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Boltzmann collision term
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We derive the Boltzmann equation for scalar fields using the Schwinger-Keldysh formalism. The focus
lies on the derivation of the collision term. We show that the relevant self-energy diagrams have a
factorization property. The collision term assumes the Boltzmann-like form of scattering probability times
statistical factors for those self-energy diagrams which correspond to tree level scattering processes. Our
proof covers scattering processes with any number of external particles, which come from self-energy
diagrams with any number of loops.
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I. INTRODUCTION

Kinetic theory has proven to be a very successful tool for
the description of systems out of equilibrium. Important
applications can be found in many fields of physics, current
examples are early cosmology, or the theory of heavy ion
collisions, where one aims to understand how the matter
produced in the collision evolves, and, in particular,
whether it thermalizes or not. A very famous kinetic equa-
tion is the Boltzmann equation for the evolution of the
particle distribution functions in a sufficiently dilute sys-
tem. A first derivation of nonrelativistic kinetic theory from
field theory was given by Kadanoff and Baym [1]. Using
the Closed-Time-Path (CTP) formalism, also called
Schwinger-Keldysh formalism, this derivation becomes
simpler and can also be extended to relativistic theories
(see for example [2–6]). In early treatments the collision
term of the Boltzmann equation was simply modeled heu-
ristically: consider each reaction the particle can undergo,
compute the probability for this reaction by using the free
particle cross section, and multiply with the appropriate
statistical factors, that is the Bose-enhanced or Fermi-
suppressed phase space distribution functions, respec-
tively. The collision term for a scalar particle that can
undergo 2-to-2 scattering, for example, is

dtfp �
1

4!p

Z d3k

�2��32!k

d3p0

�2��32!p0

d3k0

�2��32!k0

� �2��4�4�p0 � k0 � p� k�P pkp0k0

� �fp0fk0 �1� fp��1� fk�

� �1� fp0 ��1� fk0 �fpfk�: (1)

We refer to a collision term of this form as a standard
Boltzmann collision term. In Refs. [2–5] the collision term
of the resulting Boltzmann equation was derived for a
number of specific theories from the right-hand side of
the Kadanoff-Baym equation considering self-energy dia-
grams with up to two loops. To our knowledge, the first
paper with a computation that went beyond the 2-loop self-
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energy is [7]. The authors explicitly computed a selection
of self-energy diagrams with up to three or four loops in
real, scalar �3- and �4-theory, respectively, and managed
to bring them into a form like (1). This computation was
quite involved and required the assistance of a computer
system to handle the big number of terms appearing in
intermediate steps.

In the present paper we consider a scalar theory with an
unspecified nonderivative self-interaction. We first show
that the self-energies appearing in the collision term have
a useful factorization property. In the strict on-shell limit a
certain class of self-energy diagrams then indeed leads to a
collision term of the form (1), namely, those that corre-
spond to tree level scattering diagrams with any number of
external particles. Not all contributions to the self-energy
fit into this picture, which can already be expected from the
problems that arise when extending the vacuum Cutkosky
rules to finite temperature [8,9].

In Sec. II we provide the basics of nonequilibrium field
theory as far as required for our purpose. We also show
briefly how the flow term of the Boltzmann equation is
obtained from the Schwinger-Dyson equation. This proce-
dure is standard and has extensively been covered in lit-
erature already, so only the basic steps are given here. For
more details, see for example [7] and references therein.
Section III is the main part of this paper, where we study
the collision term for a real scalar field. A remark on the
extension to charged scalar fields can be found in Sec. IV,
and in Sec. V we finally discuss our results.

II. BASICS

An appropriate framework to study the time evolution of
physical quantities in nonequilibrium situations is given by
the Schwinger-Keldysh or Closed-Time-Path formalism
[10–12]. The basic technical point is that the time variable
of all objects is defined on a path C on the real axis that
leads from �1 to �1, and then back to �1. The defini-
tion of the Green function is still

��x; y� � �ihTC��x��
y�y�i; (2)

but time ordering is performed along the path C here. If we
-1 © 2006 The American Physical Society
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split the path into a ‘‘�’’-branch from �1 to �1 and a
‘‘�’’-branch going back to �1, we can distinguish four
real time Green functions, differing by the branches on
which the time arguments are placed:

i����x; y� � i�t�x; y� � hT��x��y�y�i;

i����x; y� � i�<�x; y� � h�y�y���x�i;

i����x; y� � i�>�x; y� � h��x��y�y�i;

i����x; y� � i��t�x; y� � h �T��x��y�y�i:

(3)

The �T in the last line denotes antitime ordering. These
functions are not independent of each other, but are con-
nected via the relation

�t ���t � �< ��>: (4)

In addition, one defines the retarded and advanced Green
functions:

�R;A�x; y� � �t�x; y� � �<;>�x; y�: (5)

In contrast to ordinary perturbation theory in vacuum, here
each internal vertex can be either of type ‘‘�’’or of type
‘‘�’’. The lines between vertices represent the Green
functions defined in (3), depending on the types of the
incident vertices. For each vertex of type ‘‘�’’ there is an
additional factor �1.

The Schwinger-Dyson equation for the contour Green
function (2) leads to the following equation of motion:

�@2
x �m2���x; y� � ��4

C�x� y� �
Z
C
d4z��x; z���z; y�:

(6)

The self-energy � is defined as i times the sum of all one-
particle irreducible two-point functions. We switch to in-
dex notation and obtain the equation of motion for �<;>:

�@2
x �m

2��<;>�x; y� �
Z
d4z��<;>�x; z��A�z; y�

��R�x; z��<;>�z; y��: (7)

For simplicity we omit a potential tadpole contribution to
the self-energy �. We assume that its only effect is a shift
in the mass of the particles which possibly introduces a
force on the left-hand side of the resulting Boltzmann
equation, but that does not change the argumentation con-
cerning the collision term.

Our goal is an equation that describes the evolution of
the phase space density of particles, which takes place on a
macroscopic scale. In order to separate this from the quan-
tum evolution on a microscopical scale, we perform a
Wigner transformation. For any two-point function we
introduce the average coordinate

X � 1
2�x� y� (8)

and carry out the Fourier transformation with respect to the
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relative coordinate:

��X; p� �
Z
d4�x� y�eip	�x�y���x; y�: (9)

Note that the functions i�<;>�X; p�, called Wigner func-
tions, are real, while i�t�X; p� is the complex conjugate of
i��t�X; p�. The respective self-energies have the same
properties.

We apply the Wigner transform to the equation of mo-
tion (7). The fact that we are dealing with two-point
functions is reflected in the appearance of an infinite series
of derivatives


f�1�gf�2�g � 1
2�@
�1� 	 @�2�p � @

�1�
p 	 @�2��f�1�gf�2�g (10)

with respect to X and p:

��p2 �m2 � ip 	 @� 1
4@

2��<;>�X; p�

� e�i
�f�<;>�X;p�gf�A�X; p�g

� f�R�X; p�gf�<;>�X; p�g�: (11)

Now some approximations are necessary. We assume
that the functions of interest have a smooth macroscopic
behavior; more precisely, we assume that the scale on
which the functions change with respect to the average
coordinate X is much bigger than the microscopical scale
set by the de Broglie wavelength of the particles.
Consequentially, the mixed derivative @ 	 @p is a small
quantity and kept only up to linear order. We furthermore
assume that the macroscopic scale is also large compared
to the particles’ Compton wavelength, so that the second
order derivative on the left-hand side of (11) is negligible
as well. Since the Wigner functions i�<;> are real, we can
extract the real and imaginary part of the equation of
motion and find

�p2 �m2�i�<;> � �
i
2
��<;> Re �R � Re �R�<;>�

�
1

2

��<�> ��>�<�; (12)

��p 	 @�i�<;> �
1

2
��>�< ��<�>�

�
i
2

��<;> Re �R � Re �R�<;>�:

(13)

The real part has the form of a constraint, the imaginary
part has the form of a kinetic equation.

For a free field we can write down the solutions of these
equations in the form

i�<
0 �X; p� � 2���p2 �m2� sgn�p0�n0�X; p�;

i�>
0 �X; p� � 2���p2 �m2� sgn�p0��1� n0�X; p��:

(14)

The solutions for the chronological and antichronological
Green functions in the free case are
-2
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i�t
0�X; p� �

i

p2 �m2 � i sgn�p0��

� 2���p2 �m2� sgn�p0�n0�X; p�;

i��t
0�X; p� �

�i

p2 �m2 � i sgn�p0��

� 2���p2 �m2� sgn�p0��1� n0�X; p��:

(15)

In thermal equilibrium the Kubo-Martin-Schwinger rela-
tion determines n0 to be the Bose-Einstein distribution, but
in a nonequilibrium situation this function is not known a
priori.

The next simplification is a small coupling expansion.
Later this will be used for a detailed analysis of the
collision term; here we need it to get rid of those terms
on the right-hand side which are suppressed by both the
mixed derivative @ 	 @p and the coupling constant. At this
point we also demand that our system can be described in
terms of (quasi)particles. To this end we assume that the
right-hand side of the constraint equation (12) vanishes,
turning this equation into a mass-shell condition. In the
end, Eqs. (12) and (13) simplify to

�p2 �m2�i�<;> � 0; (16)

��p 	 @�i�<;> � 1
2��

>�< ��<�>�; (17)

and we can make an on-shell ansatz for the Wigner func-
tions:

i�<�X; p� � 2���p2 �m2����p0�f��X; ~p�

� ���p0��1� f��X;� ~p���;

i�>�X; p� � 2���p2 �m2����p0��1� f��X; ~p��

� ���p0�f��X;� ~p��:

(18)

Spectral sum rules that follow from the basic commutator
relations for the scalar field operators and make a connec-
tion between i�< and i�> ensure that this ansatz is con-
sistent. By comparison with the equilibrium functions and
also by inserting the ansatz (18) into the expressions for the
expectation values of current

j��X� � 2
Z d4p

�2��4
p�i�<�X;p� (19)

and energy-momentum

T���X� �
Z d4p

�2��4
p�p�i�<�X; p�; (20)

we finally can identify f� and f� with the phase space
densities of particles and antiparticles, respectively. In the
case of real scalar fields there is an additional relation,
i�<��p� � i�>�p�, which leads to f� � f�.

The constraint equation is satisfied identically with this
ansatz, and all that is left over is the kinetic equation (17).
We insert (18) and integrate over positive frequencies. The
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resulting equation reproduces the flow term of a relativistic
Boltzmann equation for particles with phase space density
f�: �

@t �
~p
!
	 ~@
�
f��X; ~p� �

Z 1
0

dp0

�
C�X; p�: (21)

Integration over negative momenta results in a similar
equation for the corresponding antiparticles. The most
important part for us is the right-hand side: the collision
term so far is

C�X;p� � 1
2�i�

>�X; p�i�<�X; p�

� i�<�X; p�i�>�X;p��: (22)

In the next section we try to reexpress this in terms of
particle densities and scattering amplitudes.
III. COLLISION TERM

Now we come to the main part of this paper, the collision
term. We make a perturbative expansion of the self-
energies in C and try to bring it to a form resembling the
collision term of a Boltzmann equation as shown in the
introduction. The collision term is local in our approxima-
tion, so we drop the argument X from now on in order to
simplify the notation.

A. Self-energy

In a perturbative expansion the self-energy i�<�p� �
i����p� is expressed as minus the sum of all amputated
one-particle irreducible graphs with momentum p entering
at a ‘‘�’’-vertex and leaving at a ‘‘�’’-vertex. We first
classify the graphs in this expansion in the following way:
take any graph and imagine all lines connecting a ‘‘�’’-
vertex with a ‘‘�’’-vertex were cut. This would split the
graph into a number of connected subgraphs, each con-
taining only ‘‘�’’- or ‘‘�’’-vertices, respectively. We call
these subgraphs clusters. Obviously there are at least two
clusters, namely, one which is connected to the incoming
line, called ‘‘�’’-base, and one connected to the outgoing
line, called ‘‘�’’-base. Now we can distinguish two types
of graphs:
(i) G
-3
raphs of type 1 have only direct connections be-
tween the ‘‘�’’- and the ‘‘�’’-base, i.e. there are no
paths leading from the ‘‘�’’-base to the ‘‘�’’-base
via some other clusters (see Fig. 1). The simplest
example for this are graphs with only two clusters.
(ii) G
raphs of type 2 have connections between the
‘‘�’’-base and the ‘‘�’’-base via other clusters
(see Fig. 2).
There is another way to classify the graphs contributing
to i����p�: try to divide a given graph into two parts, one
attached to the incoming line, the other part attached to the
outgoing line, by cutting a suitable set of ‘‘��’’-lines.
Only cut lines which are attached to a ‘‘�’’-vertex in the
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FIG. 2 (color online). A graph with indirect connections be-
tween ‘‘�’’ and ‘‘�’’-base (type 2). Two different complete cuts
are possible (dashed lines).
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FIG. 1 (color online). A graph with only direct connections
between ‘‘�’’ and ‘‘�’’-base (type 1). There is a unique com-
plete cut (dashed line).
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first part and to a ‘‘�’’-vertex in the second part, and which
are effective in separating the two parts. This works with
every graph, since the incoming line ends in a ‘‘�’’-vertex,
while the outgoing line starts from a ‘‘�’’-vertex. We call
this a complete cut. It is not hard to see that a graph belongs
to type 1 if and only if there is exactly one such complete
cut. In this case the cut lines are exactly the ones connect-
ing the ‘‘�’’-base with the ‘‘�’’-base. Otherwise the graph
belongs to type 2.
025005
1. Unique complete cut

Let us first concentrate on the graphs of type 1, i.e.
graphs which have a unique complete cut. We further
classify these diagrams according to the number of cut
lines:

i���
�type1��p� �

X1
n�2

i���
n �p�: (23)

Now we claim that
�i���
n �p� �

1

n!

Z d4k1

�2��4
	 	 	

d4kn
�2��4

�2��4�4�p� k1 � 	 	 	 � kn�M
�
�1��p;�k1; . . . ;�kn�i�

��
0 �k1� . . . i���0 �kn�

�M�
�1���p; k1; . . . ; kn�: (24)

Symbolically we can write this equation as

p p+ −
(n) =

1

n!

∫
{dki}

p

k1

k2

kn

+

+
+

+

{i∆+−
0 (ki)}

p

k1

k2

kn

−
−

−

−

.

The infinite sum of diagrams that contribute to the self-
energy on the left-hand side factorizes into two other
infinite sums which are identified as the diagrammatic
expansions of certain n-point functions. The totally sym-
metric function M�

�1� is the scattering amplitude belonging
to the amputated, connected, out-of-equilibrium �n�
1�-point function; positive momenta are entering, and all
external momenta are attached to ‘‘�’’-vertices. Basically
it is the Fourier transform

���1��q1; . . . ; qn�1� �
Yn�1

j�1

�Z
d4xje

iqjxj�xj

�

���
�1��x1; . . . ; xn�1� (25)

of the out-of-equilibrium �n� 1�-point function (we use
the same symbol for the function and its Fourier transform)
with time ordered fields
��
�1��x1; . . . ; xn�1� � hT��x1� . . .��xn�1�iconn; (26)

however, with the additional restrictions that the graphs
contributing to this function must not have any corrections
on the p-line, and for each ki there must be a path con-
necting it to p which only contains ‘‘�’’-vertices. The
derivative operators � � @2 �m2 remove the external
legs and we explicitly take out the momentum conservation
�-function,

��
�1��q1; . . . ; qn�1� � �2��4�4�q1 � . . .� qn�1�

� iM�
�1��q1; . . . ; qn�1�; (27)

so that M�
�1� has the form of a scattering amplitude. The

functions M�
�1� and ��

�1� are defined analogously with
antitime ordering.
-4
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In order to prove (24), we have to show two things: first,
the set of diagrams appearing in the perturbative expansion
on the left-hand side is the same as the set of diagrams one
finds on the right-hand side. Here we do not care about
statistical factors of diagrams or how often they appear.
This is done in a second step: it may be possible to obtain
the same diagram by putting together several different
contributions from �� and ��. The number of such com-
binations together with the factor 1=n! and the symmetry
factors of these contributions must match the symmetry
factor of the resulting diagram on the left-hand side.
2. Diagrams

Any graph G contributing to ���
n has a unique com-

plete cut consisting of n lines. The free propagators i���0

associated to the cut lines and the integrals over their
momenta, named k1; . . . ; kn, are taken out of G and written
down explicitly on the right-hand side of (24). The remain-
ders of G to the ‘‘left’’ and to the ‘‘right’’ of the cut are
called G� and G�, respectively. Obviously G� is a
Feynman diagram with n� 1 external momenta attached
to ‘‘�’’-vertices. We took away the ki-lines, so it is ampu-
tated. Since G is one-particle irreducible, there can be no
corrections on the p-line, while there may be corrections
on the ki-lines. Because G is of type 1, the cut lines are
exactly the ones that connect the ‘‘�’’-base to the ‘‘�’’-
base, so all external momenta in G� are attached to the
‘‘�’’-base and thus are connected with each other via paths
that only include ‘‘�’’-vertices. This shows that G� is a
Feynman diagram that contributes to ��

�1�, and likewiseG�

is a part of ��
�1�.

Conversely, take any contributionsG� from ��
�1� andG�

from ���1�. Together with the free propagators i���0 and the
integrals over their momenta they make up an amputated
Feynman diagram G with a unique complete cut and with
momentum p entering at a ‘‘�’’-vertex and leaving at a
‘‘�’’-vertex. Since there are at least two ki-lines, the only
way for G not to be one-particle irreducible would be to
consist of a G� or a G� which can be split into two parts,
one connected to the p-line and one connected to the
ki-lines, by cutting a single line. But this is impossible,
because G� and G� do not have corrections on the p-line.
So the diagram G contributes to the diagrammatic expan-
sion of ���

n , which eventually proves that the same dia-
grams are appearing on both sides of (24).

A comment about the momentum conservation
�-function is in order here. If one performs as many
integrals over internal momenta as possible in the diagrams
G� andG�, in both cases a �2��4�4�p� k1 � 	 	 	 � kn� is
left over which is not part of the scattering amplitude. One
appears explicitly in (24), the other one reduces to
�2��4�4�0� and is dropped according to the usual definition
of the self-energy.
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3. Numbers

Let us first have a closer look at the symmetry factor of a
diagram G contributing to ���

n . The symmetry factor of a
diagram is the order of the graph’s symmetry group, which
contains all permutations of lines and vertices that do not
alter the diagram. G has a unique cut, and accordingly we
can distinguish lines and vertices in the part G� left of the
cut from lines and vertices in the part G� to the right of the
cut, and they all are topologically different from the cut
lines. This means that there are no symmetries exchanging
lines or vertices in G� with those in G�, and neither are
there symmetries that exchange cut lines with uncut ones.
Therefore the symmetry group of G is the direct product of
three groups: the symmetry group of G�, the symmetry
group of G�, and the symmetry group S of the cut lines (in
the context of G, i.e. permutations of cut lines that do not
change G). We call the orders of these groups s�, s� and s,
respectively, and so the symmetry factor ofG is 1=�s�ss��.
In fact, things are a bit more complicated, since in graphs
with tadpolelike structures, i.e. where both ends of some
lines are attached to the same vertex, the above definition
of the symmetry group is too narrow. However, such lines
will never be cut, and therefore their symmetry properties
are part of the symmetry groups of G� or G� and do not
change this discussion.

Given a graph G contributing to ���
n , how many differ-

ent combinations of a G� 2 �� and a G� 2 �� produce
this G? First of all, the topologies of G� and G� are
completely determined by G and its cut. But there are
several possibilities to name their external lines, which
determines how they are put together. Some namings result
in topologies different from G, so they contribute to a
different graph and are not relevant here. The rest of the
namings corresponds exactly to the inequivalent renamings
of the cut lines ki of G, where inequivalent means that they
are not symmetries of G. So the number of combinations
of a G� and a G� that produce G is equal to the number
of inequivalent renamings or permutations of the cut lines
in G.

The group P of all permutations �i of cut lines in G, i.e.
all possibilities of renaming them, has the order n! If we
build the right cosets of P relative to S,

S�1; S�2; . . . ; S�n!; (28)

then two sets S�i and S�j are either identical or disjoint
[13]. So in fact there are only f different sets

S�i1 ; . . . ; S�if ; (29)

each of which contains s elements. Since all elements
within one S�i belong to equivalent permutations of cut
lines, the number of inequivalent permutations must be
equal to f. But the step from (28) to (29) only removes
redundant elements and leaves their total number un-
changed: n! � f 	 s. Together with the symmetry factors
of the parts G� and G� the complete combinatorial factor
-5
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on the right-hand side then is
f
n!

1

s�s�
�

1

s�ss�
(30)
and exactly matches the symmetry factor of G.
(a)

+ −

+ −
(b)

+ −

+

−

FIG. 3 (color online). Two 2-loop contributions to the self-
energy of real scalar �3-theory with a unique complete cut
comprising n � 3 lines. The symmetry factors of these diagrams
are 1=2 and 1, respectively.

025005
4. Example

As an example we consider two 2-loop contributions to
the self-energy of a real scalar theory with a
�3-interaction, displayed in Fig. 3. There is only one
possible topology for the parts G� and G�, namely, a 2-
to-2 scattering diagram. There are three possibilities for
naming the external lines of this diagram, so that the
relevant contribution is
From the resulting nine graphs, three correspond to the
inequivalent ways of naming the cut lines in diagram
Fig. 3(a), while the remaining six graphs belong to diagram
Fig. 3(b).

5. No unique cut

Next we have to deal with those contributions to the self-
energy with more than one complete cut (type 2). In this
case we decide to use the cut which makes the left portion
G� of the diagram as small as possible. This means to cut
all lines that leave the ‘‘�’’-base, except when they are not
efficient in separating the two parts. In the example of
Fig. 2 this is the left cut. This prescription leads to an
unambiguously defined cut and we can repeat all the argu-
ments already used above. The only difference concerns
the nature of the right-hand portion of the diagrams: the
contributions to M�
�2� must have the property that at least

one of the external ki-lines is connected to the outgoing
p-line only via paths which contain at least one ‘‘�’’-
vertex. Note that M�1� and M�2� do not have any graphs
in common.

B. Collision term

For real fields the n-point functions �� and �� are
related by complex conjugation:

���k1; . . . ; kn� � �����k1; . . . ;�kn�: (32)

By referring to the corresponding diagrammatic represen-
tation we can check that this holds for the restricted func-
tions ��

�1� and ��
�2�, too. After sending ki ! �ki the full

collision term can thus be written
C�p� �
1

2

X
a�1;2

X1
n�2

1

n!

Z d4k1

�2��4
	 	 	

d4kn
�2��4

�2��4�4�p� k1 � 	 	 	 � kn�

� �M�
�1��p; k1; . . . ; kn�M

�
�a�
��p; k1; . . . ; kn�i�

>
0 �k1� . . . i�>

0 �kn�i�
>�p�

�M�
�1�
���p;�k1; . . . ;�kn�M

�
�a���p;�k1; . . . ;�kn�i�

<
0 �k1� . . . i�<

0 �kn�i�
<�p��: (33)
The sum over a � 1; 2 represents the contributions of self-
energy diagrams of type 1 and type 2, respectively. We
emphasize that this factorization is exact. The form (14) for
the Wigner functions suggests that (33) is an expansion in
the particle phase space density. But this is not the case,
since the distribution function is also contained in the
scattering matrix. A true expansion in the particle densities
has been done in [14], which shares some technical sim-
ilarities with our analysis.

In order to proceed towards the standard collision term
of a Boltzmann equation, we still have to overcome three
difficulties. First, a matrix element squared can obviously
only be obtained for type 1 diagrams, where a � 1.
Second, the propagators corresponding to the cut lines
are free ones, while the propagator for the p-line is a full
one. In the Boltzmann equation, however, all distribution
functions are expected to be of the same type. Third, if we
want to combine the scattering matrices of the last two
lines, they have to be symmetric with respect to inverting
-6
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all momenta. The last point is satisfied if we assume that
our system is symmetric under CP. Note that this refers to
both the interaction and the initial conditions, since if the
evolution starts with initial particle distributions f that are
not CP-even, then the matrix elements will not be CP-even
either, even if the interaction conserves CP. The first two
points force us to restrict ourselves to the tree level, since
then the difference between free and full propagators van-
ishes. In addition, the scattering diagrams include no in-
ternal ‘‘�’’-vertices: diagrams with ‘‘�’’-vertices have
025005
several ‘‘��’’-lines which cannot all be on-shell in a
tree diagram, and according to (14) these diagrams vanish.

The fact that we have to exclude quantum corrections is
not unexpected. After all, the Boltzmann equation is a
classical equation, so our derivation definitely has to break
down at some level when adding quantum effects. As we
have seen, this breakdown takes place immediately beyond
the classical level: we can recover a standard Boltzmann
collision term of the form (1) only by the restriction to
classical processes. Now we can simplify the collision term
to
C�p� �
1

2

X1
n�2

1

n!

Z d4k1

�2��4
	 	 	

d4kn
�2��4

�2��4�4�p� k1 � 	 	 	 � kn�jM�
�1��p; k1; . . . ; kn�j2�i�>�k1� . . . i�>�kn�i�>�p�

� i�<�k1� . . . i�<�kn�i�
<�p��: (34)
The final step is to use the on-shell ansatz (18) for the
propagators and to perform the integrals over the zero
components of the momenta. The ansatz for i�<�ki� con-
tains two �-functions, one that corresponds to positive
energies and one that corresponds to negative energies.
In the case of a negative energy, we additionally invert
the corresponding spatial momentum. This way we obtain
contributions with all possible combinations of particles k1

to kn either going into or coming out of the scattering.
Since the scattering amplitude is totally symmetric with
respect to the order of its arguments, all particles going in
are exchangeable, and so are all the particles that come out
of the scattering. Thus we can group those terms that have
the same number of ingoing and outgoing particles. For j
outgoing particles (besides p), there are

N�j� �
n!

j!�n� j�!
�

n
j

� �
(35)

identical terms. The complete collision term is
C�p� �
1

2

�
!p

��p0�!p�
X1
n�2

1

n!

Z d3k1

�2��32!1

	 	 	
d3kn

�2��32!n

Xn
j�0

n

j

 !
�2��4�4�p� k1�			� kj� kj�1�			� kn�

� jM�
�1��p;k1; . . . ; kj;�kj�1; . . . ;�kn�j

2��1�f1� . . . �1�fj�fj�1 . . .fn�1�fp��f1 . . .fj�1� fj�1� . . . �1�fn�fp�;

(36)
(a) k 2

k 3

p

k 1

+

+

(b) k 3

k 2

p

k 1

+

+

(c) k 2

k 3

p

k 1

+ +

FIG. 4. The tree diagrams contributing to the scattering matrix
for four external particles.
where fi 
 f� ~ki�, !i � � ~k
2
i �m2�1=2, and all four-

momenta are on-shell: ki � �!i; ~ki�. The collision term
consists of two parts, according to the two terms in square
brackets, referred to as gain and loss term, respectively.
They describe the increase or decrease of the density of
particles with momentum p in the plasma due to the
scattering. Typically, several contributions vanish because
of kinematical restrictions, for example, the one with all
particles going in. How this works in detail depends on the
type of the interaction and the particle masses; see also the
example in the next section. Since in the kinetic equation
(21) we only integrate over positive p0, terms proportional
to the negative energy p0 � �!p were dropped here.

C. Example: �3-theory at the 2-loop level

As an example consider a real, massive scalar theory
with a 	�3=3! self-interaction. The relevant 2-loop self-
energy diagrams are shown in Fig. 3. The cuts in these
diagrams comprise three lines, so the corresponding scat-
tering processes in the Boltzmann collision term will have
four external lines, and at tree level are shown in Fig. 4. The
matrix element for these diagrams is

M��p; k1; k2; k3� � 	2

�
1

�p� k2�
2 �

1

�p� k3�
2

�
1

�p� k1�
2

�
: (37)

The collision term can then be read off from (36). In
principle there are 4 contributions, corresponding to 0, 1,
-7
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2 or 3 particles coming out together with p, but due to kinematic restrictions only 2-to-2 scattering can occur:

C�p� �
�

4!p
��p0 �!p�

Z d3k1

�2��32!1

d3k2

�2��32!2

d3k3

�2��32!3

�2��4�4�p� k1 � k2 � k3�jM
��p; k1;�k2;�k3�j

2

� ��1� fp��1� f1�f2f3 � fpf1�1� f2��1� f3��: (38)

One could have obtained this result directly from the self-energy computed with the CTP Feynman rules,

�i����p� �
Z d4q

�2��4
d4k

�2��4

�
1

2
i����q�i����p� q�i����p� q� k�i����k�i����p� q�

� i����p� q�i����p� q� k�i����q� k�i����q�i����k�
�
; (39)

but already for these comparatively simple diagrams this is not trivial, and it becomes rather involved for self-energies with
more loops [7].

IV. COMPLEX SCALAR FIELD

In the case of a complex scalar field, when there are particles and antiparticles, we can adopt the general line of
argumentation from the real case, but we have to make adjustments at a few points.

First of all, charge conservation constrains the cut: the net charge flow across the cut must be equal to the net charge flow
through the whole self-energy diagram. Thus the cut must comprise 2n� 1 lines, n� 1 leading from the left to the right,
and n leading back from the right to the left. Then the analog to the basic claim (24) for complex fields is

�i���
n �p� �

1

�n� 1�!n!

Z d4k1

�2��4
	 	 	

d4kn�1

�2��4
Z d4q1

�2��4
	 	 	

d4qn
�2��4

�2��4�4�p� q1 � 	 	 	 � qn � k1 � 	 	 	 � kn�1�

�M�
�1���k1; . . . ;�kn�1;p; q1; . . . ; qn�i�

��
0 �k1� . . . i���0 �kn�1�i�

��
0 �q1� . . . i���0 �qn�

�M�
�1���p;�q1; . . . ;�qn; k1; . . . ; kn�1�: (40)
The proof runs almost exactly like in the real case, the only
difference is that we have to distinguish the two sets of cut
lines. Lines running from the left to the right cannot be
interchanged with lines running from the right to the left,
because they transport charge in different directions. This
leads to the factor 1=�n� 1�!n! that represents one group
of n� 1 lines carrying charge to the right and another
group of n lines carrying charge to the left.

The final result is similar to (36), but both gain and loss
term now consist of two parts. In one part the distribution
functions represent a charge coming out of the reaction,
where we have all combinations of these functions being
either �1� f�� for a particle coming out, or f� for an
antiparticle going in. The other part contains distribution
functions that represent a charge going into the reaction,
that is all combinations with either f� for a particle going
in or �1� f�� for an antiparticle coming out.

It is straightforward to generalize to the case of several
scalar particle species in a similar way. Each species
corresponds to a group of lines or distribution functions,
respectively, where members of different groups cannot be
interchanged with each other.
025005
V. DISCUSSION

We start with the equation of motion for the out-of-
equilibrium Green function for a real scalar field. Using
gradient expansion, on-shell approximation and small cou-
pling expansion the left-hand side leads to the flow term of
a Boltzmann equation in a well-known way. We make a
perturbative expansion of the self-energies on the right-
hand side and give a diagrammatic proof that the relevant
self-energies have a factorization property, and that for a
certain type of contributions to the self-energy the right-
hand side can be rewritten as the matrix element squared of
scattering processes times the distribution functions of the
particles involved in the reactions. This works for those
self-energy contributions that correspond to tree level scat-
tering diagrams. The scattering processes obtained include
any number of external particles and thus correspond to
self-energy diagrams with any number of loops.

If effects beyond the classical level are required, it is in
general not correct to simply compute the scattering prob-
abilities including quantum corrections and plug them into
a standard Boltzmann collision term. In specific situations
-8



BOLTZMANN COLLISION TERM PHYSICAL REVIEW D 73, 025005 (2006)
it is possible to fit quantum corrections into the picture,
however at some cost. In [15] for example, a model of
scalar quarks and gluons was examined and a standard
Boltzmann collision term was constructed from the self-
energy up to two loops. In order to be able to do this, the
scattering matrices were not computed simply by follow-
ing the CTP rules, but for some diagrams Feynman propa-
gators had to be used for some internal lines. Furthermore,
kinematical arguments had to be used to get rid of some
diagrams that did not match the picture. The approach
presented there required an explicit study of each diagram
and cannot be generalized to arbitrary diagrams or theories.

The simple structure (1) cannot be obtained beyond the
classical level for two reasons. First, there are the self-
energy diagrams that allow several complete cuts. This is
precisely the type of diagrams that cause problems in the
extension of the vacuum Cutkosky rules to finite tempera-
ture [8,9]. Second, there is the difference between the free
propagators for the cut ki-lines and the full propagator for
the p-line. Since we know that the scattering diagrams we
025005
obtain must not contain corrections on the p-lines but do
have corrections on the ki-lines, it seems tempting to
collect these corrections and attribute them to the free
propagators, thus promoting them to full ones. In effect
this means that we would have to do the perturbative
analysis of the self-energy in terms of resummed and
thus full propagators. As a consequence, all diagrams
contributing to the self-energy must not have corrections
to already full lines. Then the available self-energy dia-
grams are not sufficient to be rewritten as the square of a
matrix element, however: certain diagrams are missing.
For instance, the 2-loop diagram in Fig. 3(b) provides
only the interference terms in (31), the squares of the
individual amplitudes can only come from Fig. 3(a), which
has a forbidden correction.

This shows that there is no consistent and systematic
way to obtain a standard Boltzmann collision term beyond
the tree level. At the tree level, a standard Boltzmann
collision term is found that includes scattering processes
with any number of external particles.
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