
PHYSICAL REVIEW D 73, 024012 (2006)
Dynamical evolution of black hole-neutron star binaries in general relativity:
Simulations of tidal disruption
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We calculate the first dynamical evolutions of merging black hole-neutron star binaries that construct
the combined black hole-neutron star spacetime in a general relativistic framework. We treat the metric in
the conformal flatness approximation, and assume that the black hole mass is sufficiently large compared
to that of the neutron star so that the black hole remains fixed in space. Using a spheroidal spectral
methods solver, we solve the resulting field equations for a neutron star orbiting a Schwarzschild black
hole. The matter is evolved using a relativistic, Lagrangian, smoothed particle hydrodynamics (SPH)
treatment. We take as our initial data recent quasiequilibrium models for synchronized neutron star
polytropes generated as solutions of the conformal thin-sandwich (CTS) decomposition of the Einstein
field equations. We are able to construct from these models relaxed SPH configurations whose profiles
show good agreement with CTS solutions. Our adiabatic evolution calculations for neutron stars with low-
compactness show that mass transfer, when it begins while the neutron star orbit is still outside the
innermost stable circular orbit, is more unstable than is typically predicted by analytical formalisms. This
dynamical mass loss is found to be the driving force in determining the subsequent evolution of the binary
orbit and the neutron star, which typically disrupts completely within a few orbital periods. The majority
of the mass transferred onto the black hole is accreted promptly; a significant fraction (� 30%) of the
mass is shed outward as well, some of which will become gravitationally unbound and ejected completely
from the system. The remaining portion forms an accretion disk around the black hole, and could provide
the energy source for short-duration gamma-ray bursts.
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I. INTRODUCTION

The infall of compact objects into black holes (BHs) is
of considerable interest in many branches of astrophysics.
In particular, many of the arguments that can be made
about coalescing neutron star-neutron star (NSNS) binaries
also apply to coalescing black hole-neutron star (BHNS)
binaries. Both are strong candidates for the central engines
of short-duration gamma-ray bursts (GRBs), since the
merger time scale following tidal disruption is comparable
to the GRB duration and the gravitational binding energies
provide the characteristic energy scales inferred by observ-
ers [1,2]. It is possible that any ejected matter may con-
tribute significantly to the r-process elemental abundance
of the universe [3–5]. Additionally, they are expected to be
among the most important sources of gravitational waves
(GWs) that can be detected by both terrestrial laser inter-
ferometers such as LIGO [6], VIRGO [7], GEO [8], and
TAMA [9], as well as the proposed space-based interfer-
ometer LISA [10].
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The key difference between the sources that can be
observed with LIGO (and comparable detectors) and
LISA is the characteristic frequency of the GW emission:
LISA’s characteristic frequency range falls within 10�4 �
10�1 Hz, whereas LIGO operates between 10� 500Hz.
Because of this, LIGO is most sensitive to the mergers of
stellar-mass BHs, whereas LISA will observe more mas-
sive merging systems that involve either intermediate mass
BHs (IMBHs), MBH � 102 � 104M�, or supermassive
BHs (SMBHs), MBH > 105M�. The formation history
leading to these encounters is likely to involve completely
different processes.

Compact binaries with stellar-mass BHs are likely to be
formed through typical stellar binary evolution, at rates
that depend on parameters such as the binary mass ratio
distribution, common-envelope efficiency, and the physics
of supernova kicks, all of which remain somewhat uncer-
tain (see [11–13] and references therein for a thorough
review). The mass distribution of BHs in such systems is
poorly constrained, as none have been observed to date, but
may vary widely, spanning a range 2M� <MBH < 25M�
[14]. For sufficiently tight binaries, merger will occur
within a Hubble time. In these cases, the dissipative effects
of gravitational radiation will cause the orbit to circularize
as the binary separation shrinks, so that the eccentricity of
the orbit is expected to be almost zero by the time the
binary enters the LIGO band. Whether or not the compact
-1 © 2006 The American Physical Society
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object is tidally disrupted by its BH companion, as well as
where this would occur in the latter case with respect to the
Innermost Stable Circular Orbit (ISCO), depends on both
the compaction of the compact object and the mass ratio
(see Sec. II).

This simple picture does not apply to compact objects
orbiting BHs with considerably higher mass. Both IMBHs
and SMBHs are expected to reside within stellar clusters,
whose dynamics will be determined by both stellar-BH and
stellar-stellar gravitational encounters (scattering). Some
stars will typically be scattered, either strongly or weakly,
into the ‘‘loss cone’’, i.e., the volume of phase space
encompassing orbits with sufficiently small periastrons
that the star will be tidally disrupted before being kicked
into another orbit by future encounters (see [15] for a
review of the original derivations, and [16,17] for more
recent work). As a result, most objects that enter the loss
cone do so at very high eccentricity, with periastron dis-
tances of 5–50 Schwarzschild radii [18,19]. In many
cases, these systems will approach the BH with eccentric-
ities e * 0:1 [20].

GW detections from coalescence with higher mass BHs
may yield very little information about the physics of NS
matter, for the case of a NS falling into an IMBH, or any
compact object (BH, NS, or white dwarf) falling into an
SMBH with M * 106M�. These objects should plunge
through the ISCO of the BH intact, since the tidal-
disruption radius lies within the ISCO, and will likely be
swallowed whole by the BH. For the opposite case, appli-
cable to white dwarfs (WD) falling into IMBHs (and NSs
into stellar-mass BHs), tidal disruption will occur outside
the ISCO, a process we describe in detail in Sec. II.

For the vast majority of its lifetime, a stellar-mass com-
pact object binary will inspiral very slowly, such that it can
be described by a point-mass, post-Newtonian (PN) treat-
ment. PN formalisms for the adiabatic inspiral epoch are
now completely determined up to 3.5PN order [21], and
include lowest-order spin-orbit and spin-spin terms
[22,23]. Once finite-size and tidal effects become impor-
tant at close separation, it becomes necessary to solve the
fully nonlinear Einstein field equations. Quasiequilibrium
binary configurations in circular orbits have been calcu-
lated in GR for NSNS [24–30], BHNS (see [31], hereafter
BSS; [32], hereafter TBFS, and references therein), and
BHBH binaries ([33–36]; for a thorough review of the
topic and references, see [37,38]). Details of the transition
from slow inspiral to rapid plunge, and deviations from the
point-mass energy versus frequency relation found in qua-
siequilibrium sequences, may yield important information
about the physical parameters of the NS equation of state
(EOS; see, e.g., [24,39,40]). It has been suggested [41] that
a combination of 10–50 broadband and narrowband ob-
servations of NSNS mergers might be able to constrain the
NS radius to within a few percent. We will show below that
BHNS mergers may be just as interesting, but it is likely
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that the interpretation of physical features in the GW signal
will be significantly more complicated, since differences
between stable and unstable modes of mass transfer may
lead to radically different scenarios.

Eventually, for those systems in which the tidal limit is
reached before the ISCO, mass transfer onto the BH will
begin. This process is fundamentally dynamic in nature,
and can only be modeled accurately by relativistic, three-
dimensional hydrodynamic calculations. Attempts have
been made to model these systems analytically, but as we
will show below, the conclusions rely on a number of
unphysical assumptions. The earliest work describing
mass transfer in detail for compact object binary mergers
[42] assumed that mass transfer in NSNS binaries would
conserve both mass and orbital angular momentum, and
that both NSs would remain on a quasicircular orbit in
corotation during the evolution; a similar set of assump-
tions was used to describe BHNS binaries as a possible
source of gamma-ray bursts [43]. A more complex treat-
ment developed in [44] drops the assumption of circularity,
since it is not seen to hold in numerical calculations (e.g.,
[4]). Still, their model for the evolution of BHNS systems
undergoing mass transfer depends on a number of ad hoc
assumptions that need to be tested by dynamical calcula-
tions in order to be proven valid.

Beyond uncertainties about the form of the late-inspiral
GW signal produced by a BHNS merger, there remains the
question of the event rate, which remains uncertain given
the complete lack of detection of such systems to date.
Still, it is possible to estimate the likely merger rate using
population synthesis models, which can be calibrated
against the observed galactic NSNS binary population
and supernova rates. Recent estimates predict an advanced
LIGO annual detection rate of anywhere from a few merg-
ers [13] up to potentially several hundred [12].

Should a BHNS binary merger be observed, it might
reveal a great deal about the physics of matter at nuclear
densities. In particular, the onset of mass transfer would
yield a clear indication about the NS radius, and, as we will
explain in detail below, the stability of the mass transfer
would yield important information as to the nuclear EOS.
Whereas for NSNS binaries the characteristic frequencies
of GW emission during the merger and formation of a
remnant (either a hypermassive NS or BH) will typically
occur at frequencies outside the peak sensitivity of even an
advanced LIGO detector, the same is not true for BHNS
binaries. Since the frequency at the onset of instability
scales roughly inversely with the total binary mass, we
expect stellar-mass BHNS mergers to occur at character-
istic frequencies at which LIGO will be most sensitive,
�100–500 Hz. If the GW signal from a merger was ob-
served to be coincident with a short-duration gamma-ray
burst, we could potentially determine their distance, lumi-
nosity, and characteristic beaming angle [45]. A detailed
theoretical understanding of these systems is now more
-2



DYNAMICAL EVOLUTION OF BLACK HOLE-NEUTRON . . . PHYSICAL REVIEW D 73, 024012 (2006)
urgent than ever, in light of the recent localizations of short
GRB afterglows [46–51], the first ever for these systems
(many long-duration GRBs have been localized, but are
believed to be the result of collapsing stars, not merging
compact binaries).

Unfortunately, the current state-of-the-art for hydrody-
namic calculations of BHNS inspiral and merger is far
behind that for NSNS mergers. Calculations of the latter
have been performed using a variety of Newtonian, PN,
and relativistic gravitational formalisms (see [38,52] for
thorough reviews, and [53], hereafter FGR, for a more
recent summary). Many calculations have now been per-
formed in either the conformal flatness (CF) approximation
to general relativity (GR) [53,54], or in full GR [55–58].
These GR calculations now include sophisticated treat-
ments of the NS EOS and physically appropriate initial
spins ([58]; NSs are expected to be nearly irrotational in
the inertial frame, since the viscous time scale is much
longer than the inspiral time scale, see [59,60] and Sec. II
below).

The key difficulty that must be overcome to perform
simulations of relativistic BHNS mergers is the same one
that arises in the study of BHBH binaries; the presence of a
spacetime singularity inside the black hole. To avoid en-
countering the singularity in a numerical simulation, the
BH interior is excised from the computational grid in most
current applications. This is justified by the fact that no
information can propagate from the BH interior to the
exterior, so the exterior can be evolved independently of
the interior. While progress has been reported, especially
very recently [61], black hole evolution calculations have
been plagued by numerical instabilities. In some ways,
BHNS mergers are even more difficult to evolve consis-
tently, since both the singular behavior of the BH as well as
the hydrodynamic nature of the NS must be confronted.
Whereas the BHBH problem involves a pure vacuum
solution of the Einstein field equations, the NS must always
be evolved in such a way that the relativistic fluid is treated
properly.

As a result of these difficulties, all hydrodynamic cal-
culations performed to date of stellar-mass BHNS mergers
have used Newtonian or quasi-Newtonian gravitational
treatments [1,5,62–66]. Needless to say, binaries contain-
ing a BH can be evolved accurately only by using relativ-
istic hydrodynamics in a relativistic spacetime. We
emphasize here that this applies both to the tidal field
created by the BH, as well as the self-gravity of the NS.
Previous Newtonian calculations have in some cases
[64,66] used an approximate black hole potential, sug-
gested in [67], that creates an ISCO at 6MBH, but no single
static potential can generate the full set of relativistic
forces experienced by matter in the strong-field regime.
Calculations employing a fixed background BH metric
have typically been performed for stars undergoing a tidal
interaction with a massive BH, rather than a stellar-mass
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BH, with relativistic dynamical terms but a Newtonian
treatment of the self-gravity. The secondary, in fact, is
often assumed to be a white dwarf or main-sequence star.
These models include SPH treatments without self-gravity
[68], and both PPM [69] and spectral method [70] treat-
ments with Newtonian self-gravity. More recently, SPH
techniques have been devised that evolve the NS matter
in the background metric of a stellar-mass BH, using
Newtonian-order correction to model the NS self-gravity,
for both SPH [71,72] and characteristic gravity [73]. This
approach is appropriate for describing main-sequence stars
or white dwarfs. However, since the tidal disruption is a
result of a competition between the black hole tidal force
and stellar self-gravity, this approach is not sufficient to
describe BHNS binaries accurately. Modeling tidal disrup-
tion in BHNS binaries requires a relativistic treatment of
both the black hole and the neutron star.

Here, we will make use of the CF approximation to GR,
introduced by Isenberg [74] and Wilson and collaborators
[75]. The CF approximation amounts to assuming that the
spatial metric remains conformally flat, so that the gravi-
tational fields can be found by solving the constraint equa-
tions of GR, decomposed in the conformal thin-sandwich
(CTS) decomposition [76], alone. The CTS formalism has
been used in numerous applications to construct initial data
describing both NSNS and BHNS binaries in quasiequili-
brium [24–32]. For these initial data the choice of a
conformal background metric is completely consistent
with Einstein’s initial value (constraint) field equations,
although different choices may describe the astrophysical
situation at hand more or less accurately. The situation is
different for dynamical simulations in the CF approxima-
tion (e.g. [53,54,75,77,78]), since the assumption that the
spatial metric remains conformally flat is no longer strictly
consistent with Einstein’s field evolution equations. For
many applications, however, CF provides an excellent
approximation. For spherically symmetric configurations,
as an example, the CF approach is exact, and for many
other applications the error has been shown to be in the
order of at most a few percent (see, e.g., [79]). It is
particularly useful for exploring dynamical behavior, e.g.,
collapse or tidal breakup, which occurs on dynamical time
scales and is unaltered by secular effects like gravitational
radiation-reaction.

In this paper we present the dynamical extension of BSS,
who calculated the first relativistic, quasiequilibrium
BHNS sequences as solutions of the CTS decomposition
of the Einstein field equations. Modifying their code to
treat the metric for the Schwarzschild BH in isotropic (CF)
coordinates, rather than the Kerr-Schild coordinates re-
ported in BSS, we take their corotating quasiequilibrium
configurations as initial data. As in BSS, we assume an
extreme mass ratio, MBH � MNS, which allows us to hold
the BH position fixed and restrict the computational grid to
a neighborhood of the NS, thereby avoiding complications
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arising in the BH interior. We also assume a polytropic
equation of state for the neutron star, as well as synchro-
nous rotation. The resulting dynamical calculations are the
first of their kind to solve the CTS field equations for the
spacetime around the NS self-consistently by treating both
the NS and BH relativistically. They allow us to study
details of the dynamical mass-transfer process, particularly
its stability. The CF approximation holds a stable equilib-
rium configuration constructed in the CTS formalism in
strict dynamical equilibrium. Our calculation is a prototype
of more detailed general relativistic calculations we hope
to provide in the future that will involve irrotational NS
models with more realistic EOSs and compactions, arbi-
trary mass ratios, and a fully self-consistent treatment of
the spatial metric.

In the CF approximation, gravitational radiation reaction
must be added in by hand in order to drive the system
toward merger. While it is the secular energy losses to
gravitational radiation that initially drive the binary system
toward the point of tidal disruption, they play a much
reduced role in the dynamics thereafter. Indeed, while
secular forces determine the path the binary takes prior
to merger, the merger itself is a fundamentally dynamical
process, as we discuss in great detail below.

Our work is organized as follows. In Sec. II we discuss
the important physical scales that define our problem, and
present a detailed treatment of the traditional picture for
determining the stability of mass transfer. We then discuss
the limitations of this model, and explain why it may not be
applicable for BHNS mergers. In Sec. III we describe our
numerical methods, including the details of both our im-
plementation of the CF field equations as well as our use of
smoothed particle hydrodynamics (SPH) techniques to
evolve the fluid configuration. In Sec. IV we compare our
relaxed initial data to previous quasiequilibrium models,
and find that we can construct configurations that satisfy
the field equations to high accuracy while reproducing
previous results. In Sec. V we present our simulations of
merging binaries for different models of the NS polytropic
EOS. Finally, in Sec. VI we discuss our results in the
context of GW astrophysics, and describe our plans for
further calculations.
II. PHYSICAL OVERVIEW

The evolution of binaries containing NSs is a fully
relativistic problem, since lowest-order PN approximations
break down in the strong gravitational fields present during
late stages of the merger. However, we can use information
from Newtonian and quasi-Newtonian calculations to es-
timate the various time scales and physical regimes we
expect to encounter. Thus, we first classify the relevant
physical scales we expect to encounter in our study of
BHNS binary evolution, and then generalize the standard
model for stable, binary mass transfer to relativistic stars.
In doing so, we will explain why this model, variants of
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which have been used previously to describe the evolution
of compact binaries, is unlikely to apply to BHNS mergers.

Our simple mass-transfer model does have physical
relevance, as it can apply to the case of a WD inspiraling
in a nearly circular fashion toward an IMBH in a globular
cluster. Such a star will begin transferring mass long before
reaching the ISCO. However, since WDs are typically
kicked into highly eccentric orbits prior to interactions
with the BH, the orbit may not have time to circularize
fully before the onset of mass transfer. In such cases, the
binary evolution will be more complicated than the sce-
nario we consider here; it has been studied before by
several groups (see [16,80], and references therein).

A. Units, time scales, and characteristic lengths

The four most important time scales characterizing the
problem at hand are the NS dynamical time scale tD, the
viscous time scale tv, the orbital time scale T, and the GW
radiation-reaction time scale tGW. Throughout this paper,
we set G � c � 1. The BH and NS masses can be written
in terms of the initial mass ratio q as MBH � q�1MNS or
equivalently MNS � qMBH, and the NS radius RNS �
C�1MNS � qC�1MBH, where C � MNS=RNS is the com-
pactness parameter.

The dynamical time scale of the NS is given by

tD �

�����������
2R3

NS

MNS

s
� 21=2C�1:5MNS � 21=2qC�1:5MBH: (1)

We wish to compare this with the orbital and radiation-
reaction time scales at the radius where Roche-lobe over-
flow will begin. To estimate this radius, we will use the
approximate form proposed in [81],

Rr � 0:46a
�

q
1� q

�
1=3
; (2)

which gives the (volume-averaged) Roche-lobe radius as a
function of the mass ratio and binary separation a, for a
binary treated as a pair of point masses in the corotating
frame. This definition differs from the original definition of
the Roche lobe, which was defined for incompressible
matter (point masses are in effect infinitely compressible),
but the physical scalings are the same; the coefficient
becomes 0:41 for incompressible matter instead of 0:46.
The Roche-lobe radius is equal to the NS radius at a
separation

aR � 2:17q�1=3�1� q	1=3C�1MNS

� 2:17q2=3�1� q	1=3C�1MBH; (3)

at which point the (Keplerian) orbital period is

T � 2�

�������
a3
R

MT

s
� 20:1�1� q	1=2C�1:5MNS

� 20:1q�1� q	1=2C�1:5MBH � 14tD; (4)
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FIG. 1 (color online). The critical mass ratio q � M�=MBH as
a function of the secondary’s compaction C � M�=R�, for which
mass transfer begins at the ISCO, taken here as a � 6MBH (solid
line). For systems above the curve, mass transfer begins while
the orbit is stable; for those below, the secondary may plunge
into the BH before being tidally disrupted. Dashed vertical
curves show characteristic compactions of a WD or NS; dotted
horizontal curves show typical mass ratios for a 1M� compact
object orbiting a 10M� stellar-mass BH, a 103M� IMBH, or a
106M� SMBH. Dot-dashed curves show where �, the ratio of the
light crossing time the viscous time scale of the NS, equals unity,
and where �Vis, the nondimensional turbulent viscosity assumes
its largest reasonable value for the turbulent viscosity [See
Eqs. (7) and (9)]. Only configurations to the left of these curves
can synchronize prior to merger.
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where MT � MNS �MBH is the total binary mass, and the
last relation holds for q
 1, or equivalently, MT ’ MBH.
We note that in this limit, the orbital period is a fixed
multiple of the NS dynamical time scale, regardless of
the properties of the NS.

For a point-mass binary on a circular orbit, lowest-order
radiation reaction predicts that the binary will inspiral,
losing energy and angular momentum, on a characteristic
time scale tGW given by

tGW �
a
_a
�
E
_E
�

J

2 _J
�

5

64

a4

MNSMBHMT
� 4�; (5)

where � is the coalescence time, i.e., the remaining time
until the point-mass binary would reach a � 0. At the
Roche-lobe separation, assuming q
 1, we have

tGW � 1:73q2=3C�4MNS � 1:73q5=3C�4MBH

� 1:23q2=3C�5=2tD: (6)

In general, the radiation-reaction time scale will be at least
an order of magnitude longer than the dynamical time scale
for any binary which begins mass transfer outside the ISCO
radius. The orbital period T, however, may become similar
to the coalescence time tGW, indicating that the infall
becomes quite rapid.

In Fig. 1, we show the regions in parameter space for
which the critical separation for Roche-lobe overflow lies
within or outside of the ISCO, for a wide variety of
compact object-BH binaries. Dashed vertical lines corre-
spond to the approximate compactness of either a WD or a
NS, whereas dotted horizontal lines show the approximate
mass ratios to be expected for a 10M� stellar-mass BH, an
IMBH, or a SMBH. Systems above the critical curve reach
the tidal limit before the ISCO, and are likely to transfer
mass onto the BH. For those sufficiently below the curve,
we expect that the compact object will pass through the
ISCO intact, and plunge onto the BH relatively intact.

We note however, that this simple picture may very well
be altered by a number of more complicated effects.
Recently, Miller [82] has argued that even if systems are
expected to reach the mass-shedding limit prior to crossing
the ISCO, in many cases they will have already begun to
plunge. Indeed, since the binary energy as a function of
separation flattens out significantly near the ISCO, tGW,
which is already nearly of order T, will systematically
underestimate the infall velocity (a similar argument was
used in [40] to argue that the GW energy spectrum pro-
duced in NSNS mergers declines dramatically near the
ISCO). Because of this, the ISCO may systematically
underestimate the binary separation at which prompt
merger becomes inevitable.

On the other hand, describing the ‘‘plunge’’ of an ex-
tended object like a NS may provide a misleading picture
of the dynamical merger in cases where the tidal disruption
occurs inside the ISCO but outside the horizon. While it is
certain that some matter, likely a significant fraction of the
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NS mass, will plunge inward directly onto the BH, this may
liberate a great deal of angular momentum into the outer
parts of the NS [83]. As a result, some fraction of the mass
may survive the plunge, at least initially, in the form of a
‘‘mini-NS’’, which will escape outside the ISCO on an
elliptical orbit. Needless to say, only dynamical calcula-
tions will clarify the role played by these competing
effects.

The final time scale we must consider is the viscous
damping time scale tVis, which we expect to play a crucial
role in determining the fate of the binary once mass trans-
fer commences. In the limit that the viscous time scale is
extremely short (high viscosity), we expect two important
phenomena to occur. First, tidal dissipation can synchro-
nize the binary so that the secondary is corotating upon the
onset of mass transfer. From [59], we note that a binary will
be synchronized by the time mass transfer begins only if

� �
RNS

tVis
* 60�1� q	5=3q�2=3C3; (7)
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tVis &
1

60
�1� q	�5=3q2=3C�4MNS

�
1

60
�1� q	�5=3q5=3C�4MBH; (8)

where � is the ratio of the light crossing time of the
secondary to its viscous time scale, as defined by [59]. If
we follow [84] and assume that turbulent viscosity is the
primary damping mechanism, we can define �Vis, the
turbulent viscosity parameter, so that

�Vis �
tD
tVis

: (9)

We see that synchronization will occur if

�Vis * 60�1� q	5=3q�2=3C5=2: (10)

On Fig. 1, we show curves marking the critical mass ratio-
compactness dependence for � � 1, which we define as
the ‘‘causal limit’’, as well as for �Vis � 0:1, which is the
maximum plausible value for turbulent viscosity in physi-
cal systems of interest [85]. Configurations to the left of the
curve can synchronize before merger; this includes essen-
tially all mergers where the secondary is either an MS star
or a WD. NS mergers, on the other hand, will be irrota-
tional in general, especially when the primary is a BH,
since the required viscosity to synchronize the NS in-
creases as the primary mass increases [59,60]. Viscosity
should also play a role after mass transfer starts, as we will
discuss in detail below.

B. The stability of mass transfer

Once the secondary fills its Roche lobe, it will begin to
transfer mass onto its companion. Such a process can be
either stable or unstable, depending on its response to mass
loss. If the volume of the Roche lobe shrinks faster than (or
expands slower than) the stellar radius, the process is
unstable, and the star will typically be disrupted violently.
On the other hand, if a small amount of mass loss causes
the star to shrink back within the Roche lobe, it is possible
for the mass loss to temporarily cease, or at the very least
settle down to a much smaller equilibrium level, whose
value can be determined based on the assumptions made
about conservation of mass and angular momentum, as we
discuss below.

We first note that models of stable mass transfer typi-
cally assume that the binary orbit remains quasicircular,
which in turn is only possible if the viscous time scale is
short relative to the orbital and GW time scales.
Maintaining a circular orbit requires that the orbital energy
evolve according to a fixed relation in terms of the orbital
angular momentum and the mass of the secondary, but
there is no reason to assume that such a relation should
hold a priori. Indeed, it is viscous dissipation that drives
the orbit toward circularity, by converting excess orbital
energy into other forms. Furthermore, when the viscous
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time scale is long, the mass-transfer rate can grow ex-
tremely rapidly, since the inner Lagrange point travels
into the secondary at roughly vinRNS=aR, unbinding pro-
gressively denser material from the NS. If this leads to an
unstable runaway, it is the mass loss that drives the orbital
evolution, and we expect to find the development of an
orbital eccentricity. This violates the typical assumptions
made in conservative mass-transfer models, which assume
that mass loss is steady, and slow enough that the orbit can
remain circular as mass is lost.

The early attempt to follow the mass-transfer process in
detail for NSNS binaries was provided by [42], who mod-
eled the heavier NS as a point mass, and the lighter
secondary using an EOS that yields a nearly flat mass-
radius relation down to MNS � 0:3M�, below which the
NS begins to expand rapidly with further decreasing mass.
Rather than assume conservative mass transfer, they pa-
rameterized the possible loss of both mass and angular
momentum from the system, finding that the former has
very little effect on their results. In their model, mass
transfer leads to a widening of the binary orbit, under the
condition that the NS radius must equal the radius of its
Roche lobe. As mentioned above, this will only hold for
systems in which tVis 
 tGW. Over time, the mass loss rate
and GW luminosity decrease rapidly from their large initial
values at closest approach (as does the rate of neutrino
production as the NS matter decompresses during the
transfer), until eventually the low-mass NS begins to ex-
pand rapidly [86] and unstable mass transfer begins.

Many of these ideas were revisited for a discussion of
BHNS binaries in [43], in light of the optical identification
of GRB counterparts at cosmological distances. Assuming
a Newtonian n � 1:5 polytropic EOS and fully conserva-
tive mass transfer, they find that the initial mass-transfer
rate between a 1:4M� NS and a BH with mass MBH �
3� 5M� will occur at a rate of �100M�s�1 for approxi-
mately 1 ms before decaying away according to the ap-
proximate power-law relation _MNS / t

�14=11, which
corresponds to MNS�t	 / t�3=11. As in [42], they assume
that the process will terminate when the NS reaches a
critical minimum mass and begins to expand unstably.

The most recent treatment of BHNS coalescence makes
a completely different set of assumptions about the dy-
namics during mass transfer. Based on the Newtonian
BHNS numerical calculations of Rosswog, Speith, and
Wynn [5], Davies, Levan, and King [44] assume that the
rapid time scale for mass transfer will violate the assump-
tion of circular orbits, which underlies the typical conser-
vative, quasiequilibrium mass-transfer formulation.
Instead, they make the following assumptions:
(1) M
-6
ass transfer occurs during a time scale corre-
sponding to half an orbit.
(2) D
uring this time period, the NS, treated as a uniform
density sphere, will lose mass from a shell whose
depth is a distance equivalent to the infall rate from
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the beginning of the mass-transfer rate multiplied by
half an orbital period.
(3) H
alf of the angular momentum lost to the trans-
ferred mass will return to the NS, placing it on an
eccentric orbit that will typically not lead to over-
flow during the next periastron passage.
This model does reproduce well the extremely high mass
loss rates initially seen during Newtonian numerical cal-
culations of BHNS mergers [1,5,63], but the assumptions
adopted are somewhat ad hoc. In particular, transferring
angular momentum back to the NS without adjusting its
mass causes a discontinuous evolution of the binary orbit.
In some cases, the NS will find itself on an orbit whose
periastron is outside the mass-shedding limit, leading to a
period of stable evolution until GW dissipation forces the
orbit to decay inward again back to the onset of mass
transfer. In contrast, we find below that mass transfer can
be quenched temporarily, but from this point on the NS
follows an elliptical trajectory that will take it back within
the mass-shedding limit prior to the next periastron
passage.

In Appendix A, we derive a semianalytic formulation for
conservative mass transfer onto a BH, modeling seconda-
ries either by a Newtonian or a relativistic polytrope. We
recover the scaling relations found in [42,43], and general-
ize them for arbitrary polytropic indices. Although these
relations are unlikely to hold for merging BHNS systems,
as shown in Fig. 1, the Newtonian results can be applied to
merging WDs as well as main-sequence stars undergoing
mass transfer. We note that there are semianalytic formal-
isms for describing nonconservative mass transfer as well
(see, e.g. [87] for a formalism involving mass transfer from
a main-sequence star onto a companion), and that these
have been useful in describing WDBH mergers [88], but
that the actual NS tidal-disruption process is sufficiently
dynamic that essentially all analytic treatments break
down.

The theory of accretion disk dynamics presents several
interesting connections to that of merging binaries, since
questions about the stability of mass transfer appear as well
(see, e.g., [89] and references therein). One key difference
between the models is the typical radial angular momen-
tum distribution; parameterizing the tangential velocity
profile as vt�r	 / r�, irrotational NS have a nearly flat
velocity profile, �� 0, and corotating NS a flat angular
velocity profile, � � 1, both larger than the Keplerian
value �K � �0:5. Moreover, NS differ greatly from disks
because of their infall velocity when they pass through the
ISCO, and their strong self-gravity. While angular momen-
tum distributions with larger values of � help to stabilize
mass- transfer in disks, stronger self-gravity destabilizes
mass transfer [89]. Thus, it is hard to generalize across the
classes, although we note that irrotational NS should, if
anything, be more prone to unstable mass transfer, as the
NS loses more angular momentum per unit mass lost from
its inner edge.
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III. NUMERICAL TECHNIQUES

To compute the dynamical evolution of a BHNS binary,
we fix the position of the BH and assume that the surround-
ing spacetime metric takes the form appropriate to a non-
spinning Schwarzschild BH. The approximation of a fixed
BH position is correct in the limit that MBH � MNS. Here,
we will study binaries with mass ratios q � MNS=MBH �
0:1, which is presumably within the range of values for
which the approximation of an extreme mass ratio is valid.

To calculate gravitational forces and evolve the fluid
configuration, we will work within the CF formalism,
which we explain in more detail in Sec. III B below. We
assume that the spatial metric is remains conformally flat,
so that it can be written in the form

ds2 � ���2 � �k�
k	dt2 � 2�idx

idt�  4�ijdx
idxj;

(11)

where � and �i are the lapse function and shift vector,
respectively. Under this assumption we only need to solve
the 3� 1 constraint equations for  , � and �i to determine
the metric.

Our initial configuration places the NS in a corotating
initial configuration. Irrotational configurations, which are
more realistic astrophysically, will be treated in a later
publication. We model the NSs as relativistic polytropes,
and assume adiabatic evolution, which we describe in de-
tail in Sec. III A.

The code we use both to relax and evolve BHNS binaries
is similar to that introduced in FGR [53] for evolving
NSNS binaries. We solve the five linked nonlinear field
equations of the CF formalism, Eqs. (24)–(26) below,
using the LORENE libraries, publicly available at http://
lorene.obspm.fr. These Poisson-like equations are solved
using spectral methods, decomposing the fields and their
sources in a set of radially distinct domains into radial and
angular expansions. Dynamical evolution is treated
through SPH discretization. Many aspects of the code
were discussed in detail in FGR, so we concentrate instead
on the changes and new features introduced to evolve
BHNS binaries.

Roughly speaking, we have made three significant
changes to the code to admit the presence of a BH in the
binary. First, the asymptotic Schwarzschild BH contribu-
tion to the spacetime metric is held fixed, allowing us to
solve the field equations describing the self-gravity of the
NS in a fully consistent way. Second, as discussed below,
we solve Poisson-like elliptic equations for  and �� 	, as
in BSS and elsewhere, rather than for � � ln� and � �
ln�� 2	, as in FGR and related treatments (TBFS denotes
the latter quantity ‘‘�’’). Third, we restrict the spatial
domain of our spectral methods field solver to a finite
radius centered on the NS, as was done in BSS and
TBFS, which allows us to avoid problems near the BH.
Indeed, our computational domain is chosen so as not to
overlap the event horizon at any time. As a result, we do
-7
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not make use of the asymptotic boundary conditions typi-
cally used by LORENE-based codes, which can be ex-
tended to spatial infinity through the proper coordinate
transformations [90]. The use of a restricted spatial domain
has been introduced before, in the context of domains with
ingoing and outgoing GWs [91], but with a set of BC’s that
are not appropriate to the (elliptic) problem at hand.
Instead, as we describe below, we have introduced a multi-
pole expansion BC, used here and in TBFS, which should
be more accurate than the lowest-order power-law falloff
conditions traditionally used in grid-based calculations.
Below, we first summarize the relevant equations that
comprise relativistic hydrodynamics (Sec. III A) and the
CF formalism (Sec. III B), introduce the ‘‘split’’ equations
which factor out the BH contributions to the spacetime in
Sec. III C, describe our new approach for introducing a
multipole BC in Sec. III D, and finally describe how this
affects the evaluation of various quantities in the SPH
evolution equations Sec. III E.

A. Relativistic hydrodynamics

We assume that the matter can be described as a perfect
fluid so that the stress-energy tensor takes the form

T�� � 	0

�
1� "�

P
	0

�
u�u� � Pg��; (12)

where 	0, ", P, and u� denote the rest mass density,
specific internal energy, pressure, and 4-velocity, respec-
tively. We will describe the NS by a relativistic polytropic
EOS that evolves adiabatically with index �. Hence, the
pressure obeys the relation

P � ��� 1		0"; (13)

and initially satisfies

P � 
	�
0 ; (14)

where 
 is a constant. As discussed in BSS, we can scale
away dimensional units by setting 
 � 1 (see their Sec.
IIIc).

The Lagrangian continuity equation (FGR [54]) can be
written as

d	�
dt
� 	�@ivi � 0; (15)

where we define the conserved density

	� � �u0 6	0 � �n 6	0; (16)

and the coordinate velocity

vi �
ui

u0 � ��
i �

ui
u0 4 ; (17)

and introduce the Lorentz factor for the fluid �n � �u0.
Lagrangian time derivatives are related to Eulerian partial
time derivatives through the familiar relation d=dt �
@=@t� vi@i. To determine the Lorentz factor, we solve
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the normalization condition for the 4-velocity,

�2
n � ��u

0	2 � 1�
uiui
 4 � 1�

~ui~ui
 4

�
1�

�
	��1
�

��n 
6	��1

�
�2
;

(18)

implicitly.
The Euler equation can be written

d~ui
dt
� �

� 6

	�
@iP� �hu0@i�� ~uj@i�j

�
2h���2

n � 1	

�n 
@i ; (19)

where the specific momentum is defined by

~u i � hui; (20)

and the specific enthalpy h by

h � 1� �": (21)

Finally, the energy equation takes the form

de�
dt
� e�@iv

i � 0; (22)

where e� � �n 
6�	0"

��1	1=�. For an adiabatic evolution
without shock heating, the energy equation is satisfied
automatically by adopting Eq. (14).

To account for shocks, we included an artificial viscosity
prescription composed of both linear and quadratic terms
(the relativistic analogue of the form introduced in [92],
similar to that found in [54]). We found no evidence for
significant shocks within the body of the NS, as only the
matter in the mass-transfer stream directed toward the BH
showed signs of significant heating very near the BH.
Using the value of 
 � P=	�

0 � ��� 1	"=	��1
0 as a mea-

sure, a quantity that remains constant during an adiabatic
evolution, we found variation of no more than 5% within
the body of the NS. This is hardly a surprise, as there is no
physical mechanism such as a collision to cause significant
shocking within the bulk of the NS. Shock heating will be
important for understanding the evolution of the initially
low-density accretion stream that falls toward the BH,
especially near the event horizon. In this region, the heat-
ing can be substantial, but it seems not to introduce sig-
nificant feedback on the NS remnant. Given these results,
we replace the energy equation, Eq. (22), with its adiabatic
solution, Eq. (14), throughout the calculations described
here. In future calculations, where shocks may be more
important, we will restore the full evolution of the energy
equation with an artificial viscosity prescription and allow
for shocks everywhere. This will be especially important
for irrotational NS calculations, since the matter transfer-
ring through the inner Lagrange point has significantly
greater angular momentum than in the irrotational case,
and a great deal of it will likely forming a disk rather than
accreting promptly.
-8
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B. The CF formalism

In the CF formalism [74,75] we assume that the spatial
metric is not only conformally flat initially, but that it
remains conformally flat. In particular, for the 3-metric
we approximate @t ~�ij � 0 so that in rectangular coordi-
nates ~�ij � �ij at all times. Strictly speaking, this is in-
consistent with Einstein’s evolution equations, but is often
a very good approximation, particularly on dynamical time
scales when secular motion due to radiation-reaction is not
important. Under this approximation the evolution equa-
tion for the spatial metric yields a relation between the
extrinsic curvature and the shift,

Kij �
 4

2�

�
�il@j�l � �jl@i�l �

2

3
�ij@l�l

�
: (23)

Inserting this expression into the momentum constraint
yields an equation for the shift �i

r2�i � 1
3@
i�@j�

j	 � 16�� 4�E� P	Ui

� 2� 4Kijrj�ln��= 
6
	 � Si�; (24)

where r2 is the flat space Laplacian. The Hamiltonian
constraint is an equation for the conformal factor  

r2 � �2� 5E� 1
8 

5KijKij � S : (25)

To derive an equation for the lapse �, the remaining
undetermined function in the metric, Eq. (11), we choose
maximal slicing K � �ijKij � 0 at all times, which im-
plies @tK � 0. This choice can be combined with the
evolution equation for the extrinsic curvature, which then
yields

r2�� 	 � 2�� 5�E� 2S	 � 7
8� 

5KijK
ij � S� : (26)

In the above equations the matter sources E, S and Ui are
projections of the stress-energy tensor T�� and can be
expressed as

E � 	0h�2
n � P; (27)

S � 3P�
�2
n � 1

�n
�E� P	; (28)

Ui �
~ui

�nh 4 : (29)

In practice, it is easier to decompose the three coupled
equations for the shift, Eq. (24), into four decoupled
Poisson equations. To do so, we follow [93,94] and define

�i � 4Bi �
1

2
�@i��� Bkxk	
 �

7Bi � @i�� x
k@iBk

2
;

(30)

and solve the set
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r2Bi �
Si�
4
; (31)

r2� � �
Si�xi

4
: (32)

These Poisson-like equations, found in [94] and else-
where, are exactly equivalent to those found in FGR for
� � ln� and � � ln�� 2	, and share the same asymptotic
falloff behavior, but have radically different properties near
the horizon of the BH, where the lapse function goes to
zero. This causes divergences in the values of � and �,
whereas � and  remain finite and easy to deal with in a
numerical treatment. Our chosen variables also exhibit a
slightly different behavior when we split them into additive
pieces contributed largely by the NS and BH, i.e., the
contributions from the NS and BH to  and � are
additive, whereas the logarithmic dependence of the
‘‘�� �’’ set means that the two contributions are com-
bined multiplicatively.

As several different sets of notation have now been
introduced into the literature to define equivalent quantities
in the CF formalism, we present alternate notations used in
a selection of other works in Appendix D.

C. BHNS binaries

The CF approximation is exact for spherically symmet-
ric configurations, reproducing the TOV equation for fluid
configurations as well as the Schwarzschild solution for a
stationary, nonspinning black hole. In isotropic coordi-
nates, such a solution is given by

ds2 � �

�
1�MBH=2r
1�MBH=2r

�
2
dt2 �

�
1�

MBH

2r

�
4
�ijdx

idxj:

(33)

From this metric we identify the BH lapse and conformal
factors as

�BH �
1�MBH=2r
1�MBH=2r

; (34)

 BH � 1�
MBH

2r
: (35)

The BH contribution to the shift ��i	BH, vanishes in iso-
tropic coordinates (unlike in the Kerr-Schild coordinates
used by BSS).

To convert this line element to the more familiar
Schwarzschild (areal) coordinates, with

ds2 � �

�
1�

2MBH

~r

�
dt2 �

�
1�

2MBH

~r

�
�1
d~r2 � ~r2d�2;

(36)

one makes the coordinate transformation
-9



FIG. 2 (color online). A schematic representation of the spec-
tral methods computational domains used to solve the NS
components of the field equations, Eqs. (24) and (25). Initially,
a triaxial ellipsoid with surface R1�
;�	 and origin at the NS
center-of-mass is fitted around all SPH particles for which
�	�	i > 	crit (top panel). Two annular ‘‘shell-like’’ domains
with spherical outer boundaries are also laid down, with radii
R2 and R3, twice and 3 times the maximum value of R1. During
the evolution (bottom panel), we use the same procedure to fit
R1�
;�	, keep the value of R3 fixed, and calculate R2 as the
mean of R3 and the maximum of R1. Some particles first leave
the innermost domain, and then the entire computational vol-
ume, particularly those accreted by the black hole, shown as a
circle of radius 0:5MBH centered at the origin.
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~r �
�
1�

MBH

2r

�
2
r; (37)

r � 1
2�~r�MBH �

���������������������������
~r�~r� 2MBH	

q

: (38)

Note that this implies that the Schwarzschild radius and
ISCO radius take the values

~r � 2MBH $ r � 0:5MBH; (39)

~r � 6MBH $ r � 4:949MBH: (40)

At asymptotically large distances, ~r � r�MBH.
As discussed at length in [27], it is useful to split the field

equations when dealing with binaries, so that the terms on
the RHS of each equation are concentrated on either com-
ponent of the binary. Here, the method is slightly different.
Since the BH solution is an exact solution of the vacuum
field equations, it can be subtracted out of the full metric
field equations to yield the CF solution for the largely-NS
contribution to the fields. Defining N � � , and accord-
ingly, NBH � �BH BH � 1�MBH=2r, we split the fields
such that

 �  BH �  NS; (41)

� � �BH � �NS; (42)

N � � � NBH � NNS !

NNS � �NS NS � �BH NS � �NS BH: (43)

The NS piece of the field equations, Eqs. (25) and (26), can
be expressed as

r2 NS � �2�� BH �  NS	
5E

� 1
8� BH �  NS	

5�Kij	NS�K
ij	NS; (44)

r2NNS � 2��NBH � NNS	� BH �  NS	
4�E� 2S	

� 7
8�NBH � NNS	� BH �  NS	

4�Kij	NS�Kij	NS:

(45)

The BH contributes to the shift vector, Eq. (24) only
through the lapse function and conformal factor, since
the black hole contribution to the shift vanishes in isotropic
coordinates.

D. Multipole boundary conditions

The LORENE-based field solver we use decomposes the
angular dependence of all scalar, vector, and tensor quan-
tities into spherical harmonics (the radial decomposition
into Chebyshev polynomials is described in detail in [90]).
For configurations in which the outermost boundary ex-
tends to spatial infinity, the outer boundary condition can
be set exactly to zero for any field which satisfies a power-
law falloff. For a BHNS binary, however, that is not an
option, since we encounter numerical difficulties when the
024012
computational domain overlaps the BH singularity.
Instead, we must impose an approximate BC for each field
on the outermost (spherical) boundary, which lies at a finite
radius, as shown in Fig. 2. This outermost boundary is
chosen so that it never overlaps the BH event horizon.

Any Poisson-like equation r2� � 	 with compact sup-
port has an exterior solution given by

��~r; 
; �	 �
X1
l�0

Xl
m��l

�Z R

0
	rlY�lm�
;�	d

3 ~r
�

� Ylm�
;�	~r��l�1	

�
X1
l�0

Xl
m��l

	lmYlm�
;�	~r
��l�1	; (46)

where we define the multipole moments of the source term
	lm [see Eq. (4.2) of [95]]. This solution established the
boundary conditions for our outermost computational do-
main, and can be matched to the interior solutions to yield
the field solution everywhere in space. Here, the source
-10
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terms of the Poisson-like Eqs. (24)–(26), are not compact,
but instead satisfy rather steep power-law falloffs, allowing
us to use the same formalism while introducing only small
errors. Noting that the matter configurations are equatori-
ally symmetric, we only sum over multipoles with the same
equatorial symmetry as the particular field (i.e., l�m even
for  , �, �x, �y, and �; l�m odd for �z). Rather than
evaluate the real field source integrals against the complex
spherical harmonics Ylm, we evaluate both the multipole
moments and the resulting expansions against the real and
imaginary parts of the spherical harmonics Ylm withm � 0
(noting that Yl0 are purely real and that Yl;�m �
��1	mY�lm). Finally, we truncate the expansion at a prede-
termined value l � lmax, where throughout this paper we
use lmax � 4, or hexadecapole order. Thus, we assume
	lm � 0 for all terms with l > lmax when we define the
BC’s for our field equations. This is done for two reasons.
First, the multipole coefficients falloff steeply at high l, so
that the higher-order multipole make ever smaller contri-
butions to the field at large separation. Second, including
higher-order multipoles can lead to purely numerical in-
stabilities in the field solvers for a finite set of Chebyshev
polynomials, since the rapid oscillations with respect to
angle can lead to large gradients in derivative-based
quantities.

We find that a multipole treatment can lead to signifi-
cantly higher accuracy for our boundary solution, at the
cost of some computational efficiency. To avoid numerical
instabilities arising from quickly growing higher-order
multipoles, we employ underrelaxation during each itera-
tion, updating each field such that  new � �1� �	 old �

� ~ new, where  old is the field value from the previous
iteration, and ~ new is the new solution found from solving
the elliptic equation. We find good stability and efficiency
by setting � � 0:5 initially, and increasing the value to � �
0:5� 0:05 log���y	 with each iteration, where ��y is the
maximum relative change in the y-component of the shift
vector from iteration. The iteration loop terminates when
��y < 10�9, at which point � ’ 0:95, representing very
weak underrelaxation.

Our multipole BC’s allow us to calculate the forces on
particles that fall outside the computational domain di-
rectly, since the multipole expansion for the metric is valid
throughout space. Indeed, for such particles, we calculate
the BH contribution to the lapse and conformal factor from
Eqs. (34) and (35), the NS contribution from the multipole
expansions given by Eq. (46), and the gradients of the NS
contribution from

@�

@xi
� @i

X
l;m

rl	lmYlm
r2l�1

�
X
l;m

	lm

�
@i�r

lYlm	

r2l�1
�
�2l� 1	xirlYlm

r2l�3

�
; (47)

noting that @r=@xi � xi=r.
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This works directly for the lapse and conformal factor,
but the shift vector is slightly more complicated. Recall
that we have solved elliptic equations not for �i, but for Bi
and �, as defined in Eq. (30), and thus only know the
multipole decomposition of the latter quantities. In terms
of these, the gradient of the shift is given by

@j�i �
7@jBi � @iBj � @i@j�� x

k@i@jBk
2

; (48)

where we also evaluate terms of the form

@2�

@xi@xj
�
X
l;m

	lm

�@i@j�rlYlm	
r2l�1

�
2l� 1

r2l�3

�
xi@j�rlYlm	 � xj@i�rlYlm	 � �ijrlYlm

�

�
�2l� 1	�2l� 3	xixjrlYlm

r2l�5

�
: (49)

Since the lapse goes to zero at the horizon, particles
approaching it become frozen in proper time, and cannot
penetrate within.

The approach we use has several advantages over the
leading-order power-law falloff BC’s typically used in BSS
and other grid-based field calculations (e.g., [56]). First, we
lose less information about the source terms by extending
to higher-order multipoles ([57] include dipole order fall-
off terms for the lapse and conformal factor in full GR,
while [54] include quadrupole-order terms for these in CF
gravity). Moreover, we avoid a problem associated with
symmetries present in our quasiequilibrium initial condi-
tions which are broken during the dynamical evolution. In
particular, as we show in Appendix B, our quasiequili-
brium configurations can be shown to have a vanishing
monopole contribution to �x, and vanishing monopole and
dipole contributions to�z. Once the binary becomes tidally
disrupted, however, we expect the monopole contribution
to �x and the dipole contribution to �z to grow in magni-
tude (�z may never have a monopole contribution, since
equatorial symmetry holds for dynamical configurations as
well). While these terms are growing, we are faced with a
situation where the leading-order term may very well not
be the largest magnitude multipole contribution on the
boundary. Defining a global power-law falloff index to fit
the boundary condition. as in previous treatments, is im-
possible even when the two lowest-order moments are
known, since the index varies with angle. Instead, our
multipole summation handles this situation naturally, cal-
culating all low-order moments accurately.

E. SPH discretization, computational domains, and
timestepping

Many of the methods used to perform an SPH discreti-
zation of the CF hydrodynamic and field equations are
discussed in FGR, so here we summarize briefly the fun-
damental aspects of the SPH treatment and the new fea-
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tures present in our BHNS code. The neighbor finding
algorithms used in our code are based on routines from
StarCrash, a publicly available, extensively documented
Newtonian SPH code, which can be found online at
http://www.astro.northwestern.edu/theory/StarCrash.

Motivated by the form of the Lagrangian continuity
Eq. (15), we define the mass ma of each particle, fixed in
time, in terms of the conserved density 	�, such that

�	�	a �
X
b

mbWab; (50)

where Wab is the W4 twice-differentiable piecewise
smoothing kernel function for a pair of particles introduced
by [96], and used in FGR and elsewhere. For each particle,
we define a smoothing length ha, and compute all sums
over particles that lie within a sphere of radius 2ha sur-
rounding each particle (we calculate all SPH quantities
using a ‘‘gather-scatter’’ technique, as described in FGR
and the StarCrash documentation). Smoothing lengths are
updated using underrelaxation in order to maintain a
roughly constant number of neighbors for each particle,
set at the beginning of each run. Each particle is advanced
through space with a velocity vi � dxi=dt, which we
evaluate with a second-order accurate leapfrog evolution
scheme, calculating forces from the Euler equation (19) at
the half-timestep. Since the calculation is adiabatic, the
energy equation, Eq. (22) is automatically satisfied when
we use the adiabatic EOS, Eq. (14). A typical timestep in
our evolution scheme, started with particle velocities eval-
uated half a timestep in advance of the particle positions,
involves a number of computational elements. First, we
advance all particles a full timestep, and re-evaluate the
particle neighbor lists and the SPH expressions for the
density of each. We then use the SPH form for the density
at each particle position to define the computational do-
mains used by the Lorene field solver, shown schematically
in Fig. 2. To do so, we calculate the position of the NS
center-of-mass from all particles having a density �	�	a >
	crit, where 	crit is a critical value chosen to encompass the
vast majority of particles at the beginning of a run. Next,
we calculate the surface of the innermost computational
domain R1�
;�	, as the smallest triaxial ellipsoid, centered
on the NS center-of-mass, that contains all particles that lie
at greater radii from the BH than the NS center-of-mass,
treating the particles as spheres of radius 2ha. This is very
similar to the technique described in FGR, except that there
we included all particles that passed the density cut, re-
gardless of which side of the NS they fell within. Here,
however, the dynamics of the mass transfer are different. In
equal-mass NSNS binaries, the NS only begin to disrupt at
very close separations, never deviating particularly far
from an ellipsoidal configuration up to the point of merger.
Here, mass transfer is initially one-sided toward the BH,
and the outer half of the NS remains virtually intact while
the inner half becomes deformed by the tidal gravity of the
BH. We find that our field solver performs best if we define
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our elliptical domain based on the profile from the outer
half of the NS, as it can handle without difficulty field
sources located outside the innermost domain, but pro-
duces numerical errors if the density field of the NS drops
to zero within the innermost domain. (see the second panel
of Fig. 2). The two outer domains, which have the topology
of spherical shells, are defined initially such that their outer
boundaries are spheres at radii equal to twice and 3 times
that of the maximum extent of the innermost shell, i.e.
R2�
;�	 � 2�max�R1	;R3�
;�	 � 3�max�R1
. Over
time, we hold the outermost boundary fixed at this radius,
and adjust that of the second domain to be the geometric
mean of the outer radius and the maximum value from the
inner domain, i.e., R2 � 0:5 � �R3 �max�R1
	 (compare
the two panels of Fig. 2).

Once the computational domains are defined, we use the
techniques of [90] to define a set of ‘‘collocation points’’ at
which we compute the local SPH expression for 	�, ~u, and
P� � 
	�

� , noting the latter remains equivalent to Eq. (13),
for adiabatic evolution and polytropic initial data. From
these, we calculate all other hydrodynamic quantities using
the Lorene library routines, and solve the field equations
iteratively. After every iteration of the field solver, all
hydro quantities are updated to reflect the new fields.

Once a convergent solution is found, we must export
back all relevant matter and field terms from the spectral
decomposition to the particle positions. For particles in the
innermost domain, we evaluate most hydrodynamical
terms directly from the spectral decomposition. Thus, de-
noting by ‘‘SB’’ those terms evaluated in the spectral basis
and ‘‘SPH’’ those quantities defined only on a particle-by-
particle basis, we calculate the Euler equation as�
d~ui
dt

�
in
� �� 6
SB

�
@iP
	�

�
SPH

�

�
�hu0@i��

2h���2
n � 1	

�n 
@i 

�
SB

� �@i�
j
SB�~uj
SPH: (51)

This approach works in the outermost domains for extrin-
sic quantities like 	� that go to zero smoothly at the surface
of the NS matter, but fails for intrinsic quantities that have
discontinuities there, e.g., u0 and �n, since the Chebyshev
radial decomposition cannot describe discontinuous func-
tions. Instead, we evaluate hydrodynamic terms for parti-
cles in these domains on a particle-by-particle basis, and
evaluate field quantities and derivatives through the spec-
tral decomposition,�
d~ui
dt

�
out
� �� 6
SB

�
@iP
	�

�
SPH
� �hu0
SPH��@i�
SB

�

�
2h��2

n � 1	

�n

�
SPH

�
�
 
@i 

�
SB

� �@i�
j
SB�~uj
SPH: (52)
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After calculating the forces for the RHS of the Euler
equation, we advance the velocities from their original
half-timestep value forward to a half-timestep ahead of
the positions, and then resolve the field equations to de-
termine the velocity vi using the same approach described
above for particles based upon their computational domain,

vi �
�

1

 4u0

�
SB
�~ui
SPH � ��

i
SB; (53)

in the innermost domain, with u0 evaluated via SPH in-
stead for the outer ones.
IV. EQUILIBRIUM MODELS

The first step in evolving BHNS binaries is the construc-
tion of accurate initial data. In our approach, this requires
not only determining the fields and hydrodynamic quanti-
ties within and surrounding the NS, but also the construc-
tion of a relaxed SPH discretization configuration
describing the NS itself.

We take as our starting point data constructed from the
grid-based equilibrium scheme described in BSS. We
modified the scheme of BSS to allow for a conformal
background metric corresponding to a Schwarzschild BH
in isotropic coordinates, which can be adopted more easily
for the CF approximation used here, rather than the Kerr-
Schild background used in BSS (see also TBFS). To con-
struct an SPH particle decomposition, we first lay down a
hexagonal close-packed lattice of SPH particles over the
Cartesian coordinate volume where the density of the star
is positive. Tentative particle masses are assigned to be
proportional to the density 	�, normalized to match the
proper NS mass. Next, we calculate the SPH value for the
density of each particle, and adjust the masses and smooth-
ing lengths of each particle until each has approximately
the correct number of neighbors as well as the correct
density, to within �2%. While the resulting configuration
could serve as acceptable initial data, we can do better by
evolving the configuration in the corotating frame with
drag forces applied, to damp away spurious deviations
from true equilibrium. This also allows us to relax to
quasiequilibrium initial models with binary separations
differing by up to �20% in either direction using the
same initial data from BSS. Of course, the new field
solution will be different, reflecting the change in magni-
tude of the tidal terms, but we have found that after
approximately 1000 timesteps of relaxed evolution, the
overall level of spurious motion is equivalent.

We used two grid-base datasets to generate our initial
data. For configuration A, the NS is modeled as a relativ-
istic � � 1:5 polytrope, of compaction MNS=RNS � 0:042
(or equivalently, mass �MNS � 0:05 orbiting a BH of mass
�MBH � 10 �MNS at a separation a0 � 11:8MBH. Con-

figuration B features a NS with the same compaction but
a stiffer EOS, � � 2 and a0 � 11:1MBH (where �M is the
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dimensionless mass defined in Sec. IIIC of BSS). Note that
in these units the maximum compaction of an isolated NS
is 0:214 and 0:074 for adiabatic indices � � 2 and
� � 1:5, respectively.

To convert from the units of BSS to those used here,
many quantities must be linearly rescaled. In particular, for
configuration A, �r � 10:5, and MBH � 4:72. Thus all dis-
tances should be multiplied by a factor �r=MBH � 2:2 to
convert from the ‘‘hatted’’ units of BSS to those here
expressed in terms of the BH mass. Similarly, for configu-
ration B, �r � 1:32 and MBH � 0:5, so the rescaling factor
is 2.64.

Both NS models are undercompact compared to the
expected physical NS parameters. Since our method as-
sumes an extreme mass ratio, we are limited to low-
compactness NS models in order to study cases where tidal
disruption occurs outside the ISCO, as can be seen from
Fig. 1. Thus, while our configurations do not exactly
represent physical parameters expected to be found in
BHNS binaries, they serve as an analogue to binaries
containing lower-mass BHs and more compact NS that
will have comparable tidal-disruption radii located outside
the ISCO. In a future work, we will treat more physically
realistic NS compactnesses, as well as NS spins, including
cases for which the tidal-disruption radius is within the
ISCO.

Below we describe the technique by which we generate
our relaxed SPH initial conditions in Sec. IVA, and then
show the comparison between our resulting models and the
grid-based data in Sec. IV B.

A. Relaxation of initial data

When preparing a fluid configuration to be evolved
using SPH, it is generally necessary to use some form of
relaxation first. Otherwise, numerical deviations from
equilibrium present in the discretized initial configuration
will drive the dynamics, leading to a variety of spurious
effects. Relaxation is easiest to perform for configurations
in which the matter will be stationary in some reference
frame, such as a corotating system, since the spurious
component of each particle’s velocity can be easily iden-
tified and damped away by a drag term in the force equa-
tion. This statement holds equally true for Newtonian and
relativistic formalisms, although the latter require a
slightly more complicated numerical treatment, for reasons
we discuss below, primarily due to the presence of
velocity-dependent forces as well as a more complicated
set of variables used to define the equations of motion.

In order to derive the proper equations for a relaxation
scheme in a relativistic setting, it is useful to start with a
brief review of how the process works in Newtonian phys-
ics, and then generalize to the appropriate relativistic equa-
tion. In what follows, we define our coordinates such that
the x-axis corresponds to the line connecting the centers of
mass of the two objects, the y-direction to their orbital
-13
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velocity, and the z-direction to the binary’s angular
velocity.

In Newtonian physics, we have a set of inertial frame
evolution equations

d~r
dt
� ~v; (54)

d ~v
dt
� ~a; (55)

where the RHS of each are known functions used to define
an initial condition. For the case of a corotating equilib-
rium binary configuration, these quantities take the form

~v eq �
~�� ~r; (56)

~a eq � ��2 ~rcyl; (57)

where we use the subscript ‘‘eq’’ to indicate the relaxed
value, and where ~rcyl is the ‘‘cylindrical’’ radius. To evolve
the fluid during the relaxation, we shift to the frame in
which the matter is stationary. Thus we define

~V � ~v� ~veq � ~v� ~�� ~r; (58)

so that ~V � 0 for equilibrium configurations, and evolve
d~x=dt � ~V. We determine � as an eigenvalue from the
condition that the binary center-of-mass separation is al-
ready known, by summing over all of our SPH particles.
Based on symmetry considerations, only the x-component
of the equation yields a nontrivial result:

X
mi

�
d ~V
dt

�
x

i
� 0 �

X
i

mi ~axi �
X
i

mi� ~aeq	xi

�
X
i

mi ~axi �
X
i

mi�
2xi; (59)

which implies

� �

����������������������
�
P
i mi ~a

x
iP

i mixi

s
: (60)

We add to the force equation a linear drag term with some
characteristic time scale � in order to damp away the
spurious motion in of the initial condition. The relaxation
time scale should generally be approximately equal to the
dynamical time of the system. Thus, we evolve

d ~V
dt
�

�
d ~v
dt
��2 ~rcyl

�
� ~adrag � ~a��2 ~rcyl �

~V
�
: (61)

As we approach equilibrium, both the term in parentheses
as well as the drag term separately approach zero.

The relativistic case is slightly more complicated, but we
can derive analogous relativistic expressions for all of our
Newtonian ones. Our equations of motion now take the
form
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d~x
dt
� ~v; (62)

d~u
dt
� ~a; (63)

where the velocity variables are related by Eq. (17), ~v �
~u=� 4u0	 � ~�. In a corotating frame in equilibrium, we
know that d� 4u0	=dt � 0, and will treat the term as a
constant. The shift vector has the time-dependence of the
other vector quantities.

For a corotating configuration, we have

~v eq �
~�� ~r; (64)

and the slightly more complicated Euler equation

~a eq �
d
dt
� 4u0� ~v� ~�	
 �  4u0��� � ~veq � ~�	


�  4u0���2 ~rcyl ��� ~�
: (65)

The matter will be propagated on trajectories with velocity
~V � ~v� ~veq, just as before. Now, however, we have the

condition

~V � ~v� ~veq �
~u

 4u0 �
~�� ~�� ~r; (66)

whose time derivative in equilibrium must satisfy
~aeq=� 4u0	 ��� ~���2 ~rcyl � 0. In the particle de-
composition, we find

X
mi

�
dVx

dt

�
i
� 0

�
X
i

miaxi
� 4u0	i

�
X
i

mi��
y
i �

X
i

mi�
2xi

�
X
i

miaxi
� 4u0	i

��
X
i

mi�
y
i ��2

X
i

mixi;

(67)

which can be solved for �.
To the force equation, we also add a linear drag term

with a characteristic time scale �, but the drag term must
force ~u toward its equilibrium value ~ueq �  4u0��� ~r�
~�	, rather than toward zero, so that

d~u
dt
� ~a� ~aeq �

~u� ~ueq

�

� ~a�  4u0��2 ~rcyl ��� ~�	

�
~u�  4u0��� ~r� ~�	

�
: (68)

This equation should, barring any physical instabilities,
damp away spurious motion and produce a corotating
equilibrium configuration.
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B. Comparison with other quasiequilibrium sequences

Our grid-based models, based on the scheme described
in BSS but with isotropic background coordinates, were
constructed using 48� 48� 24 grids, with outer bounda-
ries placed �x � �3; �y � �3; �z � 3 for the � � 2 case, and
�x � �2; �y � �2; �z � 2 for the � � 1:5 case. SPH con-
figurations were generated corresponding to these binary
separations, as well as wider and narrower binary separa-
tions constructed by translating the NS to the appropriate
position. The number of particles used to construct the SPH
configurations were np � 103 953 and np � 77 908 for
the � � 2 and � � 1:5 EOS, respectively. For the � �
1:5 EOS configuration only particles of mass mi >
10�4mi;max were accepted, where mi;max is the maximum
mass of any SPH particle present. This mass cut is useful
for eliminating an outermost layer of negligible total mass,
which is typically blown off the surface of the NS anyway
by even a tiny amount of spurious motion resulting from
deviations from pure equilibrium in the initial condition.

Each SPH configuration was relaxed for 1000 timesteps,
which corresponds to �10tD, a sufficient time given that
the initial models were rather relaxed to begin with.
Parameters for our grid-based models and the final SPH
configurations at the end of relaxation are listed in Table I.
Models for � � 1:5 are labeled A1–A7, while models for
� � 2 are labeled B1–B4. As a check, we compare the
value of the period determined during the SPH relaxation
process T, to the exact relativistic Kepler relation for a

point mass about a BH, TN �
�����������������
~r3=MBH

p
, and find very

good agreement. Here the binary separation is measured
in areal coordinates, whose relation to CF coordinates is
given by (37).

We note that configurations A1–A3 do not settle down
completely during relaxation. In each case, the central
TABLE I. Parameters for our relaxed initial models. TN is the
exact relativistic Keplerian period for a point mass about a BH,
defined by Eq. (37).

Run a=MBH �MBH T=MBH TN=MBH

� � 1:5; q � 0:1;C � 0:042

A1 10.438 0.0258 243.8 243.8
A2 10.745 0.0247 254.0 253.7
A3 11.256 0.0232 270.6 270.3
A4 11.513 0.0225 279.1 278.8
A5 11.767 0.0218 287.5 287.3
A6 12.027 0.0212 296.5 296.1
A7 12.791 0.0194 323.1 322.5

� � 2; q � 0:1;C � 0:042

B1 10.539 0.0255 246.4 247.0
B2 10.961 0.0242 260.2 260.7
B3 11.093 0.0238 264.6 265.0
B4 11.648 0.0222 283.0 283.3
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density of the NS dropped monotonically as the configu-
ration expanded in the x-direction, indicating that mass
transfer would eventually begin even with drag forces
applied.

In general, we find very good agreement between the
grid-based initial data and our SPH configurations for
stable configurations. In Figs. 3 and 4 we show a compari-
son between the field values and densities from our SPH
configuration and the grid-based data along the x-axis, for
configurations A5 and B3. In both cases the relevant fields
agree to generally within about 1%–2%. The only excep-
tion is configuration A5, where we find some disagreement
between the two methods on the half of the NS facing the
BH. The discrepancy is primarily due to the different BC’s:
the grid-based data imposes a 1=r power-law falloff con-
dition on a cube whose inner edge is located at �x � �2,
whereas the multipole solution used for the SPH configu-
ration is imposed on a spherical boundary at �r � 4:5. Thus,
the spectral methods solution integrates over a much larger
volume of space, and allows for higher-order terms in the
field solution at the boundary, which are not insignificant at
a distance corresponding to a few NS radii. The small
disagreement in the density profile is in part an SPH effect:
SPH typically smooths out the density field over each
particle’s smoothing length. Since our particles are initially
equally spaced along a lattice, this length is �� �x � 0:05,
and we cannot fully resolve the sharp density peak at the
NS center.
FIG. 3 (color online). From top to bottom, the values of 	�, �y,
 , and � along the x-axis for the SPH (solid line) and grid-based
(dashed line) data representing configuration B3, a NS with a
� � 2 polytropic EOS and an initial binary separation
a0=MBH � 11:1. The agreement is generally to within 1� 2%.
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FIG. 5. Value of the SPH expression for the integrated Euler
equation constant h=u0 as a function of the particle’s radius from
the NS center-of-mass for configurations B3 (top) and A5
(bottom), featuring a NS EOS with � � 2 and � � 1:5, respec-
tively. Note that the proper value differs between the two cases.
The standard deviation in both cases is <0:01%, with maximum
variation <0:1%.

FIG. 4 (color online). The values of 	�, �y,  , and � along the
x-axis for the SPH (solid line) and grid-based (dashed line) data
representing configuration A5, a NS with a � � 1:5 polytropic
EOS and an initial binary separation a0=MBH � 11:8. Con-
ventions are the same as Fig. 3.
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We can formulate an independent check on the self-
consistency of our initial data by checking how well they
satisfy the integrated Euler equation,

h

u0
� constant: (69)

This condition is typically used to generate initial data in
grid-based calculations, e.g., Eq. (42) of BSS and Eq. (28)
of TBFS, but appears nowhere in our relaxation scheme.
As we show in Appendix C, it can be derived as a con-
sequence of a relaxed initial configuration for which the
RHS of the Euler equation (19) is zero. In Fig. 5 we show
on a particle-by-particle basis the value of h=u0, for con-
figurations A5 and B3, plotted for clarity against the par-
ticle’s radial coordinate position outward from the NS
center-of-mass. In both cases, we find the standard devia-
tion from the mean is <0:01%, and the maximum discrep-
ancy <0:1%.
V. EVOLUTION OF BHNS BINARIES

From our relaxation results, it appears that the tidal-
disruption limit for the adopted choices of NS EOS would
occur at binary separations a0=MBH � 11:0, in line with
the predictions of Eq. (2). For models with smaller binary
separations, we were unable to find a convergent solution
for the configuration with a stable central density maxi-
mum. These results can be confirmed through dynamical
calculations in the strict CF formalism which ignore all
energy and angular momentum losses from gravitational
radiation-reaction. From our discussion in Sec. II B, we
might expect the possibility of qualitatively different be-
havior for NSs with the stiffer vs. softer EOS evolved from
an initial configuration near the stability limit. For the
softer EOS, we expect unstable mass transfer: the NS
should disrupt completely once mass transfer begins. For
the stiffer EOS, we might expect stable mass transfer in the
strongly viscous regime. However, as there is no dissipa-
tive mechanism, such as viscosity, powerful enough to
circularize the orbit after the onset of mass transfer, the
picture is considerably more complicated.

All models A (for � � 1:5), or all models B (for � � 2),
describe the same physical binary system, at different
separations representing different moments in its evolu-
tion. Clearly, for each binary there is only one correct
inspiral history. In our separate runs we pick up this history
at different points (approximating the orbit as circular),
which helps to locate the onset of tidal disruption and
analyze the system’s dynamical evolution. Ideally, we
should start an evolution calculation at some large separa-
tion and evolve it forward to complete coalescence, since
the assumption of quasicircularity is violated in an ever
increasing fashion by inspiraling systems. However, even
when we augment our CF equations with a radiation-
reaction potential to drive the secular inspiral, we have
neither the time nor the numerical stability to calculate an
-16



FIG. 6 (color online). SPH particle configurations at times t �
0, 286, 566, and 693, projected into the orbital plane, for run A5
(for which the orbital period is T � 287MBH). These configura-
tions correspond to the initial configuration, and after 1, 2, and
2.5 full orbits, respectively. The BH is shown as a circle at a
radius r � 0:5MBH. We see that once mass transfer begins, the
NS begins to expand, forming a low-density single-armed spiral
pattern. Note that particles have different masses, and that those
in the center of the NS are in most cases significantly more
massive than those originally in the outer layers.
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evolution for an indefinite time. Thus, our models started
from different initial separations represent a series of ap-
proximations to the true binary evolution, which illustrate
the dynamics of tidal breakup, and should not be taken as
physically distinct evolutionary paths. GW energy and
angular momentum losses drive the BHNS binary toward
coalescence. However, the GW time scale is much slower
than the dynamical time scale, so tGW 
 tD, we expect that
radiation-reaction losses will cease to play an important
role in the hydrodynamical evolution once phenomena
associated with the dynamical time scale, such as tidal
breakup and mass loss, begin. Nevertheless, our evolution
calculations started from outside the stability limit and
including the effects of GW radiation-reaction yield our
best models for the physical evolution of the systems in
question.

A. BHNS mergers with a soft EOS: � � 1:5

As a soft NS EOS, we choose a polytropic model with
adiabatic index � � 1:5 (or equivalently, polytropic index
n � 2). As we see from Appendix A 2, a NS of compact-
ness C � 0:042 is expected to undergo unstable mass
transfer in the high viscosity limit regardless of the binary
mass ratio (and thus in the inviscid limit as well). To test
out how well this statement applies in the inviscid limit,
which applies to our calculations (see Tables V and VI of
[97] for numerical estimates of the viscosity present in a
lower-resolution implementation of our current SPH
scheme) as well as to physically reasonable NS, we evolve
binary BHNS configurations from a number of initial
separations. This also allows us to estimate the critical
separation marking the onset of mass transfer, which ac-
cording to Eq. (2) should be at aR � 11MBH.

In Fig. 6, we show the evolution of run A5, at an initial
time t � 0, corresponding to the initial relaxed configura-
tion, as well as t=P � 1, 2, and 2.5. The NS revolves
clockwise around the BH, which is fixed at the origin.
The event horizon, located at RBH � 0:5MBH, is shown
as a circle. In the first plot, the NS has essentially filled its
Roche lobe, and has primary axis ratios a2=a1 � a3=a1 �
0:86. We note that the figure shows particle locations,
rather than a surface density representation. In fact, parti-
cles near the edge of the NS have a density 4 orders of
magnitude lower than in the NS center. After a full orbit,
we see in the second panel of Fig. 6 that the NS has begun
to shed a small amount of mass, which indicates that it is
near the mass-shedding limit, not necessarily past it. Our
initial SPH configuration is relaxed to the point where the
spurious motion resulting from deviations from equilib-
rium is small, but not zero. Given that the dynamical time
scale of the extremely low-density outer layers of the NS is
so long, and the SPH particle masses so small (roughly
proportional to the density), even a tiny error in the initial
data may result in significant spurious velocities in these
layers over time. For an isolated NS, these particles will
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remain bound, but the same is not true for a NS in a binary.
Here, particles that escape the NS surface will often travel
outside the Roche lobe and be lost from the NS. As a result,
the NS will lose a very small amount of mass and angular
momentum. By the third panel of Fig. 6, the NS has
expanded to the point that matter is now lost through
both the inner and outer Lagrange points. This leads to
the formation of a stream of matter thrown out into an
extended halo around the binary system, most of which
remains bound to the BH. Meanwhile, there remains a
mass stream of material accreting directly onto the BH.
We believe that the relativistic nature of the BH gravita-
tional potential plays an important role in the dynamics of
this accretion process. The matter streaming through the
Lagrange point passes sufficiently close to the BH to fall
well within the ISCO on its first passage. As a result, most
of it accretes directly onto the BH, rather than forming a
disk. The instability of orbits near the BH is likely to play
an important role in suppressing the formation of an ac-
cretion disk. We note, however, that our assumption of an
extreme mass ratio may bias the evolution towards prompt
accretion (as does the assumption of initial synchroniza-
tion), since the BH is a fixed target, rather than one orbiting
the binary center-of-mass itself. Finally, in the last panel,
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the NS is nearing a state of complete disruption, and will
continue to do so until we can no longer locate a gravita-
tionally bound object.

A similar pattern holds for all runs we performed with
the same soft EOS, regardless of the binary separation.
Because of the nature of the instability, all models we
calculated led to the eventual tidal disruption of the NS,
since there is no stabilizing mechanism to suppress mass
loss once mass transfer begins, no matter how small the
mass-transfer rate. It does take longer for the NS to be
disrupted in configurations placed at a greater initial binary
separation, however. In the bottom plot of Fig. 7, we show
the evolution of the mass loss over time for all of the
configurations using the soft NS EOS, defined as the total
mass that can be found outside the innermost computa-
tional domain at any given time. We see that in all cases
mass loss is an unstable process, occurring at a rate that
grows extremely rapidly until the majority of its original
mass is no longer bound to the NS. In the case started from
the largest separation, slightly over half of the NS mass is
accreted directly onto the BH or into orbits that lie within
the ISCO, while half is lost outward to form the ‘‘spiral
arm’’ pattern seen in Fig. 6. This pattern is to be expected,
as the primary response of the NS to losing mass is
expansion. The inner half of the NS is pushed inward
FIG. 7 (color online). Binary separation (top panel) and total
mass lost from the NS (bottom panel) as a function of time for all
runs calculated using the soft NS EOS, runs A1–A7, which have
� � 1:5. The properties of the initial configurations, which differ
only in their binary separation, are shown in Table I. Here,
particles are defined as ‘‘lost’’ when they lie outside the inner-
most computational domain around the NS. In all cases, mass
loss never quenches once it begins, eventually leading to the
complete disruption of the NS.
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toward the BH, while the outer half expands outward.
For a synchronized configuration, we know that the aver-
age specific angular momentum of the NS is generally
greater than the specific angular momentum near the
center-of-mass of the NS, since j � ~v� ~r��r2 is
weighted more heavily by matter on the outside of the
NS. In response to the expansion of the NS, we expect
the orbit to tighten, which is confirmed by the numerical
results. In Fig. 7, we show the binary separation over time
for the runs with a soft NS EOS. We see that the onset of
mass transfer leads to a rapid decrease in the binary sepa-
ration, prompting the explosive mass loss. Only in the late
stages does the remnant of the NS begin to move back
outward, but by then tidal disruption is inevitable.

As the initial separation is decreased, the qualitative
behavior of the system stays essentially the same, but
more of the NS mass ends up being transferred inward
toward the BH. In Fig. 8, we show the amount of mass lost
inward (top panels) and outward (bottom panels) for all of
the runs we performed with the soft EOS. For configura-
tions near the stability limit, we find almost twice as much
mass falls inward toward the BH as is expelled outward
into the spiral arm. As these calculations were performed
without radiation-reaction effects, we expect that including
FIG. 8 (color online). Total mass lost inward toward the BH
(top panel) and outward away from the BH (bottom panel) as a
function of time, for the runs shown in Fig. 7. In general, the
smaller the initial separation, the more mass that falls inward
toward the BH. For the runs started from a larger separation,
much of the initial mass loss results from spurious numerical of
low-mass particles out of the Roche lobe, leading to nearly equal
flows directed inward and outward. In contrast, the mass loss for
the closer cases is in exactly the form expected for Roche-lobe
overflow through the inner Lagrange point.
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FIG. 9 (color online). Binary separation (top panel) and total
mass lost from the NS (bottom panel) as a function of time for
the runs calculated using the stiff NS EOS without GW
radiation-reaction, runs B1-B4, which have � � 2. Con-
ventions are as in Fig. 7. For run B1, we see periodic mass
loss, as the NS gets kicked into an elliptical orbit, losing mass
during every periastron passage. Runs B2 and B3 are similar to
those with the softer EOS, as the NS gets disrupted during the
first mass loss phase. Run B4 is essentially stable, only showing
the long-term effects of numerical diffusion of particles.
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them would tip the balance of the mass transfer further
toward mass accretion onto the BH, since the binary orbit
will be driven by radiation to smaller separations than we
find here.

Unlike the situation found in NSNS binaries, for which
>99% of the matter typically remains bound to the system,
we find that a significant amount of matter is unbound from
the system during all of our calculations with the soft EOS,
representing in each run between 3%–5% of the original
mass of the NS. This fraction is much larger than that
typically found in relativistic calculations of synchronized
binary NS systems [53,57], but roughly consistent with
previous results from Newtonian BHNS calculations
[5,64]. However, we note that this fraction is almost cer-
tainly an overestimate, perhaps greatly so: irrotational
configurations suppress the amount of mass that will be-
come unbound (see, e.g., [98] or FGR for a similar argu-
ment with respect to NSNS mergers) . The total angular
momentum of an irrotational configuration is less than that
of a synchronized configuration, and the decrease in spe-
cific angular momentum is largest at the outer edge of the
NS. Thus, we expect that while some mass may still be
unbound when the NS is initially irrotational, the amount
may be significantly less.

B. BHNS mergers with a stiffer EOS: � � 2

To study a configuration that would be predicted to
undergo stable mass transfer in the classical conservative
quasiequilibrium scenario, described in Sec. II B, we
model the NS with a stiffer, � � 2 polytropic EOS, which
has been used in numerous studies as a first approximation
to a stiff NS EOS. We note that in Newtonian physics, this
is the critical polytropic index for which an isolated NS has
a radius independent of its mass. In relativistic gravity, self-
gravity effects cause the NS radius to increase as the NS
mass decreases.

1. Evolution without GW radiation-reaction

In Fig. 9 we show the binary separation (top panels) and
NS mass fraction lost (bottom panels) as a function of time
for runs B1–B4. We find three qualitatively different be-
haviors over time, which we will describe in turn. We note
first that the tidal limit separation is not drastically different
for this EOS compared to the softer EOS. Both cases show
very good agreement with the classical Roche limit result,
as we would expect.

Run B4 is completely stable for approximately three
orbits. Eventually, the NS begins to lose a small amount
of mass, which gives us an estimate for the length of time
over which the code can reliably maintain an equilibrium
configuration in the absence of relaxation (t=T � 3). We
note from Fig. 10 that the mass loss from the NS is almost
evenly divided between a component moving toward the
BH and the component directed away, indicating that the
mass loss is a numerical artifact caused by particles near
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the edge of the NS diffusing outside the Roche lobe over
time.

Runs B2 and B3 are started from a binary separation
approximately equal to the mass-shedding limit. In both
cases, the NS makes approximately one orbit after mass
transfer begins without any appreciable change in the
binary separation. By this point, approximately 10% of
the NS mass is stripped away, and the binary begins to
move outward. As we saw in the case of the softer EOS, the
mass loss is unstable and the mass-transfer rate grows
rapidly. In both cases, the NS is tidally disrupted before
the mass transfer halts. By the time the NS is disrupted,
approximately 60% of the original mass has fallen inward
toward the BH, as we see from Fig. 10. Of the matter shed
outward, approximately 0:075MNS is unbound from the
system. This result fits in with the general picture derived
from NSNS binaries, in which mass shedding outward is
more efficient for stiffer EOS (see, e.g., [99] and references
therein).

The evolution of the NSs in runs B2 and B3 started from
initial conditions differing only in their binary separations
(run B3 starts from 0.5% further out), which are nearly
equal to the mass-shedding limit. We find that the closer
the NS is when mass transfer begins, the more mass is lost
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FIG. 10 (color online). Total mass lost inward toward the BH
(top panel) and outward away from the BH (bottom panel) as a
function of time, for the runs shown in Fig. 9. Conventions are as
in Fig. 8. Approximately 50% more mass is lost inward for runs
B2 and B3, started from near the stability limit, whereas for run
B1, marked by an elliptical orbit and periodic mass transfer,
nearly 4 times much mass is lost toward the BH.
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inward toward the BH relative to that lost outward, until the
NS expands to the point that it greatly overfills its Roche
lobe and mass loss becomes more isotropic around the axis
describing the NS velocity.

These observations go a great deal toward clarifying the
evolution seen in run B1, the only case in which the mass
transfer was periodic, rather than continuous. Here the
initial configuration places the NS within the mass-
shedding limit, as GW losses would be expected to do
for physical BHNS systems. Indeed,runs B3a and B3b,
described in Sec. V B 2, which include the effects of radia-
tion reaction, are driven to approximately this binary sepa-
ration by GW radiation-reaction energy and angular
momentum losses. When mass transfer begins, it occurs
only toward the BH, which causes the NS to move outward.
This expansion in the orbit, which happens with no out-
wardly directed stream to counter the outward accelera-
tion, occurs sufficiently fast that the Roche-lobe expansion
is enough to quench mass transfer. At this point, the NS is
on a continuously expanding eccentric orbit (e� 0:1),
whose apocenter lies outside the Roche limit and peri-
center within it. As the NS crosses over the new mass-
shedding limit, mass transfer begins again, pushing the NS
onto an even wider eccentric orbit, similar to the pattern
seen in [5] for NS with a stiffer EOS.

This scenario is ostensibly similar to that proposed by
[44], but with one crucial difference. In both cases, mass
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transfer forces the NS onto a highly elliptical orbit. Here,
however, mass transfer occurs during every periastron
passage, whereas in their model the NS can be kicked
into such a widely separated orbit that GW radiation-
reaction must drive the NS back toward the mass-shedding
point. We believe that the assumptions that go into the
latter model lead to this unphysical result. In [44], it is
assumed that the NS loses a specified amount of mass
during mass-transfer events but recovers half of its angular
momentum during the next half orbital period. This can
lead to a discontinuous evolution of the binary separation.
Here, we see that once mass transfer ceases, the NS will
follow a nearly unperturbed elliptical orbit, with essen-
tially no change in its orbital angular momentum. Mass
transfer must resume when the orbit crosses this same point
as it approaches pericenter during the next passage.

2. Mergers including GW radiation reaction

While evolution calculations lacking GW radiation-
reaction terms can be useful for studying the processes
that control the moment to moment dynamical evolution of
the system, we know that the effects of radiation-reaction
must play an important role in the secular dynamics of the
system. Indeed, given the potentially unstable nature of
mass loss, we expect the inwardly directed component of
the NS velocity to be critical. Since the mass transfer leads
not to an instantaneous change in the NS velocity, but
rather in its acceleration, there will be a time period
immediately after the onset of mass transfer during which
the NS loses mass while falling further inward. All the
while, the inner Lagrange point will move further within
the NS, regardless as to how its radius adjusts on the
dynamical time scale.

To model radiation-reaction, we add a damping force to
the material, representing the lowest-order quadrupole
contribution to the radiation-reaction potential. Thus, we
add to the RHS of Eq. (19) an acceleration term of the form

ai:reac � N2hu0@i�; (70)

where � is a quadrupole radiation-reaction potential (see
Sec. 36.1 of [100]), defined here as

� � 1
5x
kxlQ�5
kl ; (71)

in terms of the fifth time derivative of the quadrupole
moment,

Qkl � STF
�Z

	ADMxkxld3x
�
: (72)

Here 	ADM is the quantity that can be integrated to give the
matter contribution to the ADM mass 	ADM �  5E, which
appears in the field equation for  , Eq. (25). Following the
argument found in Sec. IIIa of FGR, we evaluate the fifth
time derivative of the quadrupole moment in terms of the
expression for the first time derivative in the limit that it is
dominated by terms representing orbital motion and not
-20
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changes in the density with time (i.e., d	ADM=dt is negli-
gible),

� _Q1	kl � STF
�Z

	ADM�xkvl � xlvk	d
3x
�
; (73)

where ‘‘STF’’ means the symmetric trace-free component
of the tensor. We then assume that further time derivatives
result purely from the orbital motion, and approximate

Q�5
kl � 16!4 _Qkl; (74)

where the angular velocity ! is taken as the ratio of the
angular momentum to the moment of inertia,

! �

P
a ma�xa�vy	a � ya�vx	a	P

a ma�x
2
a � y

2
a	

: (75)

While the resulting radiation-reaction force will differ
slightly from the true quadrupole expression found by
taking the exact time derivatives, it is sufficiently accurate
for our purposes here, generally within 10%. It is important
to remember that the radiation-reaction force drives the
binary inward on a secular time scale tGW, but plays almost
no role once effects occurring on the much more rapid
dynamical time scale become dominant.
FIG. 11 (color online). SPH particle configurations at times
t=MBH � 0, 261, 514, and 767, projected into the orbital plane,
for run B3a, which includes the dissipative effects of radiation-
reaction (for this configuration, T � 265MBH). In terms of the
binary orbit, these correspond to the initial configuration and 1,
2, and 3 full orbits, respectively. Conventions are as in Fig. 6.
Here, we see that radiation-reaction initially drives only an
inwardly directed mass-transfer stream onto the BH, until some-
where after t=MBH � 700, when the expansion of the NS be-
comes unstable and tidal disruption occurs.
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To test how radiation-reaction effects change the sce-
nario described above, we calculated two runs that in-
cluded radiation-reaction terms. Both took as initial data
the configuration used also for run B3, using the stiffer � �
2 NS EOS, placed nearly at the stability limit. For run B3a,
we added a radiation-reaction acceleration term described
by Eq. (70); for run B3b, we doubled the magnitude of this
force. The evolution of the former, run B3a, is shown in
Fig. 11. Mass transfer occurs in a well-defined stream for
the first two orbital periods, until the expansion of the NS
eventually drives the rapid tidal disruption of the NS.

In Fig. 12, we show the evolution of the binary separa-
tion (top panels) and NS mass loss (bottom panels) for runs
B3a and B3b. We find that the stronger the radiation-
reaction losses, the greater the initial mass loss from the
NS, since the first passage within the mass-shedding limit
takes it closer to the BH. This in turn drives the NS back
outward, quenching the mass loss temporarily until the
next periastron passage, after which the NS tidally disrupts.
From Fig. 13, we see that stronger radiation-reaction losses
favors a larger amount of mass lost inward onto the BH
(and thus less outward into a disk), as one would expect.
FIG. 12. Binary separation (top panel) and total mass lost from
the NS (bottom panel) as a function of time for the runs
calculated using the stiff NS EOS and dissipative GW
radiation-reaction effects, runs B3a and B3b, which have � �
2. Conventions are as in Fig. 7. The only difference between the
two runs is the magnitude of the radiation-reaction effects; we
use the quadrupole-order form in run B3a, and double its
strength for run B3b. We find that doubling the radiative drag
force forces the binary to a smaller separation, leading to a larger
initial burst of mass loss and a more rapid increase in the binary
separation. As a result, the system tidally disrupts slower than
the case shown in run B3a.
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FIG. 13. Total mass lost inward toward the BH (top panel) and
outward away from the BH (bottom panel) as a function of time,
for the runs shown in Fig. 9. Conventions are as in Fig. 8.
Initially, in run B3b with twice the physical GW radiation-
reaction force applied, all mass lost in run B3b is directed
inward. This leads to a rapid increase in the binary separation
and slows the growth of the mass-transfer rate. In contrast, in run
B3a, mass loss is more evenly balanced between inwardly and
outwardly directed flows, and the NS disrupts more quickly.

FIG. 14. Gravity wave emission angular frequency (top panel)
and waveform in both polarizations, h� (solid curve) and h�
(dashed curve), defined by Eqs. (76) and (77), for the merger
calculated in run B3b. Initially, we see conclusion of the standard
‘‘chirp’’ signal, in which the binary separation decreases while
the GW amplitude and frequency increases, all of which happens
extremely gradually on the secular GW time scale. This lasts
until the onset of mass transfer, at which point we encounter a
much more rapid ‘‘reverse chirp’’, as the GW amplitude and
frequency rapidly decrease while the NS is tidally disrupted.
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Thus, we conclude that the inclusion of GW radiation-
reaction terms have the effect of increasing the chance
that some fraction of the original NS mass will remain
bound after an initial phase of mass loss, since the NS
rebounds more sharply outward than for cases in which
radiation-reaction losses are ignored. Tidal disruption,
while still seemingly inevitable, also occurs at a greater
distance from the BH.

In the bottom panel of Fig. 14, we show the gravity wave
signal produced in run B3a, in both polarizations. The two
components are defined by the familiar relations

Doh� � �Qxx � �Qyy; (76)

Doh� � 2 �Qxy; (77)

where Do is the distance from the observer to the binary.
The corresponding angular frequency of the GW signal,
approximately equal to twice the orbital angular frequency,
is shown in the top panel of the figure. Prior to disruption,
the GW waveform takes the classic point-mass form, with
a steadily but extremely slowly increasing amplitude and
frequency (relativistic and finite-size affects cause minor
deviations from the point-mass form; see [40] for a dis-
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cussion). Once the mass transfer begins, however, the
frequency reaches a maximum and begins to decrease
quickly, as does the amplitude. In general, if the NS does
transfer sufficient mass to survive the initial infall, we
expect this decrease in frequency and amplitude until the
signal can no longer be reliably observed. Should the orbit
be elliptical, as we found for run B1, this will show up in
the GW waveform as well.

As matter accretes onto the BH, it will excite quasinor-
mal ringing modes that could in theory be visible in the
gravitational wave signal. Unfortunately, our numerical
approach limits our ability to determine the gravitational
wave signal we expect from these modes. Indeed, such a
calculation would require a dynamical treatment of the
spacetime very near the BH, whereas in our calculation,
the key physics for ringdown occurs in the asymptotic
region located outside our computational domain, where
the BH remains stationary. To evaluate quasinormal mode
ringing, it will be necessary to relax the CF approximation,
in which no gravitational radiation is generated, and to
evolve the fields everywhere. Additionally, the use of a
lapse function that penetrates the horizon will be crucial
for studying the problem self-consistently. We plan to
study these issues in future work.
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VI. SUMMARY AND DISCUSSION

We have performed relativistic calculations of BHNS
mergers in CF gravitation, in the limit that the BH is much
more massive than the NS. These calculations mark the
first time that a relativistic treatment has been applied both
to the self-gravity of the NS as well as the BH spacetime.

For systems studied here in which the onset of tidal
disruption occurs outside the ISCO, previously proposed
analytical models do not properly describe all the complex
tidal phenomena that pertain to the evolution. In all the
runs we calculated, mass transfer plays a leading role in
determining the dynamics of the system. In general, mass
transfer in a stream directed toward the BH causes the
orbital separation to increase, in many cases quite dramati-
cally. Mass transfer also causes the NS radius to expand on
the dynamical time scale, with relativistic self-gravity
effects leading to a more rapid expansion than is seen in
Newtonian gravity for a given NS EOS. As a result, mass
transfer is significantly more unstable in relativistic grav-
ity. We conclude immediately that previous models of
mass transfer in compact object binaries that assume the
orbit remains quasicircular [42,43] are not applicable here.
Furthermore, the model put forward in [44] also seems to
be insufficient, in that the orbital parameters evolve dis-
continuously from one orbit to the next (as a result of
angular momentum being added to the NS while its mass
is held fixed). We find instead that if some remnant of the
NS survives the initial burst of mass loss, it can end up on
an elliptical orbit that takes it back outside its mass-
shedding separation. During every successive periastron
passage, however, more mass will be lost, eventually lead-
ing to the complete disruption of the NS.

As the NS expands during mass loss, it eventually loses
mass outward as well as inward, so long as the plunge does
not take it too far within the ISCO, leading to a prompt
plunge onto the BH. While the majority of matter released
through the outer Lagrange point remains bound to the BH
in the former case, a significant fraction is ejected with
sufficient velocity to become unbound from the system
completely, approximately 5%–7% for the � � 2 EOS
we considered. This mass loss also limits the radial expan-
sion of the orbit, and as a result we find in many of our
calculations that mass transfer is never quenched once it
begins. Even though the NS moves outward, it persists in
configurations for which the Roche lobe lies within the
star, and mass loss continues until the NS is completely
disrupted.

We plan to improve our simulations and relax several
approximations in the near future. In particular we plan to
adopt the astrophysically more realistic irrotational initial
configuration of TBFS instead of the corotating configura-
tions used here. Relativistic NSNS [53,55] and Newtonian
BHNS [5] calculations have shown that for these cases the
amount of matter ejected from the binary system is ex-
pected to be significantly smaller, since the material on the
024012
outer edge of the NS has significantly less specific angular
momentum. Thus, while we expect that BHNS mergers
will expel more material than in the case of NSNSs, in
which the binary components are more comparable in
mass, we would assume that the ejected fractions found
here are overestimates.

Calculating mergers using irrotational NSs should also
increase the probability that escaping matter forms an
accretion disk around the BH, even if that disk is short-
lived (see, e.g., [83]). We typically found in our calcula-
tions here that most of the matter transferred toward the BH
ends up accreting onto it directly, since the specific angular
momentum is not sufficient to create a disk. Even though
an irrotational NS has less total angular momentum than a
corotating one, the matter on the inner edge has a higher
specific angular momentum, and is more likely to orbit
around the BH rather than infall directly. In addition,
prompt accretion of matter may also be inhibited slightly
by a moving BH orbiting the binary center-of-mass,
whereas in our assumption of an extreme mass ratio, the
BH position is fixed.

In our future work, we will test out how shock heating in
the accretion disk affects its evolution, and determine if
there are cases in which feedback onto the NS will affect its
future evolution as well. By including a relativistic artifi-
cial viscosity treatment, we will follow the thermodynamic
evolution of the disk, as well as that of the NS and any
outward mass loss. Of course, to investigate BHNS merg-
ers fully and accurately, we will ultimately have to abandon
the assumptions underlying the CF metric as well. While
our description of an isolated Schwarzschild BH is exact,
the BH lapse goes to zero just outside the event horizon.
This causes matter to ‘‘pile up’’ around the BH, since the
proper time ceases to advance in this region. While this
poses no difficulty for determining the fate of the material,
which will clearly be accreted, it does act as a computa-
tionally challenging ridge of growing mass concentration
as material is transferred continuously toward the BH.

These calculations adopted ‘‘undercompact’’ NSs be-
cause we are interested in systems that disrupt outside
the ISCO while restricting our attention to the case of
extreme mass ratios. By performing dynamical evolutions
using more compact configurations, we will investigate the
transition to the opposite case, in which plunge begins
while the NS is still completely bound. Based upon our
results, we expect that in some cases, the mass-transfer rate
may prove sufficient to kick the core of the NS back out to
a wider, highly elliptical orbit. The phase space for which
this will occur, in terms of the NS EOS and binary mass
ratio, remains poorly understood, and may not conform to
simple analytic estimates, which have difficulty describing
the unstable processes that characterize the merger. In [5],
it was found for a quasi-Newtonian potential that for a
mass ratio q � 0:1, a NS described by a � � 2 EOS was
disrupted during the initial passage, whereas one with a
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� � 3 EOS led to a punctuated mass-transfer scenario
similar to the one we describe for run B1 above in Sec.
V B 2. Probing the assumed forms of the NS EOS that lead
to complete disruption versus survival of a remnant NS
core may prove to be a crucial diagnostic tool for determin-
ing the true physical NS EOS.

In many prior works, it has been assumed that so long as
aISCO < aRoche, the NS will necessarily be tidally dis-
rupted, with some of its mass deposited into a disk around
the BH. According to [82], this may not be true. Instead,
the plunge may start well outside of the ISCO, since, based
on the properties of quasiequilibrium models, the inspiral
time scale may approach the orbital time scale already well
outside of the ISCO (so that the transition through the
ISCO is nearly dynamical rather than adiabatic). It is
unclear exactly what role the spin of the BH will play in
this process, though it appears that a prompt merger is
more likely for a Schwarzschild BH than a spinning Kerr
BH [71], where the latter case is favored by binary evolu-
tion calculations [101,102].

Two different factors can mitigate a prompt merger,
however, and will need to be investigated numerically in
more detail. First, the onset of a plunge also marks the
point at which we assume the quasiequilibrium formula-
tion to break down. From that point onward, the NS will no
longer follow the trajectory predicted by quasiequilibrium
results, and may therefore not plunge as fast as quasiequi-
librium models would predict (in fact, these predictions
provide completely unphysical overestimates of the infall
velocity at the ISCO itself ). Perhaps more importantly,
there is no guarantee that a plunge phase will lead to the
entire NS being swallowed by the BH [83]. Angular mo-
mentum can be transferred outward within the NS on
something approximating the dynamical time scale, and
it is possible that some fraction of the mass, perhaps a
significant fraction, will survive the initial plunge phase.
Using the techniques developed here, and initial configu-
rations taken from TBFS, we will study how varying the
NS spin and compaction affect the final fate of the NS.

It will be necessary to perform relativistic merger cal-
culations in full generality, in order to drop the assumption
that the binary mass ratio is extreme. We are currently
constructing such quasiequilibrium data, which will then
serve as initial data for dynamical simulations [103]. We
expect that these dynamical simulations will be plagued by
the same difficulties encountered in dynamical simulations
of BHBH binaries, and therefore anticipate that this will be
a very challenging project.

Until that point, however, a great deal can be accom-
plished. First and foremost would be to identify the
boundaries in phase space that separate qualitatively differ-
ent phenomena that can occur during a BHNS merger. The
most obvious categories would be prompt merger, prompt
tidal disruption leading to an accretion disk, or a period of
periodic mass-transfer bursts, if the latter does occur at all.
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The former distinction should prove useful for understand-
ing any potential X-ray/gamma-ray emission from these
systems, and aid in our understanding of short gamma-ray
bursts like the recently observed GRB 050509b [46,47],
GRB 050709 [48,49], GRB 050724[50], and GRB 050813
[51].
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APPENDIX A: MASS TRANSFER IN THE VISCOUS
REGIME

Below, we derive a formalism that can be used to de-
scribe conservative quasiequilibrium mass transfer, for
those cases where the viscosity is high, and the binary orbit
remains circular during the mass-transfer process. For
typical (high-mass) NSs, this regime does not apply
([59,60]; see also Fig. 1 above), but can apply to low-
mass NSs, WDs, and main-sequence stars orbiting BHs.
We nevertheless refer to the star as a NS below.

1. Newtonian polytropes

In Newtonian physics, the mass-radius relationship is
given as a function of the polytropic index n by

RNS / M
�1�n	=�3�n	
NS : (A1)

For a given value of the parameter 
 in P � 
	�1�1=n	
0 , the

familiar result is that NSs with n � 1 have a uniform radius
independent of their mass. NSs with n < 1 have radii
which decrease as the mass decreases, whereas those
with n > 1 increase in size as they lose mass. We see
that if the NS loses mass at a rate _m � � _MNS (implying
_m> 0 for the case of interest), the change in the radius is

given by

_RNS

RNS

�
n� 1

3� n
_m

MNS
: (A2)

Once mass transfer begins, the NS will shed mass, and in
doing so, lose both energy and angular momentum. This
will affect the binary orbit, in a way which depends on both
the magnitude and fate of the angular momentum of the
ejected material.

For conservative mass transfer, the orbital angular mo-
mentum J and the total binary mass MT � MNS �MBH �
�1� q	MNS=q are conserved globally, as mass is trans-
ferred from the NS to the BH. We assume that the orbit
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remains circular. Since q � MNS=�MT �MNS	, we see that

_q
q
� ��1� q	

_m
MNS

: (A3)

From the angular momentum of a circular orbit,

J � MNSMBH

�������
Ga
MT

s
; (A4)

we find that

a �
MTJ

2

G
�MNS�MT �MNS	


�2 �
J2

G
M�3

NSq�1� q	;

(A5)

_a=a � 2�1� q	
_m

MNS
: (A6)

The Roche-lobe radius Rr changes during the process as
well. Taking the logarithmic time derivative of Eq. (2) and
combining with Eq. (A6), we find

_Rr
Rr
�

_a
a
�

_q
3q�1� q	

�
_a
a
�

_m
3MNS

�
5� 6q

3

_m
MNS

:

(A7)

Combining this final expression with Eq. (A2), we see that
mass transfer will be unstable if _RNS=RNS > _Rr=Rr, or
equivalently,

n >
9� 9q
4� 3q

; (A8)

q >
9� 4n
9� 3n

; (A9)

or in terms of the adiabatic index � � 1� 1=n, mass
transfer is unstable if

�<
13� 12q
9� 9q

; (A10)

q >
9�� 13

9�� 12
: (A11)

In particular, the critical mass ratio for unstable mass
transfer for some polytropic indices commonly used in
numerical calculations are

n � 1=2�� � 3	:q > 14=15; (A12)

n � 1�� � 2	:q > 5=6; (A13)

n � 3=2�� � 5=3	:q > 2=3: (A14)

As a general rule, for polytropic indices n < 3=2, mass
transfer is stable only for systems with components of
similar mass. For n > 3=2, the critical mass ratio drops
quickly, down to the limiting case n � 9=4, the softest
polytropic EOS for which stable mass transfer can ever
occur, at which point q � 0.
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2. Relativistic polytropes

Relativistic polytropes are not self-similar for a fixed
value of the polytropic index; as the mass decreases, non-
linear gravitational effects become weaker, and the star’s
scale-free density profile grows in size. It is straightforward
to incorporate this into our discussion of mass transfer. We
recast the mass-radius relationship in the form

RNS � �M�1�n	=�3�n	NS f�C	; (A15)

where � sets the physical scale of the mass-radius relation,
C � M=R is the compactness of a spherical star, and f�C	
accounts for the relativistic corrections to the mass-radius
relation. Since relativistic corrections effectively increase
the strength of gravity, f�C	 must be a monotonically
decreasing function of compactness. As C ! 0, � ap-
proaches the proper Newtonian value, � � �N , and f�0	 !
1. Taking a logarithmic derivative of Eq. (A15) shows us
that

_RNS

RNS

�
_f
f
�
n� 1

3� n
_m

MNS
: (A16)

But we know

_f
f
�

1

f
@f
@C

_C �
1

f
@f
@C

� _MNS

RNS
�
M _RNS

R2
NS

�

� �
C

f
@f
@C

�
_m

MNS
�

_RNS

RNS

�
; (A17)

so we conclude that

_RNS

RNS

�

�
n� 1

3� n
�

2

3� n
C

f
@f
@C

�
1�

C

f
@f
@C

�
�1
�

_m
MNS

:

(A18)

From Eq. (A8), we see that the critical mass ratio for
instability becomes

qc �
9� 4n
9� 3n

�
1

3� n
C

f
@f
@C

�
1�

C

f
@f
@C

�
�1
; (A19)

where the second term is always negative, indicating that
more compact configurations are more unstable against
mass transfer.

In Fig. 15, we show the critical compactness values
separating stable and unstable mass transfer for relativistic
polytropes, as a function of the binary mass ratio and the
polytropic (bottom panels) and adiabatic (top panels) in-
dices. As a general rule, as the compactness of the NS
increases, mass transfer is more likely to be unstable. The
Newtonian curves (C � 0) have an analytic form given by
Eqs. (A8) and (A10). Also shown are the two models we
evolve dynamically in this paper, both with C � 0:042.
The case with n � 1�� � 2	, shown as a triangle, would be
expected to demonstrate stable mass transfer in the highly
-25



FIG. 16. Critical mass ratio for determining the stability of
mass transfer from a relativistic polytropic NS companion as a
function of the NS compactness, defined in terms of the poly-
tropic index n (bottom), or the adiabatic index � � 1� 1=n.
Mass transfer is unstable to the right of the curve, stable to the
left. The heavy solid lines depict the maximum possible com-
paction for a given polytropic EOS. The square and triangle
represent the positions of the two models we are evolving
dynamically.

FIG. 15 (color online). Critical compactness for determining
the stability of mass transfer from a relativistic polytropic NS
companion as a function of the binary mass ratio, defined in
terms of the polytropic index n (bottom), or the adiabatic index
� � 1� 1=n. Mass transfer is unstable to the right of the curve,
stable to the left. The square and triangle represent the positions
of the two models we are evolving dynamically.
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viscous regime, but as we show in Sec. V B, the true
situation is nowhere near this simple for typical NSs. The
case with n � 2�� � 1:5	, shown as a square, is expected
to lead to unstable mass transfer.

Representing the same results against compactness,
rather than mass ratio, shows how little parameter space
is available for unstable mass transfer in the viscous limit.
In Fig. 16, we show the critical binary mass ratio for stable
or unstable mass transfer as a function of the NS compact-
ness and polytropic (bottom) or adiabatic (top) index. We
see that for a given compactness, there is a rather limited
range of polytropic indices which can produce unstable
mass transfer. The heavy lines show the maximum possible
compactness allowed for a given polytropic EOS; no
model to the right of those curves can be constructed.
The models that we evolve dynamically are shown as
well. As noted in Sec. V B, many models expected to
undergo stable mass transfer in the viscous limit are ex-
tremely unstable during mass transfer when viscosity is not
a dominant driver of the evolution [59,60], so the true
parameter space for instability is actually much larger for
typical NSs than analytic models would otherwise predict.

3. Time evolution

We describe here a crude treatment of the dynamics of
mass transfer in the presence of gravitational radiation-
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reaction losses, using a number of simplifying assump-
tions. Most important among these will be treating the
problem in the quasiequilibrium regime.

We will study only conservative mass transfer, in the
highly viscous limit. The evolution of the binary separation
can be derived from the expression for the total angular
momentum for a circular orbit, Eq. (A4). Making no
assumptions about the evolution of the system angular
momentum, we find

_J
J
�

_MNS

MNS
�

_MBH

MBH
�

_a
2a
� �q� 1	

_m
MNS

�
_a

2a
: (A20)

Setting the RHS equal to zero gives the standard expression
for conservative mass transfer, Eq. (A6). For the case of a
relativistic binary, we know angular momentum will not be
conserved. Instead, angular momentum is radiated away
from the system in gravitational waves. As we are assum-
ing circular orbits, we will make use of the standard
angular momentum loss rate,

_J
J
� �

32

5

MNSMBHMT

a4 : (A21)

From our two angular momentum relations, we can derive
a relation linking the mass loss rate to the change in binary
separation, and determine the time-averaged mass loss
-26
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rate. To do so, we will make a very simple assumption: that
mass loss takes place at the location where we predict
Roche-lobe overflow to occur.

Solving Eq. (A7) for the binary separation and assuming
Rr � RNS, we can insert Eq. (A18) and find

_a
a
�

2n
9� 3n

_m
MNS

�
_f
f

�

�
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(A22)

Plugging this result into Eq. (A20), we find
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�
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(A23)

Re-expressing the radiation-reaction angular momentum
loss rate, Eq. (A21), for a binary located at the Roche-
lobe overflow point, we find

_J
J
� �

32

5

MNSMBHMT

�0:46RNSM
1=3m�1=3

1 	4

� �143��4f�C	�4�MT �MNS	M
�1=3
T M9�5n=9�3n

NS :

(A24)

We are now in a position to analyze the mass-transfer
process from its onset until the final fate of the binary. To
do so, we will make a few simplifying assumptions. First,
we assume the NS is much less massive than the BH, such
that MBH �MT and q
 1. Also, we will ignore the
relativistic changes to the Newtonian power-law mass-
radius relation, which has the effect of setting f � 1 uni-
formly (and thus @f=@C � 0). In general, relativistic poly-
tropes expand more than their Newtonian analogues during
mass loss, which increases the amount of orbital expansion
seen for a given amount of mass loss. This statement would
imply that a given amount of mass loss leads to a greater
loss of angular momentum, or conversely, that for a fixed
angular momentum loss rate we would see a slight sup-
pression of the mass loss rate. Under these assumptions, we
find

_m
MNS

� 143��4M2=3
T

9� 3n
9� 4n

M9�5n=9�3n
NS

�
9� 3n
9� 4n

�
MNS

MNS�0	

�
9�5n=9�3n 1

2tGW0
; (A25)

where we define tGW0 as the infall time scale when the NS
first reaches the onset of mass transfer, as defined by
Eq. (5), and where MNS�0	 is the NS mass at this time.
This equation has the solution

MNS�t	
MNS�0	

�

�
1:0�

9� 5n
9� 4n

t
2tGW0

�
��9�3n=9�5n	

; (A26)
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with asymptotic behavior

MNS�t	 / t��9�3n=9�5n	; (A27)

_m / t��18�2n=9�5n	: (A28)

Considering some familiar polytropic EOS, we find:

n � 1:5�� � 5=3	:M / t�3=11; _m / t�14=11; (A29)

n � 1:0�� � 2	:M / t�3=7; _m / t�10=7; (A30)

n � 0:5�� � 3	:M / t�15=23; _m / t�38=23; (A31)

n � 0��! 1	:M / t�1; _m / t�2: (A32)

Equation (A29) recovers the special value found by [43], in
the limit q
 1. We note that the typical rate found here
satisfies _MNS �MNS=tGW0 [cf., Eq. (A25)], while our dy-
namical simulations for cases in which viscosity is not
important show _MNS � MNS=tGW0.
APPENDIX B: SYMMETRIES

When constructing quasiequilibrium configurations in
either Newtonian or relativistic gravity, it is important to
take note of the various symmetries present in the relevant
equations. These symmetries can either be enforced nu-
merically, to save computational resources, or be used as a
check to make sure that a numerical code is producing
physically valid results.

For quasiequilibrium binary BHNS systems, virtually all
gravitational formalisms will produce a configuration that
is equatorially symmetric so long as the NS spin axes are
parallel to the orbital angular momentum axis, regardless
of whether the NS is corotating, counterrotating, or irrota-
tional. If we fix the z-axis to be parallel to the various
angular momenta mentioned above, we find that the trans-
formation z! �z, with a corresponding reflection for all
vector and tensor quantities, leaves the hydrostatic equa-
tions and the metric invariant, and is compatible with the
velocity field of the initial configuration as well. For qua-
siequilibrium configurations evaluated using full GR in the
Kerr-Schild metric, this is the only symmetry plane of note
present in the initial data. In our calculations, this symme-
try is enforced at the code level: each SPH particle is
treated as if it were a pair of particles, each of half the
total mass, with one copy lying above the equatorial plane
and one below. All spectral decompositions include this
symmetry as well, setting to zero all spherical harmonics
that are incompatible with a fully symmetric description.

We show here that there is an additional symmetry plane
for the case of equilibrium BHNS binaries in conformally
flat gravity, because the formalism is time-symmetric.
Directions are defined such that the axis of separation
between the BH and NS lies along the x-axis, and the
orbital angular momentum points in the z-direction.
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Thus, the y-direction represents the direction of motion for
each object. Reversing the time direction requires us to
perform two operations in order to maintain invariance.
First, we must invert all vector quantities, most notably the
velocity and the shift vector. Second, we must perform an
inversion in the y-direction, to account for the inversion of
our angular coordinate �! ��. We find the following
relations are compatible with the initial velocity field, and
leave our hydrostatic equations invariant:

Scalars :f�x; y; z; t	 � f�x;�y; z;�t	; (B1)

Vectors :�vx; vy; vz
�x; y; z; t	

� ��vx;�vy; vz
�x;�y; z;�t	: (B2)

Evaluating the expressions above at t � 0 yields the sym-
metries in the y-direction for our initial data. This symme-
try can be extended to tensor quantities as well: two index
tensor elements satisfy the relation Tij�x;�y; z	 �
��1	1�NyTij�x; y; z	, where Ny is the number of ‘‘y’’ in-
dices present for a given element. The additional factor of
�1 is necessary to describe the inversion properties under
time symmetry. Equatorial symmetry can be described in
the same language, Tijk:::�x; y;�z	 � ��1	NzTijk:::�x; y; z	.

It is straightforward to check that these symmetries are
compatible with all equations governing the construction
of quasiequilibrium NS binaries in CF gravity. To do so, we
note that any tensorial operation on fields satisfying these
symmetries will maintain these symmetries, including gra-
dients and inner products.

First, we note that the matter sources in the equations for
the conformal factor and lapse function, Eqs. (25) and (26),
E, P, and S, as scalars, are symmetric in both y and z. The
same pattern follows for scalar densities and quantities like
u0. As an immediate consequence, the lapse and conformal
factor share the same symmetries, since the only other
source terms involve KijKij, itself a scalar.

The equilibrium velocity field is ~v � ~�� ~r �
���y;�x; 0
, which satisfies

�vx; vy; vz
�x;�y; z	 � ��vx;�vy; vz
�x; y; z	: (B3)

Equatorial symmetry is satisfied trivially. In the CF case,
the BH component of the shift vector is zero, and also
satisfies the symmetry relations trivially. Since the shift
equation, Eq. (24) depends only on the velocity field and
other tensors, we can extend the symmetry to describe all
quantities present in the equation. This statement cannot be
made for the Kerr-Schild metric, and serves as the simplest
example of how time-symmetry fails. For the Kerr-Schild
case,

�iBH�KS / x
i !

��x; �y; �z
�x;�y; z	 � ��x;��y; �z
�x; y; z	: (B4)

Thus, the BH contribution to the shift satisfies a different
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symmetry relation than the initial velocity field, and there
is no global symmetry present. The physical reasons under-
lying this fact are discussed in more detail in Appendix E
of [104].
APPENDIX C: PRESERVING STATIONARY
EQUILIBRIUM DURING CF EVOLUTION

We show here that the CF evolution equations maintain
strict stationary equilibrium for initial data satisfying both
the thin-sandwich equations and the integrated Euler equa-
tion. That is, if we have an initially uniformly rotating
matter configuration that satisfies the condition h=u0 �
C, where C is constant throughout space at t � 0, and if
the gravitational field satisfies the CTS equations,
Eqs. (24)–(26), the time derivatives of all quantities go to
zero. Note that under these assumptions, this statement
applies to both Eulerian and Lagrangian time derivatives,
related by the expression d=dt � @=@t� vj@=@xj since
the difference term goes to zero when vj � 0, which
applies in the corotating frame.

First, we note that the continuity equation, Eq. (15), and
energy equation, Eq. (22), are trivially conserved when
vi � 0, implying that 	� and e� are conserved
automatically.

The only evolution equation that requires a more thor-
ough look is the Euler equation, Eq. (19), which we re-
express for convenience in the equivalent form

d~ui
dt
� �

@iP

	�u
0 � �hu

0@i�� ~uj@i�j �
2~uk~uk
hu0 5

@i :

(C1)

We can show that the RHS of this expression is zero by
starting from the integrated Euler equation, which implies
that

@ih

u0
�
h@iu0

�u0	2
� 0: (C2)

From the relativistic Gibbs-Duhem relation, we know that
[27]

@ih

u0
�

@iP

	0u0 : (C3)

The gradient of u0 is determined from the normalization
uaua � u0u0 � �1, where we make use of the fact that
ui � 0. From this, we conclude

u0 � ��2 �  4�ij�i�j	�1=2; (C4)

and differentiating,

@iu
0 � ��u0	3��@i��  

4�jk�
j@i�

k

� 2 3�jk�j�k@i 	: (C5)

Inserting the expression ui � g0iu
0 � � 4u0�ij�

j for a
configuration with ui � 0, we see that
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TABLE II. A comparison of our notation for various relativistic quantities to that found in a selection of previous works using the CF
formalism: [27,53,54,75,94]. For those cases where no unique terminology was defined, we give the simplest equivalent algebraic
form.

Quantity Here FGR [53] Gourgoulhon [27] Oechslin [54] Wilson [75] Shibata [94]

Lapse � N N � � �
Shift �i �Ni �Ni �i �i �i
Conformal Factor  

����
A
p ����

A
p

 �  
Rest Density 	� 	� �nA3	 	� D�6 	�
Lorentz Factor �n �n �n �u0 W �u0

Velocity vi vi NUi � Ni vi Vi vi

Specific Momentum ~ui ~ui wi ~ui Si=�D�
6	 ~ui

Enthalpy h h h w h 1� ��
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h@iu
0

�u0	2
� �

�
�hu0@i�� ~uk@i�

k �
2~uk~uk
hu0 5

@i 
�
; (C6)

and combining terms,

0 � @i

�
h

u0

�
�
@ih

u0 �
h@iu0

�u0	2

�
@iP

	0u
0 �

�
�hu0@i�� ~uk@i�k �

2~uk~uk
hu0 5

@i 
�

� �
d~ui
dt
� 0: (C7)

Thus, the RHS of the Euler equation, Eq. (19), is zero
under these assumptions, and ~ui is also invariant.

We now consider the field equations for the CTS initial
data. The fields are described by a set of linked elliptic
equations, Eqs. (26), whose source terms involve the fields
themselves, as well as three quantities:

E � ��u0	2
�

�P
�� 1

� 	0

�
� P; (C8)

Ui �
�ijuj

 4�n�1� ��	
; (C9)
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S � 3P�  4�E� P	�ijU
iUj; (C10)
where 	0, �, and P are the standard relativistic mass
density, internal energy density, and pressure, respectively.
The Lorentz factor �n � �u0, can be solved implicitly,
from Eq. (18). Coupled with our field equations, we have a
set of six completely linked equations for six variables (�n,
�,  , �i) and our conserved matter quantities (	�, e�, ~ui).
So long as a unique solution exists for our choice of matter
variables, we know that this solution will remain invariant
so long as we choose our elliptic equation boundary con-
ditions to be invariant. Thus, the RHS of all our evolution
equations will remain zero, and the matter configuration
will remain in equilibrium.
APPENDIX D: CF FORMALISM NOTATION

Over time, many different sets of notation have been
used to describe the quantities that appear in the CF
formalism. In Table II, we present the definitions used by
a selection of works to describe equivalent quantities,
along with the set we use throughout this paper.
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[55] M. Shibata and K. Uryū, Phys. Rev. D 61, 064001 (2000).
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