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Metric of a tidally perturbed spinning black hole
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We explicitly construct the metric of a Kerr black hole that is tidally perturbed by the external universe
in the slow-motion approximation. This approximation assumes that the external universe changes slowly
relative to the rotation rate of the hole, thus allowing the parameterization of the Newman-Penrose scalar
 0 by time-dependent electric and magnetic tidal tensors. This approximation, however, does not
constrain how big the spin of the background hole can be and, in principle, the perturbed metric can
model rapidly spinning holes. We first generate a potential by acting with a differential operator on  0.
From this potential we arrive at the metric perturbation by use of the Chrzanowski procedure in the
ingoing radiation gauge. We provide explicit analytic formulas for this metric perturbation in Kerr
coordinates, where the perturbation is finite at the horizon. This perturbation is parametrized by the mass
and Kerr spin parameter of the background hole together with the electric and magnetic tidal tensors that
describe the time evolution of the perturbation produced by the external universe. In order to make the
metric accurate far away from the hole, these tidal tensors should be determined by asymptotically
matching this metric to another one valid far from the hole. The tidally perturbed metric constructed here
could be useful in initial data constructions to describe the metric near the horizons of a binary system of
spinning holes. This perturbed metric could also be used to construct waveforms and study the absorption
of mass and angular momentum by a Kerr black hole when external processes generate gravitational
radiation.
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I. INTRODUCTION

Gravitational wave observatories, such as LIGO and
VIRGO, have the potential to study black holes in the
strong field regime [1]. These black holes are expected to
be immersed in a sea of gravitational perturbations that will
alter the gravitational field of the background hole. Even
though tidal perturbations are expected to be small relative
to the background, they will be important in some astro-
physical scenarios when attempting to provide an accurate
description of the nonlinear dynamical orbital evolution of
bodies around this background. The need for high accuracy
in the description of the orbital evolution derives from
the fact that gravitational wave observatories are extremely
sensitive to the phase of the gravitational waves emitted by
the system. Therefore, since this phase is directly related to
the orbital evolution, in some astrophysical scenarios it is
necessary to take these tidal effects into consideration.

The study of gravitational perturbations around Kerr
black holes is important for several reasons. First, it is of
astrophysical interest to study the flux of mass and angular
momentum across a perturbed Kerr horizon [2–5], which
can be calculated through manipulations of the tidally
perturbed metric computed in this paper. Although this
flux might be small for equal-mass binaries, in extreme-
mass ratio inspirals (EMRI) up to 5% of the total energy
might be absorbed by the background hole. This absorption
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might slow down the orbital evolution increasing the du-
ration of the gravitational wave signal [6,7]. Space-based
detectors, such as LISA, will be able to observe and
measure the gravitational waveforms of EMRIs, since they
have particularly low noise in the low frequency band
where such inspirals are common. Therefore, precise
knowledge of the gravitational waveform including the
tidal perturbations effects might be important in data
analysis [8]. Finally, the explicit formulas of this paper
might be useful to compute initial data near the horizons of
a binary system of spinning holes. For example,
Refs. [9,10] make use of such explicit formulas for the
nonspinning case to construct initial data via asymptotic
matching. This data might be useful to the numerical
relativity community because it derives from an approxi-
mate solution to the Einstein equation and, thus, we expect
it to accurately describe the gravitational field of the sys-
tem up to uncontrolled remainders.

In this paper, we analytically construct explicit formulas
for the metric of a tidally perturbed Kerr hole, where the
perturbations of the external universe are assumed to vary
slowly in a well-defined sense. Metric perturbations for
nonspinning holes have been studied in Refs. [9,11–14]
using the Regge-Wheeler formalism [15]. However, this
method is difficult to implement for spinning holes because
the metric will now depend on both radius and angle � in a
nontrivial way, rendering the Einstein equations very diffi-
cult to solve. For this reason, we use the Chrzanowski
procedure [16,17] to construct the metric perturbation
from the Newman-Penrose (NP) scalar  0. This procedure
-1 © 2006 The American Physical Society
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allows us to calculate the metric in the so-called ingoing
radiation gauge (IRG), which is suitable to study gravita-
tional perturbations near the outer horizon (r�), since there
the metric is transverse and traceless.

We will work in the slow-motion approximation, de-
scribed in detail in Refs. [2,11–14,18–20], where we as-
sume that the rate of change of the curvature of the external
universe is small relative to the rotation rate of the back-
ground black hole, which in principle could be extremal.
The external universe is completely arbitrary in that sense,
as long as it respects the slow-motion approximation. For
example, in the case where the external universe is given
by a second black hole in a quasicircular orbit around the
background hole, this approximation is valid as long as
their orbital separation is sufficiently large. In particular,
this separation must be at least greater than the inner most
stable circular orbit (ISCO)[21,22], so that the binary is
still in a quasicircular orbit. In that case, the curvature
generated by the second hole would correspond to the
external universe, which will change slowly as long as
the orbital velocity is sufficiently small. In this sense, the
slow-motion approximation will hold for astrophysically
realistic binaries as long as they are sufficiently separated.

Assuming this approximation to be valid, Poisson [2]
has computed  0 in the neighborhood of a spinning hole.
First, the Weyl tensor of the spacetime is re-expressed in
terms of the electric and magnetic tidal tensors of the
external universe. Using the slow-motion approximation,
Poisson argues that these tensors will be spatially coordi-
nate independent if evaluated at sufficiently large distances
from the worldline of the hole. With this tensor, the
asymptotic form of  0, denoted by ~ 0, is computed far
from the hole by projecting the Weyl tensor onto the
Kinnersly tetrad. This scalar will be a combination of
slowly-varying functions of time, which will be parame-
trized via the electric and magnetic tidal tensors, and scalar
functions of the spatial coordinates, which will be given by
the tetrad. The asymptotic form of  0 now allows for the
construction of an ansatz for  0, which consists of its
asymptotic form ~ 0 multiplied by a set of undetermined
function of radius Rm�r�. These functions must satisfy the
asymptotic condition Rm ! 1 as r� r�, as well as the
Teukolsky equation. This last condition is a differential
constraint on Rm�r�which can be solved for explicitly, thus
allowing for the full determination of  0. In this manner,
the final expression for  0 is obtained and is now valid
close to the horizon as well, in particular, approaching the
perturbations generated by the external universe suffi-
ciently far from the hole’s worldline.

Once  0 has been calculated, we can apply the
Chrzanowski procedure to compute the metric perturba-
tion, still in the slow-motion approximation. This calcula-
tion contains two parts: the computation of a potential (�)
and the determination of the metric perturbation (hab) from
�. In principle, one might think that it would be easier to
024010
try to compute hab directly from  0. Chrzanowski [16]
attempted this by applying a differential operator onto  0.
However, Wald [23] discovered that doing this leads to a
physically different gravitational perturbation from that
represented by  0. Cohen and Kegeles [24] showed that
by constructing a Hertz-like potential � from  0 first and
then applying Chrzanowski’s differential operator to �
instead leads to the real metric perturbation. This is the
procedure we will follow to construct the metric perturba-
tion in this paper.

The construction of � requires the action of a fourth
order differential operator on  0, where here we follow Ori
[17]. This potential is simplified by the use of the slow-
motion approximation that allows us to neglect any time
derivatives of the electric and magnetic tidal tensors. Once
� is calculated, we can apply Chrzanowski’s differential
operator to this potential [24,25]. In this manner, we com-
pute the metric of a perturbed spinning hole from a tidal
perturbation described by  0 in terms of tidal tensors.
These tensors are unknown functions of time that represent
the external universe and which should be determined by
asymptotically matching this metric to another approxima-
tion valid far from the holes [9,10].

The metric computed here, however, has a limited ap-
plicability given by the validity of the slow-motion ap-
proximation and the Chrzanowski procedure. The slow-
motion approximation implies that we can neglect all
derivatives of the tidal tensors. Furthermore, since we are
working only to first nonvanishing order in this approxi-
mation, it suffices to consider only the quadrupolar pertur-
bation of the metric, since the monopolar and dipolar
perturbations are identically zero. In perturbation theory,
any l mode in the decomposition of the perturbation is one
order larger than the l� 1 mode. Therefore, any higher
modes or couplings of the quadrupole to other modes will
be of higher order. The Chrzanowski procedure also pos-
sesses a limited region of validity, given by a region
sufficiently close to the event horizon so that the spatial
distance from the horizon to the radius of curvature of the
external universe is small. This restriction is because the
Chrzanowski procedure builds the metric as a linear per-
turbation of the background and neglects any nonlinear
interactions with the external universe. In particular, this
restriction implies that this metric cannot provide valid
information on the dynamics of the entire spacetime.
However, if this metric is asymptotically matched to an-
other approximation that is valid far from the background
hole, then the combined global metric will describe the 3-
manifold accurately.

We verify the validity of our calculations in several
ways. First, we check that  0 indeed satisfies the
Teukolsky equation. After computing �, we also check
that it satisfies the Teukolsky equation and the differential
constraint that relates � to  0. Finally, we check that the
metric perturbation constructed with this potential satisfies
-2
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all of the Einstein equations to the given order. We further
check that this perturbation is indeed transverse and trace-
less in the tetrad frame so that it is suitable for the study of
gravitational perturbations near the horizon.

This paper is divided as follows. Section II describes the
slow-motion approximation in detail, summarizes some
relevant results from Ref. [2] and establishes some nota-
tion. Section III computes � from  0, while Sec. IV
calculates hab from �. Finally, Sec. V presents some
conclusions and points toward future work. In the appen-
dix, we provide an explicit transformation to Kerr-Schild
coordinates that might be more amenable to numerical
implementation.

In the remaining of the paper, we use geometrized units
(G � 1, c � 1) and the symbol O�a� stands for terms of
order a, where a is dimensionless. Latin indices range from
0 to 3, where 0 is the time coordinate. The Einstein
summation convention is assumed all throughout the paper,
where repeated indices are to be summed over unless
otherwise specified. Tetrad notation will be used, where
indices with parenthesis refer to the tetrad and those with-
out parenthesis to the components of the tensor. The rela-
tional symbol � stands for ‘‘asymptotic to’’ as defined in
[26], while the symbols� and� are also to be understood
in the asymptotic sense. In particular, note that if f�r� is
valid for r� b, then this function is not valid as r! b.
In this paper we have relied heavily on the use of
symbolic manipulation software, such as MAPLE and
MATHEMATICA.
II. THE SLOW-MOTION APPROXIMATION AND
THE NP SCALAR

In this section we will describe the slow-motion approxi-
mation in more detail and discuss the construction of  0

due to perturbations of the external universe. Both the
slow-motion approximation and  0 have already been ex-
plained in detail and computed by Poisson in Ref. [2].
Therefore, here we follow this reference and summarize
the most relevant results for this paper while establishing
some notation.

Let us begin by discussing the slow-motion approxima-
tion. Consider a nonspinning black hole of mass m1 im-
mersed in an external universe, with radius of curvature R.
This external universe could be given by any object that
lives in the exterior of the hole’s horizon, such as a scalar
field or another black hole. The slow-motion approxima-
tion requires that the external universe’s length scales be
much larger than the hole’s scales. In other words, for the
nonspinning case we must have m1=R� 1, since these
are the only scales available.

For concreteness, let us assume that the external uni-
verse can be described by another object of mass Mext and
that our hole is in a quasicircular orbit around it. Then, we
have
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m1

R
�

m1

m1 �Mext
V2; V �

����������������������
m1 �Mext

b

s
; (1)

where V is the orbital velocity and b is the orbital separa-
tion. There are two ways of enforcing m1=R� 1: the
small-body approximation, where we let m1=Mext � 1;
and the slow-motion approximation, where V � 1.
However, in a future paper we might want to asymptoti-
cally match the metric perturbation computed in this paper
to a post-Newtonian (PN) expansion [27], which requires
small velocities. For this reason, we will restrict our atten-
tion to the slow-motion approximation, which implies that
we can only investigate systems that are sufficiently sepa-
rated. The ISCO is not a well-defined concept for black
hole binaries, but it has been estimated for nonspinning
binary numerically [21,22] to be given approximately by
!ISCOM=10, where M and !ISCO are the total mass of the
system and its angular velocity at the ISCO, respectively.
For spinning binaries the holes can get closer without
plunging, where the value of the ISCO becomes a function
of the spin parameter of the holes. Regardless of the type of
binary system, the slow-motion approximation will hold as
long as we consider systems that are separated by at least
more than their ISCO so that they are still in a quasicircular
orbit.

The above considerations suffice for nonspinning holes
because there is only one length scale associated with it,
m1. However, for spinning ones we must also take into
account the time scale associated with the intrinsic spin of
the hole. The slow-motion approximation does not con-
straint how large the spin of the background hole could be.
However, in the standard theory, it is usually assumed that
isolated holes will obey a < m1, where a is the rotation
parameter of the hole and m1 is its mass. If the previous
inequality did not hold, then the hole would be tidally
disrupted by centrifugal forces. When the background
hole is surrounded by an accretion disk, however, some
configuration might lead to a violation of the previous
condition [28], but we will not consider those in this paper.
Let us then define a dimensionless rotation parameter � �
a=m1, which is now restricted to 0<�< 1. The mass of
the hole and this rotation parameter now define a new
timescale, related to the rotation rate of the horizon and
given by

�H �
1

�H
�

2m1

�
�1�

���������������
1� �2

q
�; (2)

where �H is the angular velocity of the hole’s horizon [29].
The slow-motion approximation then requires this time
scale to be much smaller than the time scale associated
with the change of the radius of curvature of the external
universe, �ext, i.e. �H=�ext � 1. This condition then be-
comes

m1=R� �; (3)
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since �ext 	R. We take the above relation as the precise
definition of the slow-motion approximation for spinning
black holes. Following the reasoning that lead to Eq. (1),
we must then have V2 � �, which, for a binary system,
means that the orbital velocity of the system cannot exceed
the rotation rate of the background hole. Thus, the slow-
motion approximation implies that, to this order and for
spinning holes, we can also only consider systems that are
sufficiently separated and where the black holes have
relatively rapid spins. This reasoning does not imply that
the Schwarzschild limit is incompatible with the slow-
motion approximation. Actually, Poisson [2] showed that
when computing certain quantities, such as  0, this limit
can be recovered if we work to higher order in the slow-
motion approximation. The precise radius of convergence
of the slow-motion approximation to first order remains
unknown, but an approximate measure of how small a
separation the approximation can tolerate will be studied
in a later section.

Now that the slow-motion approximation has been ex-
plained in detail, let us proceed with the construction of  0,
which is defined by

 0 � Cabcdl
amblcmd; (4)

where Cabcd is the Weyl tensor of the spacetime and la and
ma are the first and third tetrad vectors. This null vector ma

is not to be confused with them that we will introduce later
in this section to denote the angular mode of the perturba-
tion. Poisson works with the Kinnersly tetrad in advanced
Eddington-Finkelstein (EF) coordinates, also known as
Kerr coordinates, which are well-behaved at the outer
horizon, given by r� � m1 � �m

2
1 � a

2�1=2.
The calculation of  0 is based on making an ansatz

guided by its asymptotic form far from the worldline of
the hole but less than the radius of curvature of the external
universe, i.e. r� � r�R. In this region, the Weyl tensor
can be decomposed into electric Eab and magnetic Bab
tidal fields, which are slowly-varying functions of ad-
vanced time v only. Thus, in this region, the only spatial
coordinate dependence in  0 is given by the tetrad, namely

~ 0 ��
X
m

zm�v�2Ym2 ��;��; (5)

where the tilde is to remind us that this quantity is the
asymptotic form of  0 and where 2Y

m
2 ��;�� are spin-

weighted spherical harmonics, given by

2Y
0
2��;�� � �

3
2sin2�;

2Y

1
2 ��;�� � � sin��cos�� 1�e
i�;

2Y

2
2 ��;�� �

1
4�1� 2 cos�� cos2��e
2i�:

(6)

In Eq. (5), the quantities zm�v� are complex combinations
of the tidal fields given by zm�v� � �m�v� � i�m�v�,
where
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�0�v� � E11�v� � E22�v�;

�
1�v� � E13�v� � iE23�v�;

�
2�v� � E11�v� � E22�v� � 2iE12�v�;

�0�v� � B11�v� �B22�v�;

�
1�v� � B13�v� � iB23�v�;

�
2�v� � B11�v� �B22�v� � 2iB12�v�:

(7)

Note that in this region,  0 is independent of radial
coordinate.

With Eq. (5) at hand, Poisson makes an ansatz for the
functional form of  0, namely

 0 � �
X
m

zm�v�Rm�r�2Y
m
2 ��;��; (8)

where Rm�r� is an undetermined function of radius that
must satisfy Rm�r� ! 1 as r� r�. If Eq. (8) is inserted
into the Teukolsky equation, one obtains a differential
equation for Rm�r�. The angular part of the Teukolsky
equation is automatically satisfied by the angular decom-
position of  0 in spin-weighted spherical harmonics with
eigenvalue E � 4 (Eq. 2.10 in Ref. [30]). The spatial part
of the Teukolsky equation yields a differential constraint
for Rm�r� namely,

�
x�1� x�

d2

dx2 � �3�2x� 1� � 2im�
d
dx

� 4im�
2x� 1

x�1� x�

�
Rm�x� � 0; (9)

where x is a rescaled version of the radial coordinate given
by

x �
r� r�
r� � r�

; (10)

and where the inner and outer horizons are given, respec-
tively, by r
 � m2

1 
 �m
2
1 � a

2�1=2. We should note that r�
is an event horizon, while r� is actually an apparent
horizon. Solving this equation [2] one obtains

Rm�r� � Amx�2�1� x��2F��4; 1;�1� 2im�;�x�;

(11)

where Am is a normalization constant given by

Am � �
i
6
m��1� im���1� 4m2�2�: (12)

In Eq. (11), the function F�a; b; c; x� is the hypergeometric
function

F�a; b; c; x� �
X1
n�0

�a�n�b�n
�c�n

xn

n!
; (13)

where �a�n is the Pochammer symbol defined as
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�a�n � a�a� 1��a� 2� . . . �a� n� 1� �
�a� n� 1�!

�a� 1�!
;

�a�0 � 1: (14)

For the present case, the series gets truncated at the fourth power and we obtain

F��4; 1;�1� 2im�;�x� �
�
1�

4

2im�� 1
x�

6

�2im�� 1�im�
x2 �

12

�2im�� 1�im��2im�� 1�
x3

�
12

�2im�� 1�im��2im�� 1��2im�� 2�
x4

�
; (15)

where � is a constant given by

� �
a

r� � r�
: (16)

In this manner, Poisson calculates  0, which encodes the gravitational perturbations of the external universe on a
spinning hole in the slow-motion approximation. The full expression for  0 is then given by

 0 � �
X
m�0

Bmx
�2�1� x��2

�
1�

4

2im�� 1
x�

6

�2im�� 1�im�
x2 �

12

�2im�� 1�im��2im�� 1�
x3

�
12

�2im�� 1�im��2im�� 1��2im�� 2�
x4

�
2Y

m
2 ��;��; (17)
where we have used the final abbreviation

Bm � Amzm�v�; (18)

without summing over repeated indices here, to group all
terms that are spatially coordinate independent. We have
checked that Eq. (17) indeed satisfies the Teukolsky equa-
tion [30] for the s � 2 mode that corresponds to this scalar.
Note that, in this final expression, summation over the
m � 0 mode is removed because Poisson [2] has shown
that it corresponds to the Schwarzschild limit and, thus, it
contributes at a relative O�m1=R� higher than all other
modes. Also note that the final expression for  0 only
contains the quadrupolar l � 2 mode, once more because
higher multipoles will be smaller by a relative factor of
m1=R in the slow-motion approximation. For this reason,
there are no mode couplings in the  0 presented above.

The time-evolution of the tidal perturbation will be
exclusively governed by the electric and magnetic tidal
fields. These tensors should be determined by asymptoti-
cally matching the metric perturbation generated by this  0

to another approximation valid far from the hole. However,
in Refs. [9,10,14,20] it has been shown that when the
external universe is given by another nonspinning black
hole in a quasicircular orbit, these tensors scale approxi-
mately as

zm 	
m2

b3 ; (19)

where m2 is the mass of the other hole (the external
universe) and b is the orbital separation (approximately
equal to the radius of curvature of the external universe).
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Note that the factor of b3 in the denominator is necessary to
make the tidal tensors dimensionally correct. Also note that
in Eq. (19) we have neglected the time dependence of the
tidal fields, which generally is given by a trigonometric
function, since we are interested in a spatial hypersurface
of constant time. For the case where the other hole is
spinning, Eq. (19) will contain corrections proportional
to �, but these terms will not change the overall scale of
the tidal tensors.

Throughout the rest of the paper we will generate plots
of physical quantities, such as  0, � and hab. For the
purpose of plotting, we will have to make two choices:
one regarding the physical scenario that produces the
perturbation of the external universe; and another regard-
ing the parameters of the background black hole. As for the
physical scenario, we will choose the external universe to
be given by another orbiting black hole in a quasicircular
orbit. This choice allows us to represent the tidal fields with
the scaling given in Eq. (19). This scaling is not the exact
functional form of the tidal fields and, therefore, the plots
generated will not be exact. However, this scaling will
allow us to provide plots accurate enough to study the
general features of the global structure of the quantities
plotted, as well as some local features near the horizons.
Regarding the parameter choice, we will assumem1 � m2,
a � 0:99m1, and b � 10m1, where M � m1 �m2 � 1 is
the total mass. These choices are made in accordance with
the slow-motion approximation, while making sure the
system is not inside its ISCO. However, the formulas
presented in this paper should apply to other choices of
physical scenarios and background parameters as well, as
-5
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FIG. 1. Plot of the real part of the NP scalar  0 along the x
axis with the plotting parameters described in Sec. II.
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long as these do not conflict with the slow-motion
approximation.

Given the chosen physical scenario, the formulas in this
paper should apply to other mass ratios and separations, as
long as the orbital velocity does not become too large. For
the background parameters chosen, the orbital velocity is
approximately V 	 0:3, which indicates that, for fixed
masses, we cannot reduce the orbital separation by much
more without breaking the slow-motion approximation.
However, since we provide explicit analytic formulas for
all relevant physical quantities, we can estimate their error
by considering the uncontrolled remainders, i.e. the ne-
glected terms in the approximation. In particular, in a later
section, we will see that the uncontrolled remainders are
still much smaller than the perturbation itself even at b �
10M as long as we restrict ourselves to field points suffi-
ciently near the outer horizon of the background hole.

In Fig. 1 we plot the real part of  0 with the plotting
choices described earlier. Observe that as r becomes large
the scalar asymptotes to a constant given by ~ 0. Also
observe that the functional behavior of the scalar is dras-
tically different as r becomes small. In this figure, as well
as in future figures, we have chosen to include an inset
where we zoom to a region close to the horizons, so that we
can observe its local and global behavior. For the orbital
parameter chosen, the inner and outer horizons are given
by r� 	 0:43M and r� 	 0:57M. Observe from the inset
in Fig. 1 that the scalar diverges at the horizons and as
r! 0, which is due to the choice of tetrad. Finally, observe
that, except for where it diverges, the real part of  0 is of
O�V2� in the entire 3-manifold.
III. THE POTENTIAL

In this section we will use 0 to construct the potential �
by acting some differential operators on the NP scalar. This
potential must satisfy the vacuum Teukolsky equation for
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the s � �2 mode together with the differential equation

 0 � D4� ��; (20)

where the overbar stands for complex conjugation and
where the differential operator is given by D � la@a
[17,23,31].

Ori [17] has shown that the above differential equations
can be inverted with use of the Teukolsky-Starobinsky
relation to obtain

� �
1

p
�2�Dy�4��2 � 0; (21)

where here � is given by

� � r2 � 2m1r� a2; (22)

while p is a constant that for the time-independent case
reduces to

p � �l�l� 1� � s2 � jsj2�l�l� 1� � s2 � jsj � 22:

(23)

In our case, since s and l refer to  0, s � 2 and l � 2 so
that this constant becomes p � 576.

The differential operator Dy is given in spherical Brill-
Lindquist (BL) coordinates �tBL; r; �;�BL� by

DyBL � @r �
a
�
@�BL

; (24)

neglecting any time dependence, since time derivatives
will only contribute at a higher order. In order to compute
� in Kerr coordinates, we must transform the above dif-
ferential operator. The transformation between Kerr and
BL coordinates is given by

dv � dtBL � drBL

�
2m1r

�
� 1

�
; dr � drBL;

d� � d�BL; d� � d�BL � drBL
a
�
:

(25)

After transforming the differential operator DyBL we obtain

Dy � @r; (26)

because the drBL=d� term in the transformation cancels
the � dependence. Note that r and � do not change in this
transformation and, thus, � remains unchanged. Also note
that � is a scalar constructed from differential operators on
 0 and, since the latter is a scalar, � will also be gauge
invariant.

Before plugging in Eq. (17) into Eq. (21) to compute �,
let us try to simplify these expressions. In the previous
section, we defined the inner and outer horizons r� and r�,
as well as the new variable x. We can invert the definition
of x so that it becomes a definition for r as a function of x
and then insert this into Eq. (22). We then obtain

� � 4�x�1� x�; (27)

where we have defined � � m2
1 � a

2. It is clear now that
-6
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FIG. 2. Plot of the potential �R along the x axis with the
plotting parameters described in Sec. II.
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when we combine the square of this expression with
Eq. (17) some cancellations will occur that will simplify
all future calculations.

We are now ready to compute �, but first let us rewrite
the function we want to differentiate, namely

�2 � 0 �
X
m�0

�Cm �F�x�2 �Ym2 ��;�BL�; (28)

where F�x� is shorthand for the aforementioned hypergeo-
metric function and where Cm is a new function of ad-
vanced time only given by

Cm � �16Bm�2 � �16Am�2zm�v�: (29)

Note that the angular dependence occurs in the spherical
harmonics, while the only x dependence is in the hyper-
geometric function. We can transform the Dy operator to x
space to obtain

Dy � @r �
1

2�1=2
@x: (30)

Applying all these simplifications, � becomes

� �
�2

576

X
m�0

�Cm2
�Ym2 ��;��

1

16�2 @
4
x� �F�x�: (31)

We can now apply all derivatives to obtain

� �
�2

576

X
m�0

�Cm2
�Ym2 ��;��

�F�4�

16�2 ; (32)

where we have used the shorthand �F�n� which stands for the
nth derivative of the complex conjugate of the hypergeo-
metric function. This derivative is given by

�F �4� �
288

�2im�� 1�im���2im�� 1���2im�� 2�
;

(33)

Note that we can re-express the constant � in terms of � as
� � a=�2�1=2�. Interestingly this constant combines with
�Cm to return an overall constant that is purely real so that �

is given by

� � �
1

24
�2

X
m�0

Ym���e�im� �zm�v�; (34)

where here Ym stands for the l � 2 spherical harmonics
with zero � dependence. We have checked that the poten-
tial of Eq. (34) indeed satisfies the definition of Eq. (20) as
well as the Teukolsky equation for the s � �2 mode with
angular eigenvalue E � 10. Note that � has units of mass
squared because the electric and magnetic tidal fields scale
as the inverse of the mass squared. Furthermore, note that
even though  0 is singular at the horizon, � is finite and
actually vanishes there.

Next, we proceed to decompose � into real and imagi-
nary parts. The potential contains 2 complex terms,
024010
namely, the � part of the spherical harmonics and the
electric and magnetic tidal tensors. Decomposing � we
obtain

�R � �
�2

24

X
m�0

Ym��m�v� cosm�� �m�v� sinm��;

�I �
�2

24

X
m�0

Ym��m�v� sinm�� �m�v� cosm��: (35)

Note that the entire radial dependence is encoded in �2,
whereas the angular dependence is hidden in the spherical
harmonics. The time dependence occurs only in the tidal
fields that should be determined via asymptotic matching,
as mentioned previously. This is the potential in Kerr
coordinates associated with the  0 calculated in the pre-
vious section in the slow-motion approximation.

In Fig. 2 we plot �R with the plotting choices described
in Sec. II. Observe from the inset that the potential has
nodes at both horizons. Also observe that the potential does
not asymptote to a constant, but instead it grows quarti-
cally. This growth is due to the factor of �2 that dominates
at large radius. Finally, note that the potential is still of
O�V2� for radii sufficiently close to the hole (roughly for
r < 8m).
IV. THE METRIC PERTURBATION

In this section we compute the metric perturbation by
applying Chrzanowski’s differential operator to the poten-
tial calculated in the previous section. The full metric of
the spacetime is given by

gab � gBab � hab; (36)

where gBab is the background metric and hab is the pertur-
bation. Since  0 and � were computed in Kerr coordi-
nates, the background should also be in this coordinate
-7
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system. This background is given then by

gB00 � �

�
1�

2m1r
�

�
; gB01 � 1;

gB03 � �
m1r
�
�2asin2��; gB13 � �asin2�;

gB22 � �; gB33 � �r
2 � a2�sin2��

2m1r
�
�a2sin4��;

(37)

where m1 is the mass of the background black hole, a is its
spin parameter, related to the angular momentum vector by
~S � m~a, and where � � r2 � a2cos2�.

Let us now construct the metric perturbation. We will
work with the form of the differential operator presented in
Ref. [25], namely

hab � 2<�f�lalb�	� ��� 3�� ���	� 4�� 3��

�mamb�D� 
��D� 3
�

� l�amb���D� 2i
I��	� 4�� 3��

� �	� 3�� ��� ��� ���D� 3
�g��; (38)

where we have replaced �
� 
 � �2i
I. The metric per-
turbation constructed in this fashion will be in the ingoing
radiation gauge (IRG), which is defined by the conditions

hll � hln � hlm � hl �m � hm �m � 0: (39)

In Eq. (38) there are terms that depend on the differential
operators D � la@a and 	 � ma@a, which in turn depends
on the tetrad. To be consistent, we will continue to work
with the Kinnersly tetrad in Kerr coordinates given by

ea
�1� � la �

�
2
r2 � a2

�
; 1; 0

2a
�

�
;

ea
�2� � na �

�
0;�

�

2�
; 0; 0

�
;

ea
�3� � ma �

1���
2
p
�r� ia cos��

�
ia sin�; 0; 1;

i
sin�

�
;

ea
�4� � �ma;

(40)

where the overbar stands for complex conjugation. Note
that thema vector is the same as the one in BL coordinates,
but la and na are different. The differential operators
associated with this tetrad in Kerr coordinates are

D � @r �
2a
�
@�;

	 �
1���

2
p
�r� ia cos��

�
@� �

i
sin�

@�

�
;

(41)

where once more we neglect the time derivatives by use of
the slow-motion approximation. The covariant form of the
tetrad in these coordinates is given by
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la � lRa �
�

1;�
2�

�
; 0;�asin2�

�
;

na � nRa �
1

2�
��; 0; 0;�a�sin2��;

mR
a �

a sin����
2
p

�

�
a cos�; 0;�

r�
a sin�

;� cos��r2 � a2�

�
;

mI
a �

1���
2
p

�
�ar sin�; 0; a� cos�;�r sin��r2 � a2�; (42)

where the superscript I and R stand for the imaginary and
real parts, respectively. One can show that if this tetrad is
used we can recover the background metric gBab with the
formula gBab � 2l�anb� � 2m�a �mb�.

Equation (38) contains terms that depend on the spin
coefficients of the background [32]. These coefficients,
also called Ricci rotation coefficients for the case where
the tetrad is non-null, are simply contraction of the tetrad
with its derivatives. In the tetrad formalism, these quanti-
ties can also be related to the Riemann tensor. Let us
decompose the spin coefficients into real and imaginary
parts, i.e.


R � �
r
�
; 
I � �

a
�

cos�; �R �

���
2
p

4

r
�

cot�;

�I � �

���
2
p

4

a
�

cot� cos�; �R � �
���
2
p a2

�2 r sin� cos�;

�I �

���
2
p

2

a

�2 �r
2 � a2cos2�� sin�; �I � �

���
2
p

2

a
�

sin�;

�R � �
���
2
p a2

�2 r sin� cos��

���
2
p

4

r
�

cot�;

�I �

���
2
p

2

a

�2 sin��r2 � a2cos2�� �

���
2
p

4

a
�

cot� cos�:

(43)

These spin coefficients are the same as those obtained with
the Kinnersly tetrad in BL coordinates. This invariance is
due to the fact that the spin coefficients are only tetrad
dependent but still gauge invariant.

We will split Eq. (38) into 4 terms in order to make
calculations more tractable. The split is as follows: the
term proportional to lalb will be denoted term A; the
term proportional to mamb will be referred to as term B;
the first half of the term proportional to l�amb� will be
denoted term C; and the remaining of this term will be
referred to as term D. In this manner we have

hAab � ��lalb�	� ��� 3�� ���	� 4�� 3���;

hBab � ��mamb�D� 
��D� 3
��;

hCab � �l�amb��D� 2i
I��	� 4�� 3���;

hDab � �l�amb��	� 3�� ��� ��� ���D� 3
��;

(44)
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and the full metric perturbation is given by

hab � 2<�hAab � h
B
ab � h

C
ab � h

D
ab�: (45)

With this split we can now proceed to simplify each expression more easily. One such simplification is to operate with
the differential operators. Expanding all terms we obtain

hAab � �lalb�	
2����4	�� 3	�� � �7�� 2�� ���	�� � ��� 3�� ���4�� 3���;

hBab � �mamb�D
2�� 2
D�� 3�D
� 3
2�;

hCab � l�amb��D	�� 4�D�� 3�D�� �4�� 3��D�� 2i
I�4�� 3���� 2i
I	�;

hDab � l�amb��	D�� 3�	
� 3
	�� �3�� ��� �� ���D�� �3�� ��� �� ���3
�; (46)

These expressions give the metric perturbation in terms of the action of the differential operators on the spin coefficients
and the potential.

A. Action of the differential operators

In order to provide explicit formulas for the metric perturbation we must investigate how the differential operators act on
the spin coefficients and on the potential. Let us first concentrate on the action of the differential operators on the spin
coefficients. After taking the necessary derivatives and decomposing the result into imaginary and real parts, we obtain

D
 � D
;R � iD
;I �
r2 � a2cos2�

�2 � i
�

2
ra

�2 cos�
�
;

D� � iD�;I � i
���
2
p ar

�2 sin�;

D� � D�;R � iD�;I � �

���
2
p

4

cot��r2 � a2cos2��

�2 � i
� ���

2
p

2

ra

�2 cot� cos�
�
;

	
 � 	
;R � i	
;I � �

���
2
p

2

a2

�2 sin� cos�� i
� ���

2
p

2

ar

�2 sin�
�
;

	� � 	�;R � i	�;I

�
a4cos6�� r4 � 3r2a2cos2�� 3cos4�r2a2

4�3sin2�
� i

�
ra cos�

3a2cos4�� r2cos2�� 3r2

4sin2��3 � ra cos�
a2cos2�

4sin2��3

�
;

	� � 	�;R � i	�;I �
1

2
a2cos2�

�r2 � a2cos2�� 2a2

�3 � i
�

1

2
ra cos�

�r2 � a2cos2�� 2a2

�3

�
: (47)

We now need to act with the differential operators on the potential itself. We can separate the � dependence from these
operators to obtain

D� � Dm�; 	� � 	m�; �D	�� � �D	�m�; �	D�� � �	D�m�; (48)

where

Dm � @r � 2i
ma
�
�

1

2�1=2
@x �

ima
2�

1

x�1� x�
; 	m � 	0

�
@� �

m
sin�

�
; 	0 �

� �
���
2
p ; 	0;r � �

���
2
p
	2

0:

(49)

We can also compute the square of these operators acting on �2Ym, where Ym stands for the spherical harmonics with no�
024010-9
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dependence. Doing so we obtain

D2
m��

2 � 8�r�m1�
2 � 4�� 4m2a2 � 12ima�r�m1�;

	2
m�Ym � 	2

0Y
m
;�� �

�
	0

�
ia sin����

2
p

�
�
	0

�
a2 sin2�

�
� 2	2

0

m
sin�

�
Ym;� �

�
	0m
sin�

�
ia sin����

2
p

�
�
	0

�
a2 sin2�

�

�
	2

0m

sin2�
�m� cos��

�
Ym;

�	D�m��
2Ym � 	0

�
Ym;� �

m
sin�

Ym
�
�4��r�m1� � 2ima�;

�D	�m��2Ym � �
���
2
p
	2

0�2

�
Ym;� �

m
sin�

Ym
�
� �	D�m��2Ym; (50)

where the commas stand for partial differentiation.
We now have all the ingredients to compute the action of the differential operators on the potential. Doing so we obtain

Dm� � �
�

12

X
m�0

Ym �zme
�im��2�r�m1� � ima;

	m� � �
�2

24

X
m�0

�
Ym;� �

m
sin�

Ym
�
e�im� �zm	0;

�Dm�
2� � �

1

6

X
m�0

Yme�im� �zm�2�r�m1�
2 ���m2a2 � 3ima�r�m1�;

�	m�
2� � �

�2

24

X
m�0

e�im� �zm

�
	2

0Y
m
;�� �

�
	0
ia sin����

2
p

�
� 	2

0

�
a2 sin2�

�
� 2

m
sin�

��
Ym;�

�

�
	0m
sin�

�
ia sin����

2
p

�
�
	0

�
a2 sin2�

�
�
	2

0m

sin2�
�m� cos��

�
Ym

�
;

�	D�m� � �
�

12

X
m�0

�
Ym;� �

m
sin�

Ym
�
e�im� �zm�2	0�r�m1� � 	0ima;

�D	�m� � �	D�m��

���
2
p

24
�2

X
m�0

�
Ym;� �

m
sin�

Ym
�
e�im� �zm	2

0; (51)
In order to complete the calculation, we need to provide
explicit formulas for the first and second derivatives of the
spherical harmonics. These derivatives are given by

Y
1
;� � �2cos2�� 1
 cos�;

Y
1
;�� � sin��4 cos�� 1�;

Y
2
;� � �

1
2 sin��cos�� 1�;

Y
2
;�� � �cos2�
 1

2 cos�� 1
2:

(52)
Note that the spherical harmonics and all of its derivatives
are purely real.
024010
B. Decomposition into real and imaginary parts

We will conclude this section by explicitly taking the
real part of the metric perturbation, so as to have explicit
formulas for the metric in terms of only the real and
imaginary parts of the spin coefficients, the potential and
the action of the differential operators on these quantities.

Before decomposing Eq. (46), however, we must de-
compose the action of the differential operators on the
potential, i.e., Eq. (51). Let us first note that the action of
any differential operator on the potential always contains
the product of 3 complex terms, the first 2 of which are
always e�im� and �zm. The third term varies depending on
the differential operator. Let us define the third term with
superscripts as
-10
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c�D� � �
�

12

X
m�0

Ym�2�r�m1� � ima;

c�	� � �
�2

24

X
m�0

�
Ym;� �

m
sin�

Ym
�
	0;

c�D
2� � �

1

6

X
m�0

Ym�2�r�m1�
2 ���m2a2 � 3ima�r�m1�;

c�	�
2
� �

�2

24

X
m�0

�
	2

0Y
m
;�� �

�
	0
ia sin����

2
p

�
� 	2

0

�
a2 sin2�

�
� 2

m
sin�

��
Ym;�

�

�
	0m
sin�

�
ia sin����

2
p

�
�
	0

�
a2 sin2�

�
�
	2

0m

sin2�
�m� cos��

�
Ym

�
;

c�	D� � �
�

12

X
m�0

�
Ym;� �

m
sin�

Ym
�
�2	0�r�m1� � 	0ima;

c�D	� � c�	D� �

���
2
p

24
�2

X
m�0

�
Ym;� �

m
sin�

Ym
�
	2

0; (53)

In general, if we want to decompose the product of 3 complex quantities a, b and c we will obtain

�abc�R � cR�aRbR � aIbI� � cI�aRbI � aIbR�; �abc�I � cR�aRbI � aIbR� � cI�aRbR � aIbI�: (54)

Since we have identified a � e�im� and b � �zm, their real and imaginary parts are aR � cosm�, aI � � sinm�, bR � �m
and bI � ��m. Finally, if we further decompose c we obtain

c�D�R � �
�

6

X
m�0

Ym�r�m1�; c�D�I �
�

12

X
m�0

Ymma; c�	�R � �
�2

24

X
m�0

�
Ym;� �

m
sin�

Ym
�
	0;R;

c�	�I � �
�2

24

X
m�0

�
Ym;� �

m
sin�

Ym
�
	0;I ; c�D

2�
R � �

1

6

X
m�0

Ym�2�r�m1� � ��m2a2;

c�D
2�

I �
1

2

X
m�0

Ymma�r�m1�; c�	D�R � �
�

12

X
m�0

�
Ym;� �

m
sin�

Ym
�
�2	0;R�r�m1� � 	0;Ima;

c�	D�I � �
�

12

X
m�0

�
Ym;� �

m
sin�

Ym
�
�2	0;I�r�m1� � 	0;Rma;

c�D	�R � c�	D�R �

���
2
p

24
�2

X
m�0

�
Ym;� �

m
sin�

Ym
�
�	2

0;R � 	
2
0;I�; c�D	�I � c�	D�I �

���
2
p

12
�2

X
m�0

�
Ym;� �

m
sin�

Ym
�
	0;R	0;I ;

c�	
2�

R � �
�2

24

X
m�0

�
Ym;���	

2
0;R � 	

2
0;I� �

�
�	0;I

a sin����
2
p

�
� �	2

0;R � 	
2
0;I�

�
a2 sin2�

�
�

2m
sin�

��
Ym;�

�

�
�	2

0;R � 	
2
0;I�

�
ma2 sin2�

sin��
�

m

sin�2 �m:� cos��
�
� 	0;I

ma���
2
p

�

�
Ym

�
;

c�	
2�

I � �
�2

24

X
m�0

�
Ym;��2	0;R	0;I �

�
	0;R

a sin����
2
p

�
� 2	0;R	0;I

�
a2 sin2�

�
�

2m
sin�

��
Ym;�

�

�
2	0;R	0;I

�
ma2 sin2�

sin��
�

m

sin�2 �m:� cos��
�
� 	0;R

ma���
2
p

�

�
Ym

�
; (55)

and where

	0;R �
r���
2
p

�
	0;I �

�a���
2
p

�
cos�: (56)
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From these equations it is simple to reconstruct the real and imaginary parts of the action of the differential operators on the
potential by combining Eq. (54) and (55). For example, the real part of Dm� is then given by

�Dm��R � c�D�R �aRbR � aIbI� � c
�D�
I �aRbI � aIbR�

�
�

12

X
m�0

Ym��2�r�m1���m�v� cosm�� �m�v� sinm�� �ma��m�v� sinm�� �m�v� cosm��: (57)

We are now finally ready to get a final expression for the metric perturbation by taking the real part of Eq. (46). Doing so
we obtain

<�h�A�ab  � �lalb��R�4	�;R � 4�R�R � 3�I�I � 3�2
I � 12�2

R � 5�I�I � 3	�;R � 4�I�I � 12�2
I �

��I��24�R�I � 4	�;I � 3	�;I � 5�I�R � 4�I�R � 3�R�I � 4�R�I� � �	m��R�7�R � �R�

� �	m��I��7�I � 2�I � �I� � ��	m�2�R;

<�h�B�ab  � 2��Dm�
2�Im

R
am

I
b � ��Dm�

2�R�m
I
am

I
b �m

R
am

R
b � � �Dm��R�2�m

I
am

I
b �m

R
am

R
b �
R � 4mR

am
I
b
I

� �Dm��I�4m
R
am

I
b
R � 2�mR

am
R
b �m

I
am

I
b�
I � 3�R��m

I
am

I
b �m

R
am

R
b ��


2
I � 


2
R� � 4mR

am
I
b
R
I

�D
;R�m
I
am

I
b �m

R
am

R
b � � 2mR

am
I
bD
;I � 6�I��m

I
am

I
b �m

R
am

R
b �
R
I �m

R
am

I
b�


2
I � 
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The full metric perturbation is then given by

hab � 2�<�h�A�ab  � <�h
�B�
ab  � <�h

�C�
ab  � <�h

�D�
ab : (59)

This is the metric of a tidally perturbed Kerr black hole in
Kerr coordinates. We can transform this metric to Kerr-
Schild coordinates, but this is left to the Appendix. We
have checked that this metric indeed satisfies the Einstein
equations by linearizing the Ricci tensor and verifying that
all components vanish to first order. We have further
checked that the metric perturbation is transverse and
traceless (haa � 0 and habla � 0) in the tetrad frame mak-
ing it suitable to study gravitational perturbations near the
horizon. Furthermore, we have checked that the conditions
that define the IRG [Eq. (39)] are also satisfied. Another
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feature of this metric is that its determinant is zero, which
renders it noninvertible. However, the full metric gab �
gBab � hab is invertible and, thus, the calculation of the
Einstein tensor is straightforward.

The metric perturbation has now been expressed entirely
in terms of quantities explicitly defined in this paper. These
quantities are the real and imaginary parts of the spin
coefficients, the potential and the action of the differential
operators on the spin coefficients and the potential. The
spin coefficients where decomposed in Eq. (43); the po-
tential was decomposed in Eq. (35); the action of the
differential operators on the spin coefficients is given in
Eq. (47); and the action of these operators on the potential
is decomposed in Eq. (54) and (55).
-12
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The metric perturbation possesses the general global
features that it diverges as r! 1 and it either diverges
or converges to a finite value as r! 0. The behavior as
r! 1 is to be expected because the Chrzanowski proce-
dure seizes to be valid far from the hole. On the other hand,
the behavior as r! 0 is a bit more surprising. In this
region there are two different types of behavior: either
the perturbation remains finite or it diverges. These differ-
ent types of behavior depend on the component and axis we
are investigating. On the one hand, there are some compo-
nents that either are finite and of O�V2� or vanish as r! 0
for all angles, such as h01, h11, h12, h13 and h22. On the
other hand, there are other components that diverge along
certain axis as r! 0. For example, h00, h03 and h33 diverge
along the x axis, the y axis and the x-y diagonal, while h02

and h23 diverge along the y axis and x-y diagonal. This
divergence is due to the choice of tetrad, since the fourth
Kinnersly tetrad vector clearly diverges as r! 0. Note,
however, that since the divergences occur well inside the
inner horizon they will be causally disconnected with all
physical processes occurring outside the outer horizon and,
thus, these divergences are irrelevant to most physical
applications. This divergent behavior could nonetheless
be avoided if a different tetrad, such as the Hawking-
Hartle one, is used to compute the perturbation, but this
will not be discussed here further.

In order to illustrate this global behavior, we have plot-
ted h00 in Fig. 3 with the plotting choices described in
Sec. II along the x axis and the y-z diagonal (� � �=4 and
� � �=2). Observe that the perturbation diverges as r!
1 and as r! 0 along the x axis, but it remains finite as
r! 0 along the y-z diagonal. Everywhere else, and, in
particular, near the outer horizon, the perturbation is of
O�V2�, where V � �M=b�1=2 is the orbital velocity. Finally,
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FIG. 3 (color online). Plot of the 00 component of the metric
perturbation along the x axis (solid line) and along the y-z
diagonal (dashed line) with the plotting parameters described
in Sec. II.
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observe that the perturbation vanishes close but not really
at either horizon, remaining finite through them.

The divergence of the perturbation can be used to ap-
proximately determine the region of validity of the ap-
proximation. As we have discussed previously and seen
in Fig. 3, the perturbation will be valid inside a shell
centered at the background hole. The inner radius of this
shell can be approximately determined by graphically
studying the radius where hab > O�V2�, approximately
given by rinner 	 0:01M. This value for the inner radius
of the shell is only an order of magnitude estimate, but is
suffices to see that rinner � r�. The causal structure of the
region r < r� is extremely complex and many of its fea-
tures are known to be unstable under small perturbations
that destroy the symmetries of the spacetime [29].
However, note that the perturbation is well-behaved for
r� r� � M and, in particular, it is of the order predicted
by the approximation [O�V2�]. In any case, the region r <
r� is hidden inside the event horizon and most astrophys-
ical applications will be concerned with regions of small
spacelike separations from the outer horizon, and not the
inner one.

The outer radius of the shell can be estimated by study-
ing the fractional error in the perturbation, which is deter-
mined by comparing the perturbation to the uncontrolled
remainders in the approximation. The approximate error
bars in Fig. 3 are given by an estimate of these uncontrolled
remainders, 	hab, which are due to truncating the formal
series solution at a finite order. In the present case, this
truncation is done at O�V2�, where the tidal fields provide
this scaling. The uncontrolled remainders then will be of
O�V3� and should come from time derivatives of the tidal
tensors, i.e. 	hab / _hab. The argument of the tidal tensors
is!v, where! � V=b is the angular velocity and where v
is the advanced time coordinate. Any time derivative will
pull out a factor of !, which will in turn increase the order
of that term. However, in order for the uncontrolled re-
mainders to be dimensionally consistent (	hab must have
the same dimensions as hab), we need to multiply the time
derivatives of the tidal tensors by r, so that

	hab 	 r _hab 	 r�V=b�hab: (60)

This line of reasoning, however, only leads to an order of
magnitude estimate of the uncontrolled remainder. In prin-
ciple, any dimensionless scalar function could be multi-
plying this estimate as long as it does not change the
scaling. For the case of nonspinning holes, the metric
perturbation has been computed to O�V3� [14], which
allows us to compare these terms to Eq. (60). This com-
parison suggests that the multiplicative scalar function is
roughly unity and, thus, unnecessary so that Eq. (60) is
indeed a good approximation to the scaling of the uncon-
trolled remainders. Clearly, this estimate is not the exact
error in the approximation, which can formally only be
determined if we know the exact functional form of the
-13
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next order term. This estimate, however, is a physically
well-motivated approximation for the uncontrolled
remainders.

The outer radius of the region of validity of this approxi-
mation can be approximately determined by studying the
behavior of these error bars. From Fig. 3 we see that the
error bars become considerable large (approximately 50%
as big as the perturbation itself ) roughly at r � 13M.
However, for r < 4M the estimated error bars are less
than 10% relative to the perturbation. This seems to in-
dicate that, even at b � 10M where the slow-motion ap-
proximation begins to become inaccurate, the approximate
solution is still valid sufficiently close to the outer horizon.
This estimation of the fractional errors is by no means a
formal proof of the existence or size of the region of
validity of the approximation. However, this estimation
does provide a strong argument that the approximation is
indeed valid sufficiently close to the outer horizon. If 10%
fractional error is tolerable, which would correspond to
neglecting terms ofO�V3�, then the outer radius of the shell
is approximately given by router 	 4M. Clearly, as b is
increased, the slow-motion approximation will become
more accurate and, thus, the perturbation will be valid
inside a bigger shell with larger outer radii.

The results of this paper are clearly valid close to the
outer horizon of the background hole, thus allowing the
study of physical processes of interest to the relativity
community. For instance, we can use the perturbation
presented here to construct initial data for a binary system
near either hole. In this case, we are not interested in the
behavior of the perturbation inside the inner horizon be-
cause that region can be excised and does not belong to the
computational domain. Furthermore, the calculations of
angular momentum and mass flux across the horizon can
still be performed because they only depend on the behav-
ior of the perturbation near or at the outer horizon.
V. CONCLUSIONS

We have computed a tidally perturbed metric for a
spinning black hole in the slow-motion approximation.
This approximation allows us to parameterize the NP
scalar  0 [Eq. (17)] in terms of the electric and magnetic
tidal tensors of the external universe. With this scalar we
can then construct a potential � [Eq. (34)], by applying
certain differential operators to it. From this potential, we
can then apply the Chrzanowski procedure to construct a
metric perturbation [Eqs. (35), (43), (47), (54), (55), (58),
and (59)].

The metric is naturally computed in the ingoing radia-
tion gauge and in Kerr coordinates, which are suitable to
study perturbation near the horizon due to its horizon
penetrating properties. This metric is given explicitly in
terms of scalar functions of the coordinates and is parame-
trized by the mass of the background hole, its Kerr spin
parameter and electric and magnetic tidal tensors. The
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mass and the spin parameters of the background hole do
not have to be small relative to each other, so in principle
the metric presented here is capable of representing tidally
perturbed extremal Kerr holes. The tidal tensors describe
the time-evolution of the perturbation produced by the
external universe and, thus, are functions of time that
should be determined by matching the metric to another
approximation valid far from the holes.

The slow-motion approximation constrains what kind of
perturbations are allowed, thus limiting the external uni-
verse that is producing them. In this approximation, the
radius of curvature of the external universe must be chang-
ing sufficiently slowly relative to the scales of the back-
ground hole. One consequence of this restriction is that the
tidal fields must be slowly-varying functions of time, thus
allowing us to neglect their time derivatives. In this sense,
this approximation leads to a quasistatic limit, where in this
paper we have calculated the first nonvanishing deviations
from staticity. Another consequence of this approximation
is that we can parametrized the perturbation in terms of
multipole moments, where here we have only considered
the first nonvanishing one (the quadrupolar perturbation).
In perturbation theory, the l� 1 mode will be one order
smaller than the l mode, which allows us to neglect the
octopole and any other higher modes, as well as any mode
beating between the quadrupole and higher modes.

Because of these restrictions, if we allow the external
universe to be given by another hole in a quasicircular orbit
around the background (a binary system), we are limited to
those whose separation is sufficiently large. In this case, we
must have sufficiently large orbital separations so that the
Riemann curvature produced by the companion is large
relative to the scales of the background hole. In other
words, this approximation will break if we consider sys-
tems that are close to their innermost stable orbit and ready
to plunge. We have seen, however, that for a separation of
b � 10M, the metric presented here is valid inside a shell
given approximately by 0:01M< r< 4M.

The reason why the region of validity of the approxima-
tion is a shell can be traced back to the choice of tetrad and
to the limitations of the Chrzanowski procedure. The per-
turbation cannot be valid too close to the background hole
because in that region the Kinnersly tetrad, from which the
perturbation was constructed, is also divergent. This per-
turbation is also divergent as r! 1 because the
Chrzanowski procedure builds the perturbation as a linear
expansion of the metric. In other words, we cannot analyze
the dynamics of the entire spacetime with this metric, since
its validity is limited to field points sufficiently close to the
outer horizon of the background hole. However, if this
metric were to be asymptotically matched to another met-
ric valid far from the background hole, then the resultant
metric would be accurate on the entire 3-manifold up to
uncontrolled remainders thus, capable of reproducing the
dynamics of the entire spacetime.
-14
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This metric might be useful to different areas in general
relativity. On the one hand it might be useful in the con-
struction of astrophysically realistic initial data for binary
systems of spinning black holes. Its importance relies in
that it could accurately represent the metric field in the
neighborhood of a black hole tidally disrupted by a com-
panion. These tides are analytic and arise as a true approxi-
mate solution to the Einstein equations in the slow-motion
approximation. Initial data, however, requires a metric that
is valid in the entire 3-manifold. Therefore, in order to use
these results as initial data they will first have to be
asymptotically matched [9,10] to a PN expansion valid
far from the background holes [27]. In this manner, initial
data could be constructed that satisfies the full set of the
Einstein equation, including the constraints, to a high order
of accuracy.

Another use for the metric computed in this paper relates
to the flux of mass and angular momentum through a
perturbed Kerr horizon. This flux will be important for
EMRIs, where the effect of tidal perturbations could be
large enough to lead to large fluxes, which in turn could
affect the gravitational wave signal emitted by the system
[6,7]. Recent investigations [2] have used a curvature
formalism to compute this flux directly from  0.
However, there exists a metric formalism to obtain this
flux directly from the metric itself. An interesting research
direction would be to compute this flux and compare to the
results obtained with the curvature formalism.

Finally, the perturbed metric computed here can also be
of use to the data analysis community to construct gravi-
tational waveforms. EMRIs are particularly good candi-
dates to be observed by LISA, but such observations
require extremely accurate formulas for the phasing of
the gravitational waves due to the use of matched filtering.
Recently, Ref. [8] studied how to use and implement a
quasi-Kerr metric (a perturbed Kerr metric in the limit of
slow rotation of the background hole) to detect EMRIs
with LISA. A similar study could be performed with the
perturbed metric computed in this paper, which can also
describe rapidly rotating black holes.

Future work will concentrate on performing the neces-
sary asymptotic matching to shape this metric into useful
initial data for numerical relativity applications. The
matching procedure will provide expressions for the tidal
tensors in terms of PN quantities, as well as a coordinate
transformation between Kerr coordinates and the coordi-
nate system used in the PN approximation. In this manner,
a piecewise global solution can be computed, which will
contain small discontinuities inside the matching region
that could be eliminated by the introduction of transition
function. Since these discontinuities will be small due to
the matching, the transition functions will not alter the
content of the data to the order of the approximation
used. After the matching is completed, we will have ob-
tained an approximate analytic global metric that will
024010
contain the tidal fields of one hole on the other near the
outer horizon of the former, where these fields come di-
rectly from solutions to the Einstein equations.
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APPENDIX

In this appendix we provide explicit formula for the
transformation from Kerr coordinates to Kerr-Schild coor-
dinate. This transformation can be found in Refs. [33–35]
and is given by

x � sin��r cos�� a sin��;

y � sin��r sin�� a cos��; z � r cos�:
(A1)

The inverse transformation is given by

r �

���������������������������
R2 � a2 � w

2

s
; w �

����������������������������������������
�R2 � a2�2 � 4a2z2

q
;

� � arccos
z
r
; � � arctan

ry� ax
rx� ay

: (A2)

Other useful relations are

sin� �
�
x2 � y2

r2 � a2

�
1=2
;

sin� �
ry� ax

��r2 � a2��x2 � y2�1=2
;

cos� �
rx� ay

��r2 � a2��x2 � y2�1=2
:

(A3)

Note that these transformation reduce to the usual trans-
formation from spherical polar coordinates to Cartesian
coordinates in the limit a! 0.

The Jacobian of the transformation, �a
b � @xa=@xb, is

given explicitly by
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(A4)

Note that this Jacobian reduces to the standard Jacobian of the transformation between spherical polar and Cartesian
coordinates in the limit a! 0. There is a more elegant way to write this Jacobian in tensor notation as

�r
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2r

�
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1

w
�	iaxi�R2 � a2� � 2a2z	az

�
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�
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r
�
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�
:

(A5)

With this Jacobian, the metric in Kerr-Schild coordinates is given by

gab � ga0b0�
a0
a�b0

b; (A6)

where here the primed indices refer to spherical coordinates and the unprimed indices to Cartesian coordinates.
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