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The possibility that neutron stars may contain substantial hyperon populations has important implica-
tions for neutron-star cooling and, through bulk viscosity, the viability of the r-modes of accreting neutron
stars as sources of persistent gravitational waves. In conjunction with laboratory measurements of
hypernuclei, astronomical observations were used by Glendenning and Moszkowski [Phys. Rev. Lett.
67, 2414 (1991)] to constrain the properties of hyperonic equations of state within the framework of
relativistic mean-field theory. We revisit the problem, incorporating recent measurements of high neutron-
star masses and a gravitational redshift. We find that only the stiffest of the relativistic hyperonic equations
of state commonly used in the literature is compatible with the redshift. However, it is possible to
construct stiffer equations of state within the same framework which produce the observed redshift while
satisfying the experimental constraints on hypernuclei, and we do this. The stiffness parameter that most
affects the redshift is not the incompressibility but rather the hyperon coupling. Nonrelativistic potential-
based equations of state with hyperons are not constrained by the redshift, primarily due to a smaller
stellar radius.
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I. INTRODUCTION

The observed masses of neutron stars have been used for
years to constrain theoretical predictions of the equation of
state of degenerate matter at high density [1]. If an equation
of state is ‘‘soft’’ (low pressure) at high density, the maxi-
mum mass of a stable star in general relativity is lower than
for a ‘‘stiff’’ (high pressure) equation of state. The most
massive observed neutron star then sets a limit on the
softness of the equation of state. An accumulation of
neutron-star cooling observations favors (though not deci-
sively) the presence of exotic particles such as hyperons in
the cores of some neutron stars [2], which tends to soften
the equation of state. Hyperonic couplings in a relativistic
mean-field theory of dense matter can be constrained to a
range of values based on the measured properties of �
hypernuclei and the maximum neutron-star mass [3]. This
information is in turn useful for predictions of the bulk
viscosity of hyperonic matter [4,5], which has important
implications for the viability of r-modes in accreting neu-
tron stars as persistent sources of gravitational radiation
[6]. Spurred by these implications and by new observa-
tions, we revisit the constraints on hyperonic equations of
state.

First we consider the maximum mass. The most precise
observations of neutron-star masses come from radio pul-
sars in binaries, which are all measured with 95% confi-
dence to be less than 1:5M� [7]. Accreting neutron stars are
naturally expected to be more massive, and x-ray measure-
ments have long suggested that this is so. The best case for
decades has been Vela X-1 (4U 0900-40), with a most
likely mass of about 1:8M� but with 1:5M� included in
the 95% confidence interval [8]. However, this measure-
ment is now known to be contaminated by oscillations of
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the high-mass main sequence companion [9]; and while
more recent measurements [10,11] can claim smaller sta-
tistical confidence intervals, they are still subject to large
and poorly quantified systematic errors. Thus 1:5M� has
remained the constraint for many years.

However, this is changing. Recent radio observations of
PSR J0751+1807 by Nice et al. [12–14] yield a neutron-
star mass greater than 1:6M� at the 95% confidence level.
PSR J0751� 1807 orbits a white dwarf which, unlike the
main sequence star in Vela X-1, shows no evidence of
oscillations. The orbital period is 6 hours, short enough
that its decay due to gravitational radiation is observable.
This provides a post-Keplerian parameter to disambiguate
the two masses. Marginal detection of the Shapiro delay
implies intermediate orbital inclination angles, and disam-
biguates the inclination angle (somewhat) from the mass of
the neutron stars (see the figure in Ref. [13]). Also, Ransom
et al. [15] find through measurements of the periastron
advance of the highly eccentric orbit that Ter 5 I has
1:68M� or higher, formally at the 95% confidence level.
Overall this bound is tighter than that for PSR J0751�
1807, but the companion is probably a white dwarf and
there may be some contamination of the relativistic peri-
astron advance by its rotationally induced quadrupole.
Thus the mass constraint on equations of state is now at
least 1:6M� and may be 1:7M�.

Another constraint is the measurement of a gravitational
redshift by Cottam, Paerels, and Mendez [16]. The low-
mass x-ray binary EXO0748-676 displayed several absorp-
tion lines (inferred from multiple x-ray burst spectra) con-
sistent with a redshift z � 0:35. Estimates of numerous
possible sources of error in the redshift amount to a total of
no more than 5% [17], implying that equations of state
-1 © 2006 The American Physical Society
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should be ruled out if their maximum redshift is below
about 0.33.

Qualitatively, it has been stated [16] that softer equations
of state are disfavored by the redshift; here we make that
quantitative. Like Glendenning and Moszkowski [3], we
constrain the parameters of relativistic mean-field theory
between astronomical observation and hypernuclear ex-
periment. Since there is a fairly large parameter space
involved, most papers using the results of relativistic
mean-field theory use two canonical parameter sets corre-
sponding to a soft equation of state and a stiff equation of
state. We find that the so-called stiff equation of state is
actually the softest allowed (marginally) by the redshift
observation if hyperons are present. However, we can and
do construct stiffer equations of state that are compatible
with hypernuclear measurements and consistent with the
redshift observation. The most important stiffness parame-
ter as far as the redshift is concerned is the hyperon
coupling (and thus hyperon population) rather than the
incompressibility. We also note that nonrelativistic
potential-based equations of state are not greatly con-
strained by the redshift observation (they can all reproduce
it due to their smaller stellar radii). The new neutron-star
masses do not constrain the relativistic mean-field equa-
tions of state much compared to the redshift, but potential-
based models are constrained more effectively by the
masses than by the redshift. In the Appendix we provide
tabulations of several relativistic mean-field theory equa-
tions of state with hyperons that satisfy the new observa-
tional constraints for a variety of nuclear-matter
parameters.
II. EQUATIONS OF STATE

We consider two types of high-density equation of state
in this paper. The first is the main focus of the paper, and
the second is used for comparison to demonstrate model
dependence.

The first is based on relativistic mean-field theory and is
discussed in detail in Ref. [1]. (We note that other relativ-
istic models, such as the relativistic Brückner-Hartree-
Fock of Ref. [18], produce equations of state with qualita-
tively similar behavior.) Here the low-energy strong nu-
clear interaction is modeled as the tree-level exchange of
mesons between baryons (neutrons, protons, and possibly
hyperons). The starting point is the construction of a
relativistic Lagrangian, which is a sum of free-particle
Dirac terms for the baryons and leptons, plus free-particle
terms for the mesons (scalar �, vector !, and isovector �),
plus interaction terms including tree-level meson-baryon
interactions and perturbative self-interactions for the �
meson. This makes the theory a phenomenological low-
energy effective field theory, although it has the advantage
of being many-particle and relativistic by construction so
that the sound speed never exceeds the speed of light. It
also has a small number of parameters which can be fit
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simply to experiment; although this is a mixed blessing
since the many numbers known from nuclear experiments
must be distilled to a few. Mean-field theory also has the
disadvantage that it neglects correlations by construction.

Under the assumption that the bulk matter is (on a
macroscopic scale) static and homogeneous, the fields
are replaced by their mean values, time and spatial deriva-
tives vanish, and the Euler-Lagrange equations take a form
that is relatively simple to solve but is still somewhat
lengthy and thus we do not reproduce it here. It is enough
to state that the Euler-Lagrange equations in this approxi-
mation reduce to a set of coupled algebraic equations for
the lepton and baryon Fermi momenta and the meson
fields. These are combined with equations for generalized
�-equilibrium, electric charge conservation, and conserva-
tion of baryon number to obtain the Fermi momenta and
meson fields as functions of, for example, the total baryon
number density. These are then used to construct the
pressure and energy density, i.e. the equation of state.

The Euler-Lagrange equations feature five free parame-
ters, which under certain assumptions are fit algebraically
to numbers distilled from laboratory measurements of
many finite nuclei: the saturation density, binding energy
per nucleon and isospin asymmetry coefficient at satura-
tion density, and the overall incompressibility K and effec-
tive massm� of nucleons in the nuclear medium. The latter
two are difficult to estimate from available data and are
subject to systematic uncertainties, and thus papers using
this relativistic set of equations of state typically treat a
range of values for K (240–300 MeV) and m� (0.70–
0.80 times the nucleon mass m). (The compressibilities
are typically lower for nonrelativistic models.)

At roughly twice nuclear density in these equations of
state, the neutron Fermi momentum is high enough to
make hyperon production favorable in spite of the roughly
200 MeV=c2 mass difference. The hyperons of most inter-
est are the � and �� hyperons, which have the lowest
masses and therefore are created at the lowest densities and
occupy the largest fraction of the volume of a star.
However, the other hyperons �0, ��, ��, and �0 also
appear in small numbers at the very highest densities.
Hyperons introduce more free parameters. The hyperon-
meson couplings are assumed to be the same for all hyper-
ons but are weaker than the nucleon-meson couplings by
the ratios x�, x!, and x� for the three mesons. The former
two ratios are obtained algebraically from the measured
binding of � hyperons in nuclear matter (double-� hyper-
nuclei) and (more roughly) from hypernuclear energy lev-
els, resulting in x� � 0:72 (usually taken to be x� � 0:6)
and x! being determined as a function of x� and m�. [Note
that the first Table in Ref. [3] contains a typo which is
repeated in Ref. [1]: The value of x! reading 0.568 should
read 0.658, as can be seen by solving Eq. (5.59) of the latter
reference.] The remaining ratio x� is unconstrained by
hypernuclear data, since the � is isospin neutral and the
-2
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relevant �� hypernuclear measurements are highly uncer-
tain. As is standard practice, we set x� � x�, although the
final equation of state is rather insensitive to the precise
value [1].

Numerically, we construct these equations of state using
the methods of Ref. [1] as functions of the most uncertain
parameters m�, K, and x�. (The low density equation of
state is the standard BPS model [19], but this has little
effect on the mass-radius curve which is the subject of our
work.) For all cases we also use the values 0:153 fm�3 for
the saturation density, �16:3 MeV for the binding energy
per baryon at that density, and 32.5 MeV for the isospin
symmetry energy coefficient at that density, all as in
Ref. [1]. We use seven fiducial equations of state of this
type: Three sets of values from Ref. [1] are already in
common use in the literature: K � 240 MeV and m�=m �
0:78, the softest choice which we denote H1;
K � 300 MeV and m�=m � 0:78, an intermediate choice
denoted H2; and K � 300 MeV and m�=m � 0:70, the
stiffest of these equations of state denoted H3. All use x� �
0:6. We construct the stiffest such equation of state com-
patible with experimental data (H4) using K � 300 MeV,
m�=m � 0:70, and x� � 0:72. We construct three others
(H5–H7) for extreme values of K and m� with x� just
satisfying the astronomical constraints (see below and
Fig. 3). These parameter values are summarized in
Table I. We also construct relativistic mean-field equations
of state without hyperons by artificially setting the hyperon
masses to arbitrarily high values. These are denoted G1–
G7 correspondingly, but note that G3 is identical to G4.

The second type of equation of state is based on detailed
modeling of the potentials observed in laboratory nuclei,
such as done in Ref. [20]. That paper, denoted APR, gives
the canonical Schrödinger (nonrelativistic) model includ-
ing detailed potentials, two- and three-body interactions,
and with some relativistic effects in the form of perturba-
tions. It has the advantage of using more of the known
experimental numbers than relativistic mean-field theory,
including correlations and scattering data. However, the
fitting to experimental numbers is more involved, while
there are in the end only a few numbers that characterize
TABLE I. Parameters for seven fiducial hyperonic equations
of state in relativistic mean-field theory. Corresponding equa-
tions of state without hyperons are denoted G1–G7, but G3 and
G4 are identical.

Name K (MeV) m�=m x�

H1 240 0.78 0.60
H2 300 0.78 0.60
H3 300 0.70 0.60
H4 300 0.70 0.72
H5 300 0.80 0.66
H6 240 0.70 0.67
H7 240 0.80 0.69
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bulk matter and neutron-star structure. These equations of
state are few-body by construction and are fundamentally
nonrelativistic, resulting in causality violation at high den-
sities (the sound speed exceeds the speed of light). Since
we expect the recent observations to rule out softer equa-
tions of state, we also consider a very soft version of this
type denoted BPAL12 in Ref. [21]. The incompressibility
of BPAL12 is 120 MeV, which was known at the time to be
much too low. It was created explicitly to produce ‘‘artifi-
cially’’ the softest equation of state compatible with then-
known neutron-star masses (1:45M�). Since neither of
these equations of state includes hyperons, we also con-
sider the results of Balberg, Lichtenstadt, and Cook [22],
who include hyperons in a similar model, and denote their
equations of state as BLC1 (the softer) and BLC2 (the
stiffer).

III. MAXIMUM MASS

General relativity predicts a maximum mass for a star
stable to radial perturbations for a given equation of state.
This is seen by solving the well-known Oppenheimer-
Volkoff (OV) equations, which map a curve p��� (pressure
as a function of energy density) onto a curveM�R� (mass of
the star as a function of radius). The gravitational mass M
generically has a maximum, which rules out equations of
state that are too soft to produce the observed masses. The
tightest observational constraint at 95% confidence is now
1:68M� for Ter 5 I [15], though the corresponding 1:6M�
for PSR J0751� 1807 [14] may be cleaner. While PSR
J0751� 1807 has a 287 Hz rotation frequency [23], this is
well below the mass-shedding limit for all equations of
state and can be shown to increase the OV maximum mass
(which assumes no rotation) by no more than about 2–3%
[24]. Ter 5 I rotates at 104 Hz [15], and thus its maximum
mass is increased by less than 1% over the OV value.

We use a version of the OV equations due to Lindblom
[25]:

dm
dh
� �

4���h�r�h�3	r�h� � 2m�h�


m�h� � 4�r�h�3p�h�
; (1)

dr
dh
� �

r�h�	r�h� � 2m�h�


m�h� � 4�r�h�3p�h�
; (2)

using as independent variable the specific enthalpy

h�p� �
Z p

0
dp0=	p0 � ��p0�
: (3)

(Here G � c � 1.) Unlike the standard OV equations for
m�r� (the mass contained within a sphere of radius r) and
p�r�, Lindblom’s form does not suffer numerical difficul-
ties near the surface of the star, which is simply and
robustly defined by h � 0. We start by picking a central
enthalpy and evaluating an analytical expansion of the
equations at a point very close to the center of the star
(where the equations are singular). We then integrate down
-3
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to h � 0 and read off the total mass and radius of the star as
M � m�0� and R � r�0�.

In Fig. 1 we plot R�M� for our fiducial relativistic mean-
field equations of state, with hyperons (bottom) and with-
out hyperons (top). All equations of state without hyperons
are consistent with 1:68M�. The softest one with hyperons
(H1) has a maximum mass of 1:55M� and is ruled out by
the new pulsar observations [14,15]. H2 is nominally in-
consistent with the 95% confidence limit of 1:68M� for Ter
5 I. However, in practice H2 cannot be ruled out by this
observation and must be considered marginally consistent
because rotation (not included in the OV model) can
account for most of the 0:02M� difference and changing
the confidence level very slightly from 95% would bring it
within the limit. At the 68% confidence level for PSR
J0751� 1807 [14] (1:8M�), only the stiffest equation of
1.4 1.6 1.8 2 2.2 2.4

Mass (Msun)

10

11

12

13

14

R
ad

iu
s 

(k
m

)

       G1
(2.03, 10.9)

       G2
(2.09, 11.3)

    G3/G4
(2.38, 12.0)

       G7
(1.96, 10.8)

       G5
(2.02, 11.2)        G6

(2.36, 11.7)

1.4 1.6 1.8 2 2.2 2.4

Mass (Msun)

10

11

12

13

14

R
ad

iu
s 

(k
m

)

       H1
(1.55, 10.9)

       H2
(1.66, 11.4)        H3

(1.78, 11.8)

       H4
(2.03, 11.8)

       H5
(1.73, 11.3)

       H6
(1.78,11.6)

       H7
(1.68, 10.9)

FIG. 1 (color online). Oppenheimer-Volkoff mass-radius
curves for the fiducial relativistic mean-field equations of state
with hyperons (bottom) and without hyperons (top). The vertical
line is the observational 95% confidence limit 1:68M� from Ter
5 I. H1 is ruled out by the observation. H2 is marginally
consistent, allowing for a small increase in maximum mass
due to rotation and the imprecision of the constraint.
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state with hyperons (H3) is marginally allowed, while
again all equations of state without hyperons are allowed.

Of the potential-based equations of state (plotted in
[20,22]), BPAL12 is firmly ruled out with a maximum
mass of 1:45M� (at a radius of 9.0 km). This is not too
surprising, since BPAL12 was deliberately constructed
with an artificially low incompressibility K � 120 MeV
as an extreme example. The extremely soft example for
this type of equation of state should now be BPAL21,
which has a maximum mass of 1:67M� for a nonrotating
star (the 95% confidence limit from Ter 5 I) at a radius of
9.2 km. The hyperonic BLC1 equation of state has a
maximum mass of 1:55M�, which is also firmly ruled
out. The stiffer BLC2 has a maximum mass of 1:75M�,
which is compatible with the 95% confidence limit of Ter 5
I. APR stars have a maximum mass of 2:2M�, compatible
with all constraints.
IV. GRAVITATIONAL REDSHIFT

General relativity also predicts a redshift for photons
leaving the surface of a star with a strong gravitational
field. For a nonrotating star the redshift z obeys the relation

1� z �
�
1�

2GM

c2R

�
�1=2

: (4)

Since R decreases with M as M approaches its maximum
for a stable star, z generically has a maximum for the
maximum-mass star and an observation can rule out equa-
tions of state which cannot produce a strong enough red-
shift. Cottam, Paerels, and Mendez [16] have such an
observation, a gravitational redshift z � 0:35 obtained by
identifying several absorption lines in spectra constructed
from multiple bursts from the low-mass x-ray binary
EXO0748-676. Because of the number of consistent lines
the result is robust, although there may be errors at the few
percent level [17]. Pulsations from a more recent x-ray
burst have inferred a rotation frequency of 45 Hz for the
neutron star [26]. At this frequency rotational corrections
to the redshift should be a fraction of a percent [17] and the
nonrotating approximation suffices.

The redshift as a function of mass is plotted for the
fiducial relativistic mean-field equations of state in Fig. 2
and compared to the observational constraint from
EXO0748-676. Without hyperons, all equations of state
are consistent with z � 0:35 for masses greater than the
1:4M� typical of previous measurements, consistent with
the suspected higher masses of accreting stars in x-ray
binaries. With hyperons, only the stiffest of the usual
equations of state (H3) is marginally consistent with z �
0:35. Therefore we favor using H3 as the new soft equation
of state of this type and H4 as the stiffest. In fact, varying
values of the nuclear incompressibility K and nucleon
effective mass m� allow for several soft equations of state
marginally consistent with the redshift, as shown in Fig. 3.
Although H3 nominally has z � 0:34, it should be consid-
-4
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FIG. 2 (color online). Gravitational redshift vs mass for rela-
tivistic mean-field theory equations of state with hyperons (bot-
tom) and without hyperons (top). The horizontal line is z � 0:35
measured for EXO0748-676. H1 and H2 are ruled out, even
allowing for the estimated measurement errors. H3, formerly
considered the stiff equation of state, is actually the softest
compatible with the redshift. H5 through H7 barely satisfy the
redshift constraint by construction (see the next Figure).
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FIG. 3. Relativistic mean-field theory equations of state can be
described by incompressibility K (in MeV), effective nucleon
mass m�=m, and scalar meson-hyperon coupling x� (see text).
The dark surface marks those equations of state with a maximum
redshift of 0.35. Equations of state below the surface are incom-
patible with the observed redshift of EXO0748-676. While H3 is
below the surface, it is within the estimated 5% error bar and
should be considered marginally allowed. Equations of state
above the lighter surface are compatible with the 95% confi-
dence limit on the mass of Ter 5 I. The points corresponding to
our fiducial equations of state are indicated.

OBSERVATIONAL CONSTRAINTS ON HYPERONS IN . . . PHYSICAL REVIEW D 73, 024021 (2006)
ered marginally consistent because there may be measure-
ment errors of order 5% [17] and, more importantly, the
maximum redshift is extremely sensitive to the equation of
state at several times nuclear density. For example, artifi-
cially excluding all hyperons but the � and �� raises the
maximum redshift by 0.03 (a 10% correction), even though
the populations of those hyperons are very small.

Of the potential-based equations of state, BPAL12 is
marginal with z � 0:36 while all the others (including
those with hyperons) easily meet the observational con-
straint, even when the maximum masses are similar to the
relativistic mean-field theory models. This is because the
maximum-mass stars have 11 km radii in the relativistic
models and 9 km radii in the nonrelativistic ones. Radii in
024021
general are approximately determined by the pressure near
nuclear density [27], which in relativistic mean-field theory
is about twice what it is for potential-based models.
Physically this has the simple explanation that most of
the matter in the neutron star is within a factor of 2 of
nuclear density, and so the pressure at higher densities
matters less for the typical radius (though it is important
for the maximum mass). The fact that the redshift does not
constrain the potential-model equations of state suggests
that their low pressure near nuclear density may be favored
(in the sense that there is more unconstrained parameter
space). However, at high densities these models violate
causality, which then favors the relativistic mean-field
models at high density.

Rather than using a set of fiducial equations of state, one
can invert the problem to ask ‘‘Given an observation of z �
0:35, what parameters in relativistic mean-field theory with
hyperons are compatible with it?’’ As stated in Sec. II, the
three main parameters are x�,K, andm�=m. If we put them
all at the stiff end of their allowed ranges consistent with
nuclear and hypernuclear experiment, we obtain equation
of state H4 with a maximum redshift z � 0:43. If we soften
the equation of state by lowering x� (and thus x! and x�)
while keeping the other parameters fixed at the H4 values,
we get z � 0:35 at x� � 0:61. Similarly, softening the
equation of state by lowering K or raising m�=m results
in bounds of K � 210 MeV or m�=m � 0:84 respectively,
both of which are less stringent than the experimental
-5
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bounds [1]. A plot showing the redshift constraint surface
(and Ter 5 I mass constraint surface) in the three-parameter
space is shown in Fig. 3. The boundaries of the cube
correspond to the parameter ranges inferred from experi-
ment, except for x� where the experimental lower bound is
far below the redshift constraint surface. The redshift
seems to be most sensitive to the hyperonic coupling
parameter x�, and fairly insensitive to the incompressibil-
ity K which is traditionally considered the measure of
stiffness. This can be seen from the fact that the redshift
constraint surface in Fig. 3 is fairly flat and that x� is the
only difference between H3 and H4. (The mass constraint
surface is tilted, i.e. more correlated with K and m�.) The
physical explanation is that the main hyperon interaction at
high densities is the repulsion (represented in this frame-
work by the vector meson !), and thus increasing the
coupling constants decreases the hyperon population of a
given star. Hyperons, and any other new degrees of free-
dom, soften the equation of state at high densities and thus
reduce the maximum mass and redshift.

There is also a very recent discussion of a measured z �
0:4 in the x-ray binary 4U 1700� 24 by Tiengo et al. [28],
but it is very tentative. This redshift comes from one
spectral line, which is probably better explained by z �
0:012 (implying emission well away from the surface of
the star), and there are no other spectral features consistent
with z � 0:4. H4 would still be compatible with such a
redshift, but would be fairly marginal.
TABLE II. Baryon number density n (fm�3), energy density �
(erg=cm3), and pressure p (dyn=cm2) for H3.

n � p n � p

0.03 5:041e� 13 3:581e� 31 0.63 1:221e� 15 1:842e� 35
0.06 1:009e� 14 3:148e� 32 0.66 1:290e� 15 2:024e� 35
0.09 1:518e� 14 1:237e� 33 0.69 1:359e� 15 2:217e� 35
0.12 2:031e� 14 3:124e� 33 0.72 1:430e� 15 2:407e� 35
0.15 2:549e� 14 6:126e� 33 0.75 1:501e� 15 2:597e� 35
0.18 3:073e� 14 1:040e� 34 0.78 1:573e� 15 2:791e� 35
0.21 3:604e� 14 1:624e� 34 0.81 1:646e� 15 2:991e� 35
0.24 4:144e� 14 2:389e� 34 0.84 1:720e� 15 3:197e� 35
0.27 4:694e� 14 3:360e� 34 0.87 1:794e� 15 3:408e� 35
0.30 5:263e� 14 4:261e� 34 0.90 1:870e� 15 3:596e� 35
0.33 5:846e� 14 5:122e� 34 0.93 1:946e� 15 3:773e� 35
0.36 6:440e� 14 6:107e� 34 0.96 2:023e� 15 3:950e� 35
0.39 7:044e� 14 7:236e� 34 0.99 2:100e� 15 4:125e� 35
0.42 7:658e� 14 8:417e� 34 1.02 2:178e� 15 4:301e� 35
0.45 8:282e� 14 9:588e� 34 1.05 2:256e� 15 4:478e� 35
0.48 8:914e� 14 1:083e� 35 1.08 2:336e� 15 4:657e� 35
0.51 9:556e� 14 1:215e� 35 1.11 2:416e� 15 4:837e� 35
0.54 1:021e� 15 1:357e� 35 1.14 2:496e� 15 5:019e� 35
0.57 1:087e� 15 1:508e� 35 1.17 2:577e� 15 5:202e� 35
0.60 1:153e� 15 1:670e� 35 1.20 2:659e� 15 5:386e� 35
V. CONCLUSION

We have compared equations of state for hyperon stars
with new astronomical observations of mass and gravita-
tional redshift. Nonrelativistic potential-based models are
not greatly constrained by the new observations.
Relativistic mean-field theory models, however, are tightly
constrained by the observed gravitational redshift. In fact,
the stiffest of these models commonly used in the literature
(which we denote H3) is so soft as to be only marginally
compatible with the observation. When the full range of
parameters consistent with experiments on hypernuclei is
considered, there are still many such equations of state
allowed and the hyperon coupling parameter is found to be
the main one determining the redshift. As a consequence
we advocate that future studies involving these models use
H3 and a new set of canonical parameter values which we
denote as equations of state H4–H7 (see the Appendix). If
through further observations the 95% confidence limit on
the mass of the neutron star in PSR J0751� 1807 is
narrowed to the present 68% confidence limit, it would
rule out all but H4.

Moving away from the details of a specific model, the
general physical result is this: The presence of hyperons in
neutron stars is constrained but not ruled out by the gravi-
tational redshift observation (and to a lesser extent by high-
mass observations). In general the equations of state that
024021
survive are stiffer than the range previously considered in
the literature. This means that the hyperons are less numer-
ous, reducing, for example, the effect of enhanced cooling
and bulk viscosity, which is a subject for future work [29].
It may also be useful to consider phenomenological equa-
tions of state that behave like potential-based models near
nuclear density but like relativistic mean-field models at
higher densities.
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APPENDIX

For many purposes the detailed microscopic properties
of a matter model are unnecessary, and all that is desired is
a tabulation of pressure, energy density, and baryon num-
ber density. In Tables II, III, IV, V, and VI we provide these
for equations of state H3–H7. The low density (n < 0:3)
parts of some of these (before hyperons or other strange
matter appear) are the same as in Ref. [1]. We duplicated
the procedure of Glendenning [1] from the beginning using
constants from Ref. [30], which leads to some discrepan-
cies in the third or fourth significant figure.
-6



TABLE V. Same as the previous Table, but for H6.

n � p n � p

0.03 5:038e� 13 2:458e� 31 0.45 8:220e� 14 8:987e� 34
0.06 1:009e� 14 3:597e� 32 0.48 8:846e� 14 1:026e� 35
0.09 1:517e� 14 1:380e� 33 0.51 9:481e� 14 1:166e� 35
0.12 2:031e� 14 3:308e� 33 0.54 1:013e� 15 1:320e� 35
0.15 2:549e� 14 6:183e� 33 0.57 1:078e� 15 1:489e� 35
0.18 3:073e� 14 1:001e� 34 0.60 1:145e� 15 1:674e� 35
0.21 3:603e� 14 1:513e� 34 0.63 1:212e� 15 1:875e� 35
0.24 4:139e� 14 2:160e� 34 0.66 1:281e� 15 2:090e� 35
0.27 4:685e� 14 2:974e� 34 0.69 1:350e� 15 2:299e� 35
0.30 5:241e� 14 3:933e� 34 0.72 1:421e� 15 2:512e� 35
0.33 5:816e� 14 4:709e� 34 0.75 1:493e� 15 2:732e� 35
0.36 6:402e� 14 5:588e� 34 0.78 1:565e� 15 2:959e� 35
0.39 6:998e� 14 6:621e� 34 0.81 1:639e� 15 3:188e� 35
0.42 7:604e� 14 7:807e� 34

TABLE III. Same as the previous Table, but for H4.

n � p n � p

0.03 5:041e� 13 3:581e� 31 0.63 1:242e� 15 2:416e� 35
0.06 1:009e� 14 3:148e� 32 0.66 1:315e� 15 2:685e� 35
0.09 1:518e� 14 1:237e� 33 0.69 1:390e� 15 2:972e� 35
0.12 2:031e� 14 3:124e� 33 0.72 1:466e� 15 3:260e� 35
0.15 2:549e� 14 6:126e� 33 0.75 1:543e� 15 3:556e� 35
0.18 3:073e� 14 1:040e� 34 0.78 1:621e� 15 3:863e� 35
0.21 3:604e� 14 1:624e� 34 0.81 1:701e� 15 4:182e� 35
0.24 4:144e� 14 2:389e� 34 0.84 1:782e� 15 4:512e� 35
0.27 4:694e� 14 3:360e� 34 0.87 1:865e� 15 4:856e� 35
0.30 5:256e� 14 4:561e� 34 0.90 1:949e� 15 5:191e� 35
0.33 5:839e� 14 5:711e� 34 0.93 2:034e� 15 5:517e� 35
0.36 6:438e� 14 6:924e� 34 0.96 2:120e� 15 5:847e� 35
0.39 7:050e� 14 8:313e� 34 0.99 2:208e� 15 6:183e� 35
0.42 7:676e� 14 9:883e� 34 1.02 2:296e� 15 6:525e� 35
0.45 8:315e� 14 1:149e� 35 1.05 2:386e� 15 6:875e� 35
0.48 8:967e� 14 1:321e� 35 1.08 2:476e� 15 7:232e� 35
0.51 9:631e� 14 1:508e� 35 1.11 2:569e� 15 7:597e� 35
0.54 1:031e� 15 1:710e� 35 1.14 2:662e� 15 7:969e� 35
0.57 1:100e� 15 1:928e� 35 1.17 2:756e� 15 8:346e� 35
0.60 1:170e� 15 2:164e� 35 1.20 2:852e� 15 8:727e� 35
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All equations of state but H6 are given up to a baryon
density n � 1:2 fm�3, which is more than sufficient for
stable nonrotating stars. We stop H6 at n � 0:81 because at
high densities the effective mass of the proton becomes
TABLE IV. Same as the previous Table, but for H5.

n � p n � p

0.03 5:045e� 13 4:568e� 31 0.63 1:207e� 15 1:720e� 35
0.06 1:010e� 14 2:739e� 32 0.66 1:274e� 15 1:879e� 35
0.09 1:518e� 14 1:123e� 33 0.69 1:343e� 15 2:045e� 35
0.12 2:032e� 14 2:929e� 33 0.72 1:412e� 15 2:219e� 35
0.15 2:549e� 14 5:788e� 33 0.75 1:482e� 15 2:401e� 35
0.18 3:073e� 14 9:754e� 33 0.78 1:552e� 15 2:591e� 35
0.21 3:602e� 14 1:494e� 34 0.81 1:624e� 15 2:789e� 35
0.24 4:140e� 14 2:139e� 34 0.84 1:697e� 15 2:995e� 35
0.27 4:686e� 14 2:916e� 34 0.87 1:770e� 15 3:209e� 35
0.30 5:241e� 14 3:827e� 34 0.90 1:844e� 15 3:431e� 35
0.33 5:806e� 14 4:874e� 34 0.93 1:919e� 15 3:660e� 35
0.36 6:388e� 14 5:840e� 34 0.96 1:995e� 15 3:898e� 35
0.39 6:982e� 14 6:819e� 34 0.99 2:071e� 15 4:136e� 35
0.42 7:586e� 14 7:883e� 34 1.02 2:149e� 15 4:377e� 35
0.45 8:199e� 14 9:040e� 34 1.05 2:227e� 15 4:623e� 35
0.48 8:822e� 14 1:029e� 35 1.08 2:306e� 15 4:875e� 35
0.51 9:454e� 14 1:156e� 35 1.11 2:386e� 15 5:132e� 35
0.54 1:010e� 15 1:287e� 35 1.14 2:466e� 15 5:396e� 35
0.57 1:074e� 15 1:424e� 35 1.17 2:548e� 15 5:666e� 35
0.60 1:140e� 15 1:558e� 35 1.20 2:630e� 15 5:942e� 35
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negative. This indicates a limitation of the Lagrangian,
which was posited as a low-energy effective theory. In
practice this is not an issue since n � 0:81 is almost the
central density of the maximum-mass nonrotating H6 star.
We find that extrapolating H6 beyond n � 0:81 under a
wide range of assumptions only changes the maximum
mass of a stable star by 1%.
TABLE VI. Same as the previous Table, but for H7.

n � p n � p

0.03 5:039e� 13 3:353e� 31 0.63 1:195e� 15 1:621e� 35
0.06 1:009e� 14 3:585e� 32 0.66 1:261e� 15 1:777e� 35
0.09 1:518e� 14 1:329e� 33 0.69 1:328e� 15 1:942e� 35
0.12 2:031e� 14 3:151e� 33 0.72 1:396e� 15 2:116e� 35
0.15 2:549e� 14 5:842e� 33 0.75 1:465e� 15 2:298e� 35
0.18 3:072e� 14 9:426e� 33 0.78 1:535e� 15 2:488e� 35
0.21 3:601e� 14 1:401e� 34 0.81 1:605e� 15 2:715e� 35
0.24 4:136e� 14 1:966e� 34 0.84 1:677e� 15 2:897e� 35
0.27 4:678e� 14 2:645e� 34 0.87 1:749e� 15 3:114e� 35
0.30 5:228e� 14 3:442e� 34 0.90 1:822e� 15 3:339e� 35
0.33 5:787e� 14 4:362e� 34 0.93 1:896e� 15 3:572e� 35
0.36 6:356e� 14 5:349e� 34 0.96 1:971e� 15 3:812e� 35
0.39 6:942e� 14 6:252e� 34 0.99 2:047e� 15 4:059e� 35
0.42 7:537e� 14 7:227e� 34 1.02 2:124e� 15 4:309e� 35
0.45 8:140e� 14 8:292e� 34 1.05 2:201e� 15 4:564e� 35
0.48 8:752e� 14 9:454e� 34 1.08 2:279e� 15 4:825e� 35
0.51 9:374e� 14 1:071e� 35 1.11 2:358e� 15 5:093e� 35
0.54 1:000e� 15 1:199e� 35 1.14 2:438e� 15 5:369e� 35
0.57 1:064e� 15 1:332e� 35 1.17 2:519e� 15 5:651e� 35
0.60 1:129e� 15 1:473e� 35 1.20 2:601e� 15 5:941e� 35
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