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Nonlinear realization of supersymmetric AdS space isometries
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The isometries of AdS5 space and supersymmetric AdSs ® S| space are nonlinearly realized on four-
dimensional Minkowski space. The resultant effective actions in terms of the Nambu-Goldstone modes
are constructed. The dilatonic mode governing the motion of the Minkowski space probe brane into the
covolume of supersymmetric AdSs5 space is found to be unstable and the bulk of the AdS5 space is unable
to sustain the brane. No such instability appears in the nonsupersymmetric case.
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L. INTRODUCTION

In recent years, there has been a resurgence of interest in
conformal field theories fueled by a deeper understanding
of properties of supersymmetric (SUSY) gauge theories.
This is particularly the case concerning their connection
with theories defined in anti-de Sitter (AdS) space [1,2].
AdSs space is defined to be the hyperboloid satisfying the
equation

Lz — (XO)Z _ (XI)Z _ (XZ)Z _ (XS)Z _ (X4)2 + (XS)Z
m
(1.1)

which is embedded in a six-dimensional space with invari-
ant interval
ds? = dX™Mf) pndX?N; M N=012345
(1.2)

and metric tensor NMN with signature
(=1, +1, +1, +1, +1, —1). The isometry group of the hy-
perboloid is SO(4,2) whose generators, MMV =
—MNM satisfy the algebra:

(M Mgl = iy rMar — AImrMoa s
— AncMmr + AnrMoacp). (1.3)

Alternatively (pseudo)translation generators can be de-
fined as

Py = mMsy; M=01234 (1.4)
so that the SO(4, 2) algebra takes the form
[MMN’ MLR] = i(’?MLMNR - nMRMNL - TINLMMR
+ NneMyr)
[MMN’ ﬁL] = i(’?MLISN - 77NL13M) (1.5)

[ﬁMr ﬁN] = _iszMN

where 7,4y is the five-dimensional Minkowski space met-
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ric with signature (—1, +1, +1, +1, +1). Note that, in the
limit m? — 0, this reduces to the Poincaré algebra of five-
dimensional Minkowski space (M5).

The nonlinear realization of this isometry group which
encapsulates the long wavelength dynamical constraints
imposed by the spontaneous symmetry breaking when an
AdS, space is embedded in AdSs space was previously
constructed [3]. Using coset methods [4,5], an SO(4,2)
invariant action in terms of the Nambu-Goldstone modes,
¢ and v*, u = 0, 1, 2, 3 associated with the spontaneously
broken generators P, and M u4 Tespectively was secured as

S = —U]d4x(dete)

—g-fddx(deté)[cosh(m¢)]4

3 4y sin(v/v?)
X[cos(\/_)—i- —x/?cosh(md)) fD,,(ﬁ} (1.6)

where o is the AdS, brane tension. Here
sinh(vm?x?)
22

is the AdS, vierbein and D, = é;l”a,, is the AdS cova-
riant derivative while

e,k x) = PY () + P (%)

v

(1.7)

XpXy,

PT /,W(-x) = 77,11,1/ - 7 (18)

X, X
PL[LV('X):%

are transverse and longitudinal projectors, respectively.
Since this action is independent of d,v, v# can be
eliminated via its field equation

L tan(~/v?) , D,¢
Vo cosh(meb)
and the SO(4, 2) invariant action can be recast as
D,¢n*"'D,¢

cosh’(ma)
(1.10)

(1.9)

S

—(7fd“x(deté)[cosh(md))]“\/l +

Note that the Nambu-Goldstone mode, ¢, contains a mass
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term with m%/) = 4m? as well as nonderivative interactions.

The action constitutes an AdS generalization of the
Nambu-Goto action:

Sng = —o'fd“x,/l +(3,0)%

Using the factorized form of the AdSs vielbein, along
with the v* field equation, the invariant interval for AdSs
space reads

(1.11)

ds? = e Pdxtdx’ nPre,,(x) + (dop())?  (1.12)

with warp factor A(¢) = In[cosh(m¢)]. This allows the
identification of the Nambu-Goldstone mode ¢ with the
covolume coordinate describing the motion of the AdS,
brane into the remainder of the AdS5 space.

In this paper, we construct the nonlinear realization of
the AdSs and SUSY AdSs ® S| isometry groups on an
embedded four-dimensional Minkowski space. The super-
symmetric case turns out to be particularly interesting.
Here it is found that the Nambu-Goldstone boson describ-
ing the motion of the inserted Minkowski space probe
brane into the remainder of the AdSs space exhibits an
instability which drives the probe brane to —oo.
Alternatively, this result can be interpreted as the incom-
patibility of simultaneous nonlinear realizations of both
scale symmetry and supersymmetry or the nonviability of
the spectrum containing both the dilaton of spontaneously
broken scale symmetry and the Goldstino of spontaneously
broken supersymmetry. On the other hand, no such un-
stable behavior arises when the M, probe brane is inserted
into nonsupersymmetric AdSs space.

II. FOUR-DIMENSIONAL MINKOWSKI SPACE
PROBE BRANE IN AdSs SPACE

To study the case of the four-dimensional Minkowski
space probe brane in AdSs space, it proves useful to
introduce the AdS5 coordinates:

2,2
m-x M4
2

m?x? -
e
2

which parametrize the hyperboloid and in terms of which
the AdS5 space invariant interval takes the form

1
XH = gMXixh X4 = —[sinh(mx4) —
m

X = %[cosh(mxé;) + .1

ds? = ™ dxtn,,dx" + (dx,)* (2.2)

Inserting the Minkowski space probe brane at x; = 0,
the broken generators are identified as P* = mD, M** =
mIK*. Defining

PH = PP+ mMH* M#Y = MPY (2.3)

the SO(4, 2) algebra, Eq. (1.5), takes the form
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[PH, P"]=0; [M~", PA]=i(n#P" — " P¥)
[MMV’M)‘P]: i(»,’MMVp — nMPMV/\ — an‘MMP + anMM/\)
[908, I 1= LM (M, I | =iy I = )
[P*, K"]=—i(n**D—M"") [D,P*]=iP",

[D, K+ =#(Pﬂ —m2Km); [D,M*]=0. (2.4)
Note that M*¥ and P* form a Poincaré algebra, while the
generators JK#, M*¥ constitute an SO(3, 2) subalgebra [6—
8].

A model independent way of encapsulating the long
wavelength dynamical constraints imposed by spontane-
ous symmetry breakdown is to realize this SO(4, 2) isome-
try nonlinearly on the Nambu-Goldstone bosons consisting
of the dilaton, ¢, associated with the broken symmetry
generator D and v* associated with the KX# spontaneously
broken generators. Since the spontaneously broken sym-
metries are space-time symmetries, the motion in the coset
space is accompanied by a motion in space-time. Thus we
consider the product of a space-time translation group
element with the coset group element and define the group
element:

QO = ¢ ¥ PupieD o= Ky (2.5)
To extract the total variations of the coset coordinates and
the corresponding transformation of the space-time point,
consider the product g{) with g a general group element
parametrized by real infinitesimal constants. An explicit
calculation then gives

gQx, p(x), v(x)) = QK', ©'(x'), v'(x"))h(6)

with h = (/20" (M, gp element of the unbroken (stabil-
ity) group. Doing this allows the extraction of the forms of
X, @' (), v#(X), 07 (x) [7,8].

To construct SO(4, 2) invariants, it is useful to define the
algebra valued Maurer-Cartan 1-form Q~'dQ which, us-
ing Eq. (2.6), is seen to have the simple transformation

property

Q7 1dQ) () = [ Q™ 'dQ)h™ ] (x) + (hdh™ ) (x).
Q2.7)

(2.6)

Expanding the Maurer-Cartan form in terms of the gener-
ators as

Q7 1dOx) = i[-wh ()P, + 0p(x)D — 0% (x) K,

+ il (OM,,] (2.8)
and exploiting the SO(4,2) algebra along with liberal
application of the Baker-Campbell-Haussdorff formula,
the various 1-form coefficients wh(x) = dx”e,*, wp(x),
w'y(x), o), are secured. Here
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e, = e“’[PiM(v) + PIII/,M(U) cos(y/m?/v?)]

o sin(y/m?/v?)

m?/v?

2.9)

yn

is the AdSs vielbein.
Again using the SO(4, 2) algebra, this time in the above

transformation law (2.7), leads to the invariant combination
d*x' dete’ = d*x dete. (2.10)

Thus an SO(4, 2) invariant action is constructed as
S= —a‘fd“xdete
= —a'fd“xe““’[cos(m)
sin(y/m?/v?)
m?/v? :|

with o the Minkowski probe brane tension. As previously,
the v# Nambu-Goldstone field is not an independent dy-
namical degree of freedom and it can be eliminated using
its field equation

i tan(y/m?/v?) _
m?[v?

Substituting back then produces the action

—e %9,pv* 2.11)

—e kY, . (2.12)

1
S = —a'fd“xe“‘p\/l + Wefz‘paﬂgon”“”a,,gp. (2.13)

After using the v* field equation, the invariant interval

1

ds? = dx*e, n, e, dx” = e**dxtn,,dx" + — (dp)?
m

(2.14)

is seen to have the same form as the AdS5 invariant interval
obtained previously after identification ¢ < %x4. Thus the
dilaton dynamics describes motion of the brane into the
rest of AdS5 space.

In the above construction, we have chosen a particular
combination of the broken generators, referred to as the
maximal solvable subgroup basis or parametrization [6],
whose nonlinear realization on the Nambu-Goldstone
modes has the attractive feature of directly relating the
Nambu-Goldstone dilaton to the motion of the brane into
the rest of AdSs space. An alternate choice of broken
generators is given by

_ 1 U 1 2
Kt = — Pt — —M"" = —(P* —2m*>KH). (2.15)
m m m
This choice leads to the four-dimensional conformal alge-
bra
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[P, PY]=0; [MM¥, PM]=i(qAP* = Pr)
(M, M/‘P] = i(n“"M”” — 77M/)MV/\ — »,’V/\M,up + anMM/\)
K#,K"]=0; [M**, KM ]=i(n# K" — 0" K*)
[P#,K"]=2i(n*"D—M*") [D,P*]=iP*,
[D,K*]=—iK*; [D,M*"]=0. (2.16)

Since the generators K* and K* differ only by the un-
broken translation generator P*, it follows that the action
(2.13) is also invariant under four-dimensional conformal
transformations. Moreover, one can subtract the invariant
action piece o [ d‘xe®? ensuring a zero vacuum energy
and thus producing the conformally invariant action

1
S = —a'fddxe“’d[\/l + W672¢3MWMV€D5M€D - 1i|.

(2.17)

Note that the leading term in a momentum expansion is
simply

S = —a'fddxez“’aﬂgon“”aﬂgp (2.18)

which is the familiar result.

ITI. FOUR-DIMENSIONAL MINKOWSKI SPACE
PROBE BRANE IN SUSY AdS; ® S; SPACE

The supersymmetric AdSs; ® S| isometry algebra in-
cludes the generators MMN PM. M N =0,1,2, 3, of the
SO(4,2) isometry algebra, the SUSY fermionic charges
Q4. 94 a,b=1,234 and the R charge which is the
generator of the U(1) isometry of S;. This SU(2,2|1)
isometry algebra [9,10] is
[MIMN, NIER] = i(mMENINR — MR gNL

— pNLNEMR 4 VR MLy

[MIMN, PL] = i(qML PN — VL pM)

[P, PV = —imP 1 [N, Q1= ~ S(SMVQ),;

[

(41X, Q,]=3(Q3MY), [P, Q,]=-Z(I"Q),;
[ﬁM’ Qa] = _(QFM)a [R, Q,a] = Qa;
[R’ Qa] == Qa

- . om . 3
(Q Q) =2( Tl Puy =5 XUV — 53R ). B

[\

3

[\

where the five-dimensional 4 X 4 matrices I'M satisfy the

Clifford algebra
{TM, TN} = —29pMN (3.2)

and the spin matrices are
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SN = S[PM,TV] = 3N, (3.3)
We choose
m_ [y M=p=0123
r {i}/s; M= 3.4

and use a Weyl representation for the y matrices so that

0 ot
no— ) ad .
(e )

(o )

[P~, P} = 0;

a,a=1,2;

(3.5)

[M#2, PA] = i P* — APy
[KH, K] = # MEY:

[D, P*] = iP*  [D, K*] = m%(pu R KRY:

(00 0pt = 0; 1040t =0

_ 2
{84 St = Waﬁfd(P# —2m*X,)

[R, M*] =0

{04 Sp} = —i(G My, — 2ieq 3D + 3€,4 R)
[PMr Qa] = 0
1 ., N 1,
(M4, Q] = =5 ok PO MM, 0] = =5 64,0

[Rr Qa] = Qa; [Rr Q_d] = _Q_d; [R! Sa] = _Sa;

i
2

i _ .
[K*, S,] ZﬂUZdQ ;

[D.S)=~35: [D.S]=~

Using coset methods, we nonlinearly realize this
SU(2,2|1) isometry algebra of the super-AdSs ® S, space
on the Nambu-Goldstone modes of the broken symmetries.
For the case that SUSY is only partially broken, see [11].
These are the dilaton, ¢, and v* associated with D and JK#
respectively, the Goldstinos A,, A, and Ag,, Ag, of the
spontaneously broken supersymmetries, Q. Qg Sa» S4.
and the R axion a. Note that all the supersymmetries
have been broken and there is no residual unbroken
SUSY. The Nambu-Goldstone modes, v*, associated
with the broken symmetries generated by JK* and the
Goldstinos Ag,; Ag, associated with the supersymmetries
S, S, are not independent dynamical degrees of freedom
but are instead given in terms of the dilaton, ¢, the

[M#7, K] = il I — A K

1
[M}“/r Sa/] == Eaﬂyaﬁsﬂa

Sa [ Q] = =5 0kyS%:
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Sur = ot 0 .
U Y
. 3.6)
Sub — < —MO‘ _‘Z)'aa> — _S4n,
o aa

Embedding a four-dimensional Minkowski space (M,)
probe brane at x* = 0 breaks the space-time symmetries
generated by P* = mD and M** = _mj(“, as well as the
supersymmetries generated by Q ,, Q , and the R symme-
try. Defining P* = P* + mM** and

Q.= (_pma ) Qu=(msn00) 67
the resultant algebra is the SUSY extension of the
P*, M*, D, K" algebra given in Eq. (2.4) and reads

(M, M/\P] = i(n“)‘M”P — nMPMV)\ — n”"M“P + anMM)

[PH, K*] = —i(n*'D — MP);

[D,M*]=0 [R P*]=0; [R, K+] = 0;

{S'éw Sﬁ} = 0 {Qa) Q_a} = za-gap/.u

{Qa’ Sﬂ} = l(O'z;MMV + ZiGDzBD + 360‘BR)
{Qa: ga} = O’
[P*, S,]=iock. 0%

{Sa’ Qd} =0 (38)

[PH, ga] = ianJaLo'z

[P, Q,] = 0;

_ 1 _
wr § 1= — _gur B
M~ §,] S0 S

[RS]=Se [D.0J=50s [D.0:]=350s

i

[K#’ Qa] = 2

a M
S04

_ i
[KH, 841 ZWQ Thi

[

Goldstinos, A,, A, and the R axion, a. Nonetheless, it is
still necessary to include them as auxiliary fields in the
coset construction of the SU(2, 2|1) invariant action. To
implement this construction, we define the product of a
space-time translation and coset group elements by

Q) = o P pilA* (000 +240%] 5ieD piaR HilAG(X)Se+A545°]

X e” WKy, (3.9)

The covariant building blocks out of which an invariant
action can be constructed are secured using the Maurer-
Cartan one-form Q~'d(Q), where d = dx*9,,. Expanding
in terms of the SU(2, 2|1) charges via
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0140 = i[-w*P, + w30, + @54,0% + 0pD + wgR — W K, + 0§S, + 05,5 +Iwh'M,,], (3.10)

the individual covariant one-forms are then extracted as

v# sin(y/v?/m?)

w* = ot + Pﬁ‘y(v)cb”[cos( v /m?) = 1] — &p—
m

wp = @pcos(y/v?/m?) — sm(\/_Z/_m)

5 . . /vz/mz . sm(‘/v /m? )
wp = Op wQ=chos< > )—i—(wgo'-v) ey
i 3 imd sin(5/") i JoTm . osin(2
Do = wQ-dcos< )—(wsa-v) w§ = w?cos( >—(a)Q0'-v)
2 v /m? 2 N~ V2>
_ <\/v2/m2>+(~ Y sm(Vv/m)
W5, = @5, COS @Dyo v
Sa Sa D) 0 v2/m2 (311)
~ -, sin(y/v?/m?) ,
w'e = dvt + &% + [cos(y/v?/m?) — 1P} (v)@% + [W - I}P’iv(v)dv + m?[cos(y/v?/m?) — 1]
: 777 : 77,2
X P, ) = Pl )37 + pon SO g, S /)
VP I
rdv” — vdvm\ 1 sin(o/m? I
W = @1 — [cos(yJv?/m?) — 1](” S ) _ LWV e~ avumy + Leos(fot/m?) — 1]
v 2 v /m? 2
. . sm(\/ */m?)
X (w'upP” (v) — ’JPﬁLp(v)) — (@%v" — o4 v*) e
Here the one-forms denoted by the @ are defined via the expansion
(e—i[Ag(x)S(,+X§d§d]€7iaRe7igoDefi[A“(x)Q,l+A_dQé‘]eix“P“)d(efix“P# ei[/\”(x)Qa+):,iQ_é‘]eigaDeiaRei[Ag(x)Sa+)_Lga§"’])
=i[-o*P, + ®30, + wQaQ + @pD + @R — 05 K, + @S, + &5,8* + @4 M,,] (3.12)
which is just the Maurer-Cartan form with v# = 0. The individual one-forms with tildes then take the form
GH = JxVA He® 1 232 I N 175} 2 15Y 2 e[p—ia )2 Y
o* = dx"A,Fe?(1 — W/\SAS + W(ASO' dA — dAgatAg) — W(/\Sa- Ag)da + ¢ [e "“A5(dAat Ag)
+ e““/%()\sa“dX)] @p = do + 2ie? 4 (AgdA) — 2ie?t(AgdA) = @"me ¢V, @
r = da + 3e?[e “(AgdA) + et 1(A5dN)] + 3dx"A, P e (Ago,A5) = dx*V ,a
0 = e?(eiadr — dx“AM”()_\ga",,)“) Dps = e?(etied) + dxtA," (Asor,),)
1 -
@§ = dAg + SdeA§ — idad§ — idxrA, e (Aso, A9)A
(3.13)

+ é(ASUTXg)e (AsoHV)%e?dx AP — ie[e " AgdA + 2T AgdA]AE — 4e‘P dAoH Ag)(Ag0 )"

nypT

Su

_ 1 _ _ _ | _ _
o = dAg, T Edﬁ"’\fa +idadg, + idx*A,"e?(Aso,A5) A5, + é(/\SUT/\g)eM,,pT()\gd'“”)de"’dxAAAp
+ ie?[2e @ AgdA + et Ngd M)A, + iewﬂa(dx(-rwxs—)(xga-w)d

@ = 2m*(dx"A,*e? — &)

L = e?[2(e A Ag — eTUANGHY X5) + 2 (AT Ag)dx A P,
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where the Akulov-Volkov vierbein is defined as

Ay =18," +iAa"a, A — a,Aa" D] (3.14)

The vierbein e, ” relates the coordinate differentials dx*

to the covariant coordinate differentials w” according to
(3.15)

v — ¥ v
w dxte,”.

Since the one-form @* can also act as a basis one-form,
one can expand

w* = dx"e,* = @"N, ", (3.16)
where using Eq. (3.11), N, is extracted as
N,* = 8,* + [cos(y/v?/m?) — I]PHV“(U)
- Mg 2 /m?
oo, L SV /m) (3.17)
m /UZ/mQ
It is also useful to define the vierbein €, as
Or =dxve,r. (3.18)
so that
e, ) =¢€,"N,". (3.19)

Using the Akulov-Volkov vierbein, A MV, the @* one-

form can be expanded as
@ =dx"e,r = dx"e?A,PT,*,

(3.20)

where T,* can be gleaned from Eq. (3.13) as
1 - i _
T8 = 5VM<1 - WA§A§> 5 (gD, s
_ 2 _
- @VAsO"u)ls)eitp - —2(/\50'”“)\5)@,,&37@
m

2 S o
+ W[A%(D,,/\cr“/\g)e"“ + (A0t D, Net ],
(3.21)

with D,, = A,,'*,,. Using Egs. (3.19) and (3.20), the
vierbein can be written in a product form as

V= oA PT TNV
e, e¥A,PT,"N,".

(3.22)

Since d*xdete is invariant and an invariant kinetic en-
ergy for the R-axion can be formed by contracting the
covariant derivatives with the vierbein, an SU(2,2|1) in-
variant action is constructed as

S = —a'fd“xdete(l + Vﬂae;mn’”e;l”v,,a)
= —afd“xe“"’ detA detN detT(1 + eV ,ah**V ,a),

(3.23)

where
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hpy = N;ITT;“‘A;l'u’l]va;lKT,:lo—A;]V. (324)

The determinant of N can then be explicitly evaluated
giving
- Kot lv2 /m2
detN = cos( vz/mz)[l + e“pVMgDU—Z M}
N

(3.25)

Since the action only depends on v* and not its deriva-
tives, it is not an independent dynamical degree of free-
dom. As such it can be eliminated [12] by setting the
invariant one-form wp to zero. Solving this constraint
equation then gives

tan(/v?/m?) _

Py
v, ey e *V, 0. (3.26)
which, in turn, allows us to write
1 -
N# =8, + ( E— 1>P”VM(V¢)
I+ 52 V,en7V.0
1 e % -

V,oV*e. (3.27)

2

\/1 +EV, 07"V, 0
The superconformal Goldstinos, Ag and )_\g, are also not
independent dynamical degrees of freedom but can be
expressed in terms of derivatives of the Goldstinos A and
A, and products of these with the Nambu-Goldstone bosons
¢ and a. The covariant constraint equation is obtained by
setting to zero the fermionic one-forms wg =0 and
@34 = 0. Combining the various one-forms in (3.11)
and (3.13), the solution to these covariant constraints be-

gins as
e = _l(a.,ua X)a + ..
S e (3.28)
A5 = —%(a#)m#)d + o

Substituting the above expression for N ,#, the invariant
action then takes the form

20 _ -
S = —O'fd4xe4"’ detA detT\/l + em_vaanWVM

X (1 +e72¢V , ah**V ,a). (3.29)

The action is an invariant synthesis of Akulov-Volkov and
Nambu-Goto actions. Note that the pure dilatonic part of
the action (obtained by setting the Goldstinos and a to zero
sothat A,” = T,” = §},) reproduces the previous action,
Eq. (2.13), of the Minkowski space M, probe brane in
AdSs without SUSY. As such, the dilaton describes the
motion of the probe brane into the rest of the AdS5 space.
However, in this case, because of the spontaneous break-
down of the complete SUSY, there is no invariant that can
be added to the action to cancel the vacuum energy as one
was able to achieve in the nonsupersymmetric Minkowski
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space probe brane case [cf. Eq. (2.17)]. It follows that the
dilaton dynamics feels an e¢*¢ potential. This contains a
destabilizing term linear in ¢ which drives the dilaton field
¢ — —oo, Since the dilaton describes the motion of the
probe Minkowski M, brane into the remainder of AdSs
space, it follows that the Minkowski space brane is driven

to the infinite boundary of AdSs space and the interior of
J

PHYSICAL REVIEW D 73, 025001 (2006)

the AdSs space cannot sustain the brane. Alternatively

expressed, the spectrum cannot include both the

Goldstino and the dilaton as Nambu-Goldstone modes.
An alternate combination of broken generators K* =

#(IA’“ — 2m?*ZK*) can also be defined. This leads to the
4D superconformal algebra

[P#, P"] = 0; [K*, K"] = 0; [P, K*] = 2i(p**D — M*)  [D, P*] = iP*; [D, K*] = —iK*,
[D, M) =0 [M*, PA]=i(n*P" — 9" PL);  [MM, KM = i(n**K” — " K*)
[M~Y, MAP] = i(nHAMPP — mlP MYA — pPAMEP + 7?P MHD) [R, P*] = 0; [R, K*] = 0;[R, M**] =0
[P0 ] =0: [P0]=0 {00 0a} =20%Pui {SwSab= 200K, {Q0 Qp} = 0:
10w Ot =0  [M*,0,]= —;awaﬁgﬁ; [+,0.] - 3 40P R Q= 0. .
(R 0=-0: [D.0]1=50s [D.0]=50. [RS]J=-5: [RS]=S.

i _ i-
D,Sa = _*Sa, D,Sd = _*Sd
[D.5.= 15 [D.S)=-1

[P'LL) Sa] =i ao-lu

ad

[K,U,’ Sa] =0

(o3

{Qar gd} = 0’ {Sau Qd} = 0’

The spontaneously broken symmetries are R, dilatations
(D), special conformal (K*), SUSY (Q,, Q) and SUSY
conformal (S,, S,). Since the generators K* and K*
differ only by unbroken translation generator P*, the ac-
tion (3.29) is invariant under superconformal transforma-
tions. The leading terms in a momentum expansion are just

S = —a‘/d“x{e““’ detA — 1detAe** D, 0" D, ¢

— 1detAe** D, an*" D, a}. (3.31)
Once again the potential for the dilaton ¢ is unstable and
there is an incompatibility of simultaneous nonlinear real-
izations of SUSY and scale symmetry in Minkowski space

[K/L) Qa] = ia-fodS_d;
MH?, S, ] = — L gnr B,
[ ’ a] - 50- a PpB

{Qa, S,B} = l.(O'M;;MMV + 2i6a,3D + 360(,BR)

[K#: Qd] = iSaO-f:d [P'u" Sa] = io-ng_d;

_ 1 —
[M/“/) Sa] == E&Mydﬁsﬁ [KM’ Sa] = 0’
{04 Spt = —i(G} M., — 2i€q sD + 3€4 gR)
{Sa Spt=10; {84 Sgh=0.

[
[13]. Note that the origin of this unusual behavior is not

simply a consequence of the introduction of a scale due the
spontaneously broken SUSY. It has been shown that there
is no incompatibility in securing simultaneous nonlinear
realization of spontaneously broken scale and chiral sym-
metries [14] where a scale is also introduced. In that case,
the spectrum of the effective Lagrangian admits both a
pion and a dilaton.
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