the Yang-Mills field equation, with
W�v� giving rise to a current. The second equation, derived
in Ref. [12], shows how electric and magnetic fields can
polarize the colorless distribution of particles to create a
net color moving in each direction. The dynamics of the
soft fields is equivalent to that of hard-loop effective theory
[18].

For a fully nonperturbative study of this system, we
implement these equations on a lattice. The treatment of
the classical, Minkowski space gauge fields on the lattice is
the standard one [19]. The representation of the W fields is
developed in [12,17] and consists of replacing first deriva-
tives with forward-backwards (covariantized) differences
in Eq. (2.3), and expanding the space of velocities v in
spherical harmonics, truncated at a finite but large ‘max. In
this work we make one additional modification which
improves the approach to the ‘max ! 1 limit and so re-
duces the memory and time requirements for simulations:
We apply a weak damping term to the large ‘ spherical
harmonic components of the W field. The reason this is an
improvement is that very large ‘ excitations of the W field
tend to cascade to still larger ‘, due to the v 
D term in
Eq. (2.3).3 With a finite ‘max cutoff, some of this excitation
energy ‘‘bounces off’’ the ‘max cutoff and reappears at
small ‘. This effect becomes smaller as ‘max is raised,
but can be largely eliminated with the damping term we
add. This point is discussed and justified in greater detail in
the Appendix.

The goal of this paper is to understand the behavior of a
would-be unstable system after the unstable modes have
already grown to have nonperturbative occupancy. In the
context of a heavy ion collision, this is probably the only
relevant question; since the exponential growth rate is
larger than the inverse system age for all times after the
formation time of the plasma, there has always been time
for unstable gauge-field modes to grow to nonperturbative
size. Therefore we will begin our system with initial con-
3The v 
D term mixes neighboring ‘’s because h‘mjvj‘0m0i
has nonzero cases when ‘0 � ‘� 1.
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ditions for which the infrared (IR) fields are already non-
perturbatively large. Again, since this is a qualitative
exploratory work, we will work in SU(2) rather than
SU(3) gauge theory and we will only consider a single
anisotropic particle distribution, the same as the one con-
sidered in Ref. [12].

In addition to our focus on large rather than small initial
conditions, there are slight technical differences in our
choice of initial conditions compared to those of
Ref. [12]. We start the system with vanishing E and W
fields and with the A field selected from the thermal
ensemble at temperature T � 2m=g2, but then field
smeared to a scale 1=2m.4 This is a gauge-invariant pro-
cedure which corresponds perturbatively to multiplying a
thermal spectrum for A�k� by exp��k2=4m2�. We will
explain the field smearing procedure below because it
also constitutes one of our best measurables for under-
standing, in a gauge-invariant fashion, what corresponds
to infrared phenomena and what to ultraviolet.

III. RESULTS: BEHAVIOR OF THE NON-ABELIAN
CASCADE

Our first conclusion, already presented in our previous
paper [12], is that the energy in soft electromagnetic fields
grows linearly with time. This is displayed in Fig. 2, which
shows that the linear behavior is common to electric and
magnetic fields and is robust to changes in the lattice
spacing. However, this result leaves it unclear whether or
not this represents continued growth of the soft unstable
fields, whether these fields ‘‘Abelianize’’ [9], and whether
they retain long time-scale coherence. We now present
evidence that the answer to all three questions is ‘‘no.’’

A. Chern-Simons diffusion and IR dynamics

First, consider the behavior of the Chern-Simons num-
ber,

NCS�t� � NCS�0� �
Z t

0
dt0

Z
d3x

g2

8�2E
a�x; t0� 
 Ba�x; t0�:

(3.1)

The Chern-Simons number is useful because it character-
izes nonperturbative physics. In an Abelian theory, or a
non-Abelian theory where the fields are weak, NCS may
fluctuate about zero but cannot drift away from zero per-
manently. That is because permanent change requires to-
pology change (the Minkowski version of instantons).
Therefore, ignoring small fluctuations, the time evolution
tion, as in Ref. [12]. We have checked this for a variety of
properties, such as the rate of linear growth of energy with time.
The reason we use a different procedure here than in Ref. [12] is
inessential, having to do with the development of our code.
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FIG. 2 (color online). Magnetic energy density
R
d3xB2=2V

and electric energy density
R
d3xE2=2V as a function of time, for

three lattice spacings of am � 0:2, 0.288, and 0.4. After a brief
transient owing to our choice of initial conditions, the electro-
magnetic energy rises linearly with time.

PETER ARNOLD AND GUY D. MOORE PHYSICAL REVIEW D 73, 025006 (2006)
of NCS is purely indicative of the dynamics of nonpertur-
batively large fields. Fully topological algorithms for track-
ing NCS in a real-time gauge-field evolution already exist.
We use the one from Ref. [20], which is a modification of a
technique due to Ambjørn and Krasnitz [21].

A sample Chern-Simons number trajectory, from the
am � 0:2 evolution shown in Fig. 2, is shown on the left
in Fig. 3. The Chern-Simons number is changing by large
FIG. 3. Left: typical NCS evolution in the linear regime. Right: the
function of lag time �t. The Chern-Simons number changes random
were made on spatially smeared copies of the fields, as described in
0:2, ‘max � 15; right: 503 lattice, am � 0:288, ‘max � 15.)
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amounts (indicating nonperturbatively large fields), and in
a chaotic fashion (indicating that the fields have no long
time-scale stability). This means that the soft fields remain
large, but evolve dynamically, changing on a time scale set
by the scale m�1. To see this better, consider the autocor-
relator h _NCS�t� �t� _NCS�t�i, shown on the right in that
figure. This correlator indicates over what time scale co-
herent changes to the gauge fields occur. The figure pre-
sented represents an average over time and over 10
independent initial conditions drawn from the same en-
semble, using a 503 lattice with am � :288 and ‘max � 15.
The errors were determined by the jackknife method.

Although we have not shown it in the figure, we have
also checked that the evolution ofNCS does not speed up or
slow down during the course of the linear rise in magnetic
energy. For instance, comparing the first and second halves
of the evolutions used to make Fig. 3, the Chern-Simons
number diffusion rate (sphaleron rate) is consistent be-
tween the two halves to within 10% error bars, and the
full autocorrelator is also consistent within errors. What
this tells us is that the IR fields truly are nonperturbative,
that they evolve with a characteristic time scale of order
1=m, and that the time scale and the size of the nonpertur-
bative fields is constant throughout the linearly growing
regime.

B. Coulomb-gauge spectra

If IR fields are not growing, then the linear growth of
magnetic energy must reflect growth of higher-momentum
autocorrelator _NCS
_NCS, or

R
xh�E 
 B��0; t
�E 
 B��x; t� �t
i, as a

ly with a coherence time scale of order m�1. The measurements
[20], with smearing extent � � 0:16=m2. (left: 723 lattice, am �
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FIG. 4 (color online). Soft gauge-field power spectra: left, initial; right, as a function of time. The IR fields are in a quasi-steady
state, and the energy cascades towards more UV modes. (643 lattice, am � 0:25, ‘max � 15.)
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modes of the soft gauge field. To clarify the situation, it
would be useful to know the power spectrum of the soft
gauge fields as a function of wave number k and time t. We
will start with a direct but gauge-dependent measurement
of the power spectrum in the Coulomb gauge. Later we will
discuss how the spectrum can be accessed indirectly
through gauge-invariant measurement involving smearing
(also known as cooling) of the field configurations.

Our picture (to be supported by data below) is that,
during the linear growth phase of the total energy in soft
fields, the soft fields consist of (i) a nonperturbative IR
component plus (ii) a perturbative component in the form
of higher-momentum plasmons. We would like to know the
distribution function f�k� of these plasmons as a function
of k. We fix the Coulomb gauge using the standard algo-
rithm [22] adopted to the real-time case [23]. Then we
(i) extract the Fourier spectrum of A and E, (ii) evaluate
the two point function, averaging over k vectors in narrow
blocks of jk2j,5 and (iii) define the distribution function as
determined by A and as determined by E through6

fA�k� �
k

NdofV
hA2�k�i; fE�k� �

1

NdofkV
hE2�k�i:

(3.2)

Here, V is the total spatial volume and

Ndof � 6 (3.3)
5Technically, we use the lattice k2,
P
i�4=a

2�sin2�kia=2�.
6Consider the total energy of a gas of weakly interacting, high-

momentum (k� m) plasmons. This could be written in terms of
f as NdofV

R
k!kfk ’

R
k kfk or in terms of the fields as

NdofV
R
k

1
2 �E

2
k � B

2
k�. Since E2

k ’ B
2
k for such plasmons, and

B2
k ’ k

2A2
k in the Coulomb gauge, we can also write the energy

as
R
k E

2
k or

R
k k

2A2
k. Comparison of these expressions leads to

the identification (3.2).
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accounts for the two transverse polarization states and the
3 � N2

c � 1 adjoint color states in SU(2) gauge theory.
On scales where the fields are nonperturbatively large,

these distribution functions are difficult to interpret, de-
pending somewhat on the gauge fixing procedure. We do
not expect fA to equal fE; indeed, if the dominant fields are
slowly evolving or unstable magnetic fields, we expect
fA > fE, perhaps by a large margin. On scales, presumably
at larger k, where the fields are perturbative, we should see
fA ’ fE if the relevant degrees of freedom are behaving as
plasmons with k > m. Therefore, the ratio fA=fE serves as
a diagnostic of whether the physics is nonperturbative and
whether the degrees of freedom are primarily indepen-
dently propagating plasmons or something else, such as
the magnetic fields associated with hard particle currents.

To test this, we evolved the system for a time of mt �
400 in a 643 box with ‘max � 15 and lattice spacing am �
0:25, corresponding to a (large) physical volume of
�16=m�3, tracking the distribution functions after the initial
transient had died and the magnetic field energy was under-
going linear growth. The occupancy after initial transients
is displayed on the left in Fig. 4, showing that, as expected,
the IR has nonperturbatively large fields, while fields are
perturbative at larger wave numbers. On the right in the
figure, we show the time development. Each curve is time
averaged over an interval of �t � 12:5=m, and the central
times of consecutive curves are spaced apart by 25=m. The
IR occupancies remain nonperturbative but with stable
amplitude, while the UV occupancy increases. At any k,
the occupancy rises and eventually saturates; the saturation
point progresses to larger k. This looks like a momentum-
space (kinetic) cascade.

Cascades of energy from the infrared to the ultraviolet
are familiar from turbulence in hydrodynamics and from
many other physical systems. There are also weakly
coupled examples such as weak plasma turbulence in tradi-
tional plasma physics [24], and theoretical studies of post-
-5



FIG. 5 (color online). Left: power spectrum as in Fig. 4, with a slope k�2 power law superposed to guide the eye. Right: same, but
using a finer-lattice spacing am � 1=6 and twice as much physical time.
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inflationary thermalization in the early universe [25]. Such
cascades typically lead to a steady-state, power-law distri-
bution for the power spectrum f�k�, usually referred to as a
Kolmogorov spectrum (in honor of the application to hy-
drodynamic turbulence). Different microphysics leads to
different powers of k. A thermal spectrum is f�k� / k�1.
Cascades in scalar field theories during ‘‘preheating’’ after
inflation, for example, typically display a power spectrum
with various power laws at different stages, such as f /
k�3=2 and k�5=3 [25]. Obviously we do not expect power
behavior at values of k where the field is nonperturbative;
indeed, it is not even clear whether to use fA or fE in this
region. However, we do expect power behavior for k large
2 3 4 5 6 7 8 9 1010
k/m

0.001

0.01

0.1

f
A

f
E

FIG. 6 (color online). The power-law region of the late-time
Coulomb-gauge distribution f shown fitted with lines corre-
sponding to powers � � 1:6, 1.8, 2.0, 2.2, and 2.4. The distribu-
tion functions are from the long-time, finer-lattice simulation
shown in the right-hand plot of Fig. 5, averaged over 700 �
mt � 800. Each data point represents the center of one of the
bins in k2 used to construct averages in (3.2). (643 lattice, am �
1=6, ‘max � 15.)
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enough that fA ’ fE, but small enough and at late enough
times that f�k� has become nearly time independent.

The left panel of Fig. 5 repeats the right panel of Fig. 4
and shows that the cascade region is well fitted by a power
law with f / k�2. Unfortunately, the most ultraviolet wave
numbers involved in the cascade are already at large
enough k that lattice spacing effects may be a concern.7

As a check on the robustness of the result, we performed a
second evolution, also in a 643 box, with the same choice
of ��v�, but with am � 1=6 rather than 1/4, and going out
to a time of mt � 800. The smaller spacing means that the
physical volume was somewhat smaller. Nevertheless, it
was large enough: we have checked agreement within
errors of the NCS diffusion coefficients, and close agree-
ment in the energy growth rates. In any case the physics of
the cascade is presumably more ultraviolet than the physics
of the instability, and should not show severe volume
sensitivity. The power spectrum from this evolution is
shown on the right in Fig. 5, and is in very good agreement
with the larger volume figure. The line superposed is drawn
to guide the eye and is not actually a fit; it is precisely the
same line in each figure.

We have found the power-law falloff f�k� � k�� with
the spectral index � ’ 2. To get a crude idea of the error in
our determination of �, we show a more detailed view in
Fig. 6 of the late-time distribution on the finer lattice. We
show least-square fits of various power laws (� � 1:6, 1.8,
2.0, 2.2, 2.4) to the data points8 in the range 3< k=m< 8.
7For example, there is a small ripple in the left panel of Fig. 4
at k=m � 8. For am � 0:25, this is the lowest k2 value where the
lattice group velocity can vanish, corresponding to a Van Hove
singularity.

8We fit the fE data. There is only a slight difference between
fE and fA, which is at the IR end of the range chosen. The reason
for slightly preferring fE over fA will become obvious in
Sec. III C below.
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FIG. 7. Magnetic energy density as a function of time and
smearing depth. (643 lattice, am � 0:25, ‘max � 15.)
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The � � 2 fit has the longest span of agreement, and we
take our final result to be � � 2� 0:2.

C. Gauge-invariant cooling

We argued that the Coulomb-gauge spectrum of Fig. 5
should be trustworthy away from the IR because the
higher-momentum components of the field are perturbative
(as can be seen from the figures by the drop of occupation
number with increasing momentum). However, in order to
be sure that results are not artifacts of gauge fixing, it is
usually preferable to investigate gauge theories with
gauge-invariant observables. It is possible to probe aspects
of power spectra in a gauge-invariant way by calculating
the energy of smeared (also known as cooled) gauge fields.
Smearing is a gauge-covariant process which is a function
of a parameter � known as the smearing depth. Define
A�t; x; � � 0� to be the actual gauge-field configuration
A�t; x� at a given physical time t. Then evolve in � accord-
ing to9

dAi
d�
� �

@�B2=2�

@Ai
� DjFji: (3.4)

Here D is the covariant derivative and F is the field
strength, also using the smeared field A�t; x; ��. This is a
gauge-invariant procedure which has a straightforward
lattice implementation. Such smearings have a long history
in lattice gauge theory studies; for instance, they are also
used extensively in our technique for measuringNCS. Other
fields can also be smeared. For instance, we define a
smeared W field through,

@�W�x;v; �� � D2W�x;v; ��; (3.5)

where again D2 is the covariant derivative using the
smeared gauge field at the same smearing depth �. Note
that we do not introduce smearing into the dynamical
evolution of the fields in time (t); we only use smearing
for making measurements. To answer the question ‘‘what is
the smeared B2 at time t,’’ we make a copy of the fields at
time t, apply smearing, and measure B2 on it.

Smeared fields are good at telling us whether the energy
going into soft electromagnetic fields is appearing in very
long wavelength, nonperturbative fields, or in plasmons
with larger wave numbers. To study this, we consider the
magnetic field energy density B2=2 as a function of time
and of smearing depth, shown in Fig. 7. Very roughly,
smearing to a depth � eliminates fields with k2 > �2���1

and leaves fields with smaller k. But near k2 � �2���1, the
fields are only partially removed, so the real story is
slightly more complicated; smearing is similar to a
Laplace transform of the power spectrum with k2 playing
the role of time. The figure shows that the infrared energy
9To our knowledge, the particular method used here for
smearing originated in Ref. [26] and was first used for non-
Abelian gauge theory in Ref. [27].
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is stable through the evolution. (It bounces around, which
shows that the fields are evolving and that it is a small
number of degrees of freedom contributing to the infrared
energy. This bouncing would average out in larger volumes
because of incoherent averaging.) The total energy (� � 0)
rises linearly.

Based on the cascade picture of Fig. 5, what behavior
should we have expected for the intermediate case of
moderate �? For any fixed smearing �, the energy should
eventually stop growing once the modes with k2 & � have
grown to reach their steady-state distribution in the cas-
cade. The smaller � is, the longer it should take to reach the
steady state. The m2� � 4=256 curve in Fig. 7 is a good
example of an initial rise in energy that then tapers off and
is plausibly approaching a steady-state value. It is unclear
from our data whether the smaller (nonzero) � curves will
eventually reach steady-state values. The problem is that
cooling does not select out a single k but gives a superpo-
sition in the form of a Laplace transform. Note, for in-
stance, that the k�2 behavior of the Coulomb spectrum of
Fig. 4 is limited to the relatively narrow range of 3 &

k=m & 5. With infinite computing resources, one could
run long enough, on fine enough lattices, to extend this
region over a huge range of k, and then one would expect to
see the predicted behavior in Fig. 7 for a wide range of �.

But there is a way to check that our Coulomb-gauge
results are trustworthy. We can Laplace transform the
Coulomb-gauge spectrum and see if it agrees with the
(gauge-invariant) smeared measurements of Fig. 7.
Perturbatively, the smeared magnetic energy density
should be related to the distributions f�k� by
-7



FIG. 9. The ratio B2
z=�B

2
x � B

2
y� as a function of time and

smearing depth. (643 lattice, am � 0:25, ‘max � 15.)
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FIG. 8 (color online). The solid lines are the same as Fig. 7.
The dashed lines represent the corresponding results extracted
from the Coulomb-gauge spectra fE of Fig. 4. The single dotted
line at the top shows a similar extraction of the unsmeared (� �
0) curve from fA instead of fE. The noisy difference with the
corresponding fE curve is an IR effect, and this difference
remains until one cools substantially (not shown). (643 lattice,
am � 0:25, ‘max � 15.)

10In contrast, a slight growth of current can be seen at very late
times in Fig. 11 of Ref. [12]. This growth appears to be a late-
time artifact of the undamped treatment of ‘max in that reference,
as we discuss in the Appendix.
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E B��� �
Ndof

2

Z d3k

�2��3
kf�k�e�2k2�: (3.6)

Note that the growth of d3k� k� k3dk with k typically
more than compensates for the fall of f�k� with k in Fig. 5,
so that these integrals are dominated by k2 � ��1 at late
times t. We replot Fig. 7 in Fig. 8, superposed with dashed
lines that show the results of (3.6) with f � fE. The results
are very close until one cools deep into the infrared. (We
also show one sample curve based on fA, which gives
slightly less accurate results than fE. The fA have a more
significant IR contribution than fE, as can be seen in
Fig. 4.) We conclude that Coulomb-gauge distributions
provide a reasonably accurate description of the physics
of the cascade far from the IR, supporting our conclusions
based on Figs. 4 and 5.

The instability preferentially excites gauge fields with
the k vector along the z axis (the axis about which the
particle momentum distribution is oblate) [5,8]. Such
modes have primarily transverse magnetic fields, so B2

z �

B2
x � B2

y for the fields excited by the instability. Therefore
we might expect this behavior of the infrared gauge fields.
If the higher-momentum fields represent a nearly thermal-
ized bath, they will be close to isotropic and the ratio
B2
z=�B2

x � B2
y�will be 1/2. But if they scatter predominantly

off the IR fields, they may also carry a momentum-space
025006
anisotropy. To study this, Fig. 9 shows the ratio B2
z=�B

2
x �

B2
y� as a function of smearing, for the same lattice parame-

ters as in Fig. 7. Indeed, the soft fields are anisotropic as
expected. The unsmeared fields are (on average) less so,
but still have a definite anisotropy along the z axis.

The picture that has emerged is that there are soft,
anisotropic, nonperturbatively large gauge fields with
higher wave-number plasmons superposed. The size of
the soft gauge fields fluctuates about a steady mean, and
the plasmons become more numerous, populating higher
and higher wave numbers. One way to check whether the
interpretation of the high wave-number excitations as plas-
mons is correct is to look at the W fields. We will concen-
trate on the ‘ � 1 component of W, which is the same as
the particle current up to a factor: j2 � �1=3�

P
mW

2
1m [12].

A plasmon with k� m carries almost all its energy in E2

and B2, roughly equipartitioned, and only a subdominant
amount in currents. Therefore, if the energy growth really
represents a growing number of plasmons with k > m, then
hj2i should grow slowly if at all, and should be IR domi-
nated. Figure 10 shows our measurements, and the lack of
growth with time is clear.10 [Following Ref. [12], we have
normalized the curves by plotting �3=4m2�j2 �
�1=4m2�

P
mW

2
1m, which is the contribution of the ‘ � 1

components of W to what would be a conserved energy
�E2 � B2�=2� �1=4m2�

P
‘mW

2
‘m for isotropic systems.] j2
-8



FIG. 11. The ratio of j2
z to j2

x � j2
y for the various cooling

depths of Fig. 10. Note the scale of the vertical axis. (643 lattice,
am � 0:25, ‘max � 15.)

FIG. 10. Current squared as a function of time and cooling
depth. The current remains predominantly infrared, and shows
large fluctuations about a nearly flat trend through the evolution.
(643 lattice, am � 0:25, ‘max � 15.)
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falls more slowly with cooling depth than the magnetic
energy of Fig. 7, indicating less power in the ultraviolet.
We also find, in Fig. 11, that j2

z � 0:13�j2
x � j2

y�, nearly
independent of time and smearing depth. A small ratio of jz
to jx and jy is expected if the currents are primarily
associated with long-wavelength, transverse modes in the
directions which are perturbatively unstable.

IV. DISCUSSION AND CONCLUSIONS

Putting our numerical results together, the physical pic-
ture which emerges is the following. Plasma instabilities
drive IR gauge fields with kz � k? to grow.
Nonperturbatively strong interactions between these soft
field modes remove energy from these unstable modes,
moving it instead into less-IR gauge-field modes. The
size of the soft nonperturbative fields reaches a quasi-
steady state; if it grows larger, the nonperturbative physics
025006
removing energy gets more efficient, and if it gets smaller,
the instability drives it back up. The energy absorbed via
the instability from the hard particles thereby powers a
cascade of soft gauge-field excitation energy towards the
ultraviolet. The cascade has a power spectrum f�k� / k��

with � ’ 2. This is not a thermal spectrum, as also evi-
denced by the failure of B2

z=�B
2
x � B

2
y� to approach 1

2 . We
give a theoretical explanation of the value � � 2 in another
work [28].

These same instability-powered energy cascades should
appear in the early stages of arbitrarily high-energy heavy
ion collisions. These cascades will only be a temporary
feature along the path to thermalization and will disappear
by the time the plasma is finally fully thermalized. We
leave to future work the complete integration of the physics
of instabilities into quark-gluon plasma thermalization at
arbitrarily high energies.
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APPENDIX: IMPROVING SIMULATIONS BY
DAMPING HIGH l MODES

In this appendix we argue that the large ‘max limit is
achieved more quickly by applying weak damping on large
‘ modes than by not doing so, and we present numerical
evidence that this is the case.

At the perturbative level, the behavior of the isotropic
version of the A and W field system has been investigated
by Bödeker, Moore, and Rummukainen [17]. The correct
analytic structure of the gauge-field propagator in the
presence of hard thermal loops (the infinite ‘max, isotropic
theory) is that there should be a propagating ‘‘plasmon’’
pole at a frequency j!j> k, and a cut in the spectral weight
for all frequencies j!j< k. Physically, the cut reflects
Landau damping. It means that most of the energy of a
long wavelength magnetic field should be absorbed by the
particle degrees of freedom represented by the W fields,
never to return. However, the finite ‘max system is a non-
dissipative Hamiltonian system. Therefore it is not possible
for it to contain cuts in the (leading order) propagator.
Instead, the region which should contain the cut contains
a series of poles and zeros in the propagator, illustrated in
Fig. 12, which is taken from Ref. [17].

What this means is that the excitation energy present in
the magnetic field, which is supposed to be Landau
damped away, instead appears only in periodic oscillatory
modes. Most of the energy is stored in the W fields, as is
-9
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supposed to happen under Landau damping. However, a
fraction of it periodically reappears as magnetic field en-
ergy, an effect which is unphysical. The size of this effect is
determined by the number of W field modes, �‘max � 1�2,
which sets the heat capacity of these modes to absorb and
store excitation energy. The larger ‘max is, the more effec-
tively theW fields can retain the energy rather than feeding
it back to the magnetic fields.

The problem in the current context is that, in the aniso-
tropic system, quite large amounts ofW field excitation are
generated. The derivative term v 
DW in Eq. (2.3) should
cause this excitation energy to migrate to higher and higher
‘ values. This is shown in the left-hand plot of Fig. 13,
which shows how

P
mW

2
‘m varies with time and with ‘, if

we start with large magnetic fields but with no initial
excitation in the W fields. However, with a finite ‘max

cutoff, the excitation cannot migrate to arbitrarily large ‘,
as it should; some of it instead moves back into lower ‘ and
reenters the gauge fields and small ‘W fields. This causes a
fake increase in the energy of these fields, which becomes
more severe as ‘max is decreased.

Our approach to solve this problem is to assume that any
excitation energy which reaches very large ‘ values should
continue to arbitrarily large ‘ and be lost to the low ‘
system. We can make this happen artificially by applying a
damping term to the highest ‘ modes, modifying the W
equation of motion via

dW‘m

dt
� �previous� � �W‘m��‘� ‘damp�: (A1)

That is, we add a term which causes exponential shrinkage
025006
with rate � in all ‘ at or above a cutoff ‘damp. The damping
should only affect the high ‘ modes, so we choose ‘damp �

�2=3�‘max. Note that the damping we apply is gauge in-
variant: so long as ‘damp > 1, the current remains exactly
conserved, because the current is determined by the ‘ � 1
modes and the charge density by W00. We also have to
choose a value for �. If the value is too large, then the W
fields with ‘ > ‘damp are effectively forced to be zero,
which is equivalent to lowering ‘max to ‘damp. Therefore
we should choose � <m, since m is the intrinsic scale of
the dynamics. We should also make sure we pick � >
m=‘max; otherwise the damping is too slow to do anything,
as excitation energy can get from ‘damp to ‘max, reflect, and
go back below ‘damp before being damped away. With this

in mind, we have chosen � � m=
���������
‘max

p
.

Of course, it remains to test whether this procedure of
damping large ‘ modes really gives the same behavior as
choosing an extremely large value for ‘max [which is
numerically impractical, since the number of degrees of
freedom rises as �1� ‘max�

2]. To check, we have per-
formed evolutions with the same initial random seed and
other parameters but with different values of ‘max, and
either with or without the damping term added. The results
are shown in Fig. 14 for am � :288, V � �14:4=m�3, and
the same ��v� used in the main body of the paper [12]. On
the left, we see magnetic energy growth vs time. With and
without damping, the growth rates converge (from opposite
sides) towards the same large ‘max limit. But the damped
results converge much faster: with damping, the magnetic
energy growth does not change between ‘max � 15 and
-10



FIG. 14 (color online). Left: magnetic energy against time at different values of ‘max, with and without W damping. Without
damping, the growth rate in B2 approaches a large ‘max value from above, approximately as 1=�‘max � 1�2. With damping, it
approaches from below and obtains the large ‘max value much faster. Right: the same for hj2i. The fact that this quantity does not grow
is obtained immediately with damping, but only approached very slowly in the large ‘max limit without damping. (503 lattice, am �
0:288.)

FIG. 13. Time and ‘ dependence of
P
mW

2
lm , the amount of excitation in the W field. Each figure plots

P
mW

2
lm against ‘ at a series

of time snapshots, for ‘max � 36. The left figure is without damping; the right figure has damping on ‘ � 24 modes. In each case, the
time between successive lines is 0:57=m. The two spikes at small ‘ are the angular scales driven by the instability. The excitation
introduced here cascades to larger ‘, eventually bouncing off the ‘max limit in the left figure but being absorbed at large ‘ by the
damping in the right figure. (503 lattice, am � 0:288.)
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‘max � 24, and appears to coincide with the very large
‘max, undamped behavior. Now return to the flat result of
Fig. 10 for the time dependence of j2. On the right of
Fig. 14, we see that this flat behavior is obtained only very
gradually in the large ‘max limit unless damping is imple-
mented, in which case it occurs immediately. For inves-
tigating current growth, damping is an essential numerical
tool for practical simulations.
025006
Naturally, if ‘max is too small, we will see errant behav-
ior whether or not we implement damping. For the choice
of ��v� used here (i.e. for the degree of hard particle
anisotropy in our simulations), Fig. 14 shows a large
deviation of the magnetic energy growth for ‘max below
about 10. We have therefore conservatively used ‘max � 15
for the bulk of the studies presented in the main text.
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0505164; D. Bödeker, J. High Energy Phys. 10 (2005)
092.

[15] L. V. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep.
100, 1 (1983); J. P. Blaizot and A. H. Mueller, Nucl. Phys.
B289, 847 (1987); L. D. McLerran and R. Venugopalan,
Phys. Rev. D 49, 2233 (1994); Phys. Rev. D 50, 2225
(1994); J. Jalilian-Marian, A. Kovner, L. D. McLerran, and
H. Weigert, Phys. Rev. D 55, 5414 (1997).

[16] E. Iancu, Phys. Lett. B 435, 152 (1998).
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