
PHYSICAL REVIEW D 73, 024009 (2006)
Massive vector field perturbations in the Schwarzschild background: Stability
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We consider the perturbations of the massive vector field around Schwarzschild, Schwarzschild-de
Sitter, and Schwarzschild-anti-de Sitter black holes. Equations for a spherically symmetric massive vector
perturbation can be reduced to a single wavelike equation. We have proved the stability against these
perturbations and investigated the quasinormal spectrum. The quasinormal behavior for Schwarzschild
black hole is quite unexpected: the fundamental mode and higher overtones show totally different
dependence on the mass of the field m: as m is increasing, the damping rate of the fundamental mode
is decreasing, what results in appearing of the infinitely long living modes, while, on the contrary,
damping rate of all higher overtones are increasing, and their real oscillation frequencies gradually go to
tiny values. Thereby, for all higher overtones, almost nonoscillatory, damping modes can exist. In the limit
of asymptotically high damping, Re! goes to ln3=�8�M�, while imaginary part shows equidistant
behavior with spacing Im!n�1 � Im!n � 1=4M. In addition, we have found quasinormal spectrum of
massive vector field for Schwarzschild-anti-de Sitter black hole.
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I. INTRODUCTION

The existence of the charged black hole described by the
Reissner-Nordstrom solution reflects the fact that a black
hole can possess a massless monopole vector (electromag-
netic) field. It gets rid of all higher multipoles through
radiative processes dominated by quasinormal ringing at
intermediately late times and by power-low or exponential
tails at asymptotically late times.

Since Bekenstein’s paper [1], it is well known that a
black hole cannot possess even a monopole massive vector
field. Therefore the black hole has to radiate away the
massive vector field with some quasinormal frequencies
governing this radiation. Nevertheless, the massive vector
quasinormal modes of a Schwarzschild black hole were not
studied so far, and, as we shall show in this paper, the
problem is qualitatively different from that for a massive
scalar field, leading to quite unusual quasinormal behavior.
First of all, let us briefly review what we know about
massive scalar and massless vector field perturbations.

The massless vector perturbations of the Schwarzschild
background was considered for the first time in [2]. There
the Maxwell field perturbations were reduced to a single
wavelike equation for some gauge invariant function � �
��r; t�,

�;r�r� ��;tt �

�
1�

2M
r

�
‘�‘� 1�

r2 � � 0: (1)

Here M is the black hole mass and ‘ is the multipole
number. Note that this equation is valid only for ‘ > 0,
while for ‘ � 0 (monopole, or spherically symmetrical
perturbations) the Maxwell equations in Schwarzschild
background do not exhibit dynamical degrees of freedom.
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This signifies about existence of nonradiative electromag-
netic monopole hair, i.e. about existence of a black hole
charge. The quasinormal modes and late-time behavior
stipulated by this effective potential were found in a lot
of papers (see recent papers [3–6] and references therein),
and are well studied. In particular, we know that massless
vector quasinormal modes [3] are qualitatively similar to
those of scalar or gravitational fields [7], except for limit of
asymptotically high overtones: Re! approaches zero for
vector field and is ln3=8�M for scalar and gravitational
fields [8].

On the other hand, the massive term corrects the effec-
tive potential, and for simplest case of scalar field it leads to
the wave equation

�;r�r� ��;tt �

�
1�

2M
r

��
‘�‘� 1�

r2 �
2M

r3 �m
2

�
� � 0:

(2)

Here one can take m � 0 and recover the massless case.
The corresponding quasinormal frequencies were found in
[3] for massless and in [9] for massive case. Massive scalar
quasinormal modes proved to show quite peculiar proper-
ties. Thus when one increases the mass of the field m, the
damping rates of the quasinormal (QN) modes decrease
strongly, so that existence of infinitely long living modes
called ‘‘quasiresonances’’ [10] becomes possible. When
increasing m, lower overtones, one by one, transform
into quasiresonances, while all the other higher modes
remain ‘‘ordinary,’’ i.e. damped [11]. (For this to happen
one needs to deal with relatively large values of m, so that
in a more realistic picture considering backreaction of the
scalar particle onto a black hole, existence of such quasir-
esonances is questionable.) On the other hand, in 1992
Coleman, Preskill, and Wilczek stated that the classical
-1 © 2006 The American Physical Society
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vector monopole field is determined by the mass of the
field itself, and not by the mass of the black hole [12]. This
stimulated the consideration of the late-time behavior of
the monopole massive vector field in the Schwarzschild
background in [13] where the suggestion of [12] was
supported by asymptotic treatment.

One of the earliest papers dealing with massive vector
field perturbations was that by Galtsov, Pomerantseva, and
Chizhov [14], where it was shown that massive particles
around black holes have quasistationary states with hydro-
genlike spectrum. That was different from behavior of the
Proca field in Coulomb potential, where bounded states
cannot be formed [15]. In the paper [14], the perturbations
equations were deduced for the first time, yet, as the system
of equations for general value of multipole number ‘
cannot be decoupled, the solution was obtained in the
region far from a black hole [14]. On the contrary in
[13], the perturbation equations were reduced to a single
wavelike equation, but only for the case of spherically
symmetrical perturbations and zero cosmological constant.

We are interested now to know what will happen with
massive vector perturbations in a black hole background.
In this case the situation is qualitatively different from the
known massless vector or massive scalar cases. First, the
wave equation for monopole massive vector perturbations
cannot be reduced to that one for the massless vector field,
just because the massless vector field does not have radia-
tive monopole. Another distinctive feature: the correspond-
ing effective potential is not positive definite everywhere
outside the black hole, so one must check the stability of
perturbations.

The most unexpected feature we have found in the
present paper is that when increasing the mass of the field,
the lowest frequency and the higher overtones behavior is
qualitatively different: the fundamental mode decreases its
damping rate what results in appearance of infinitely long
living modes, while, on the contrary, all higher modes
decrease their oscillation frequencies, leading to appear-
ance of almost nonoscillatory damping modes.

The paper is organized as follows: in Sec. I we deduce
the wave equation for perturbations of the Proca field in the
background of Schwarzschild, Schwarzschild-de Sitter,
and Schwarzschild-anti-de Sitter (SAdS) black holes. In
Sec. II the stability of monopole perturbations is proved.
Section III deals with quasinormal spectrum for massive
vector perturbations of Schwarzschild, and Schwarzschild-
anti-de Sitter backgrounds, including obtaining of the
asymptotically high overtone limit. In the Conclusion we
give a summary of obtained results.
II. PERTURBATIONS OF PROCA FIELD IN A
BLACK HOLE BACKGROUND

We shall consider here the Schwarzschild black hole
solution with a �-term, i.e. Schwarzschild,
Schwarzschild-de Sitter, and Schwarzschild-anti-de Sitter
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backgrounds in which the massive vector field propagates.
The black hole metric is given by

ds2 � �f�r�dt2 � f�r��1dr2 � r2�d�2 � sin2�d�2�;

(3)

where

f�r� �
�
1�

2M
r
�

�r2

3

�
:

The vector field is described by a four-potential A�,
which is supposed to interact with gravitational field mini-
mally, i.e. the field equations are generally covariant ana-
logs of the vector field equations in Minkowskian space-
time. Therefore, the Proca equations

F��;� �m2A� � 0; F�� � A�;� � A�;�; (4)

in curved space-time, read

1�������
�g
p ��A�;� � A�;��g��g��

�������
�g
p

�;� �m2A� � 0: (5)

From here and on the coordinates t, r, �, and � will be
designated as 0, 1, 2, and 3, respectively.

With respect to angular coordinates we imply adequate
expansion into spherical harmonics. Then, the field pertur-
bations can be described by four scalar functions of the
radial coordinate and time f‘m�r; t�, h‘m�r; t�, k‘m�r; t�, and
a‘m�r; t�:

A0 � f‘m�r; t�Y‘m��;��; (6)

A1 � h‘m�r; t�Y‘m��;��; (7)

A2 � k‘m�r; t�Ylm;���;�� �
a‘m�r; t�Y‘m��;��

sin�
; (8)

A3 � k‘m�r; t�Y‘m;���;�� � a
‘m�r; t� sin�Y‘m;�: (9)

Considering Eq. (5) with � � 0, 1 and substituting
Eqs. (6)–(9) we arrive at the following equations:

��k‘m;t � f‘m� � ��h‘m;t � f‘m;r �r2�;rf�r� �m2r2f‘m � 0;

(10)

��k‘m;r � h‘m� � ��f‘m;r � h‘m;t �r2�;tf�r��1 �m2r2h‘m � 0;

(11)

where � � ‘�‘� 1�. Here we got rid of the function
alm�r; t�, so that the final perturbation dynamic can be
described by the three independent functions of r and t.

The other two equations of (5), corresponding to � � 2,
3, result in a pair of equations with both even and odd
spherical harmonics. Let us differentiate (10) with respect
to r and (11) with respect to t. Then, consider the particular
case of spherically symmetrical perturbations. Thereby
taking l � 0, i.e., implicitly, discarding all terms contain-
-2
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FIG. 1 (color online). Effective potential as a function of radial
coordinate for Schwarzschild black hole for different values of
mass of the field: m � 0:01 (bottom), m � 0:1, and m � 0:2
(top); M � 1.
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FIG. 2 (color online). Effective potential as a function of radial
coordinate for Schwarzschild-de Sitter black hole for different
values of mass of the field: m � 0:01 (bottom), m � 0:1, and
m � 0:2 (top); M � 1, � � 0:05.
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ing derivatives with respect to angular variables, and in-
troducing the new function

B � Ar;t � At;r; (12)

we obtain the following equation:

f�r��B;rr�B;tt��
�
2

r
�

2M

r2

�
B;r�

�
2M

r3 �
2

r2�m
2

�
B�0:

(13)

Assuming B� ei!t, after introducing of � � B=r and
using of the tortoise coordinate r�: dr� � dr=f�r�, we get
the radial wavelike equation:

@2��r�

@r2
�

�!2�� V�r�� � 0; (14)

with the effective potential

V�r� �
�
1�

2M
r
�

�r2

3

��
2

r2 �
6M

r3 �m
2

�
: (15)

When the �-term vanishes, the wave equation (14) and
(15) reduces to that obtained recently in [13] with the help
of the Newman-Penrose tetrad formalism. �> 0��< 0�
corresponds to asymptotically de Sitter (anti-de Sitter)
solutions.

Yet, for perturbations of general multipolarity, all four
equations of (5) can be reduced to the matrix equation for
three scalar functions �	�r�, 	 � 0, 1, 2,

@2�	�r�

@r2
�

�M	
�r; !��
 � 0; (16)

and the matrix M	
�r;!� cannot be diagonalized by the
r-independent transformations of the vector �	�r�, i.e. the
set of Eqs. (16) cannot be reduced to the wavelike
Eqs. (14).

III. EFFECTIVE POTENTIAL AND STABILITY

Even though we are limited now by spherically sym-
metric perturbations, one can hope it is possible to judge
about stability of the system against massive vector field
perturbations, because usually, if a system is stable against
monopole perturbations, it is stable also against higher
multipole perturbations. The effective potential for differ-
ent values of field mass m is given on Fig. 1–3 for
Schwarzschild, Schwarzschild-de Sitter, and
Schwarzschild-anti-de Sitter black holes, respectively. To
prove the stability of perturbations governed by the wave
equation (14) and (15) we need to show, that the corre-
sponding differential operator

A � �
@2

@r2
�

� V�r� (17)

is positive self-adjoint operator in the Hilbert space of
square integrable functions of r�, so that there is no nor-
malizable growing solution. This provides that all found
024009
quasinormal modes are damped. For massless scalar, vec-
tor, and gravitational perturbations (as well as for a massive
scalar perturbations) of a four-dimensional Schwarzschild,
Schwarzschild-de Sitter, and Schwarzschild-anti-de Sitter
black holes, the effective potential is manifestly positive,
and therefore the positivity of the self-adjoint operator is
evident. As a result, the corresponding quasinormal modes
for these cases are damped. Yet, for massive vector pertur-
bations, as we see from Fig. 1–3, the effective potential has
negative values near the event horizon. Nevertheless, the
effective potential is bounded from below and we can
apply here the method used in [16], which consists in
extension of A to a semibounded self-adjoint operator in
such a way, that the lower bound of the spectrum of the
extension does not change. For this to perform, let us,
following [16], introduce the operator
-3
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FIG. 3 (color online). Effective potential as a function of radial
coordinate for Schwarzschild-anti-de Sitter black hole for differ-
ent values of mass of the field: m � 0:01 (bottom), m � 0:1, and
m � 0:2 (top); M � 1, � � 0:05.
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D �
@2

@r2
�

� S�r�; (18)

and we know that [16]:

��; A��L2 � ����D��boundary �
Z
dr��jD�j2

�Wj�j2�; (19)

where

W � V �
�
1�

2M
r
�

�r2

3

�
S0�r� � S2�r�: (20)

Thus, we need to find the function S�r� which would make
the effective potentialW positive. After investigation of the
form of the effective potential one can see that there is a set
of functions S�r� satisfying this requirement. For instance,
the function

S�r� �
1

r

�
1�

2M
r
�

�r2

3

�
(21)

creates the following potential:

W �
4��3M� r���m2�6M� 3r� r3��

3r
: (22)

Using Mathematica, one can show that this potential is
positive outside the event horizon of a black hole. Thus a
symmetric operator A is positive definite outside the black
hole for positive and zero cosmological constant, and so is
the self-adjoint extension. Yet, for the case of asymptoti-
cally anti-de Sitter black hole, the range of the tortoise
coordinate is incomplete. At the same time, since the
effective potential is divergent at spatial infinity the
Dirichlet boundary conditions ��r � 1� � 0 is physically
motivated. Then, the boundary term in (19) does not con-
tribute to the spectrum, and we obtain the positive self-
adjoint extension of A. Thereby, we have proved that the
024009
Schwarzschild, Schwarzschild-de Sitter, and
Schwarzschild-anti-de Sitter space-times are stable against
monopole massive vector field perturbations. It means that
there are no growing quasinormal modes in the spectra of
these perturbations. In the next section we shall compute
the quasinormal modes for the asymptotically flat and AdS
cases, and show, that all found modes are damped implying
the stability.
IV. QUASINORMAL MODES

We shall be restricted here by consideration of quasi-
normal modes of asymptotically flat and AdS black holes
as those which are most physically motivated. Quasinormal
modes (QNMs) of asymptotically flat black holes may be
observed by a future generation of gravitational antennas
[17], while asymptotically AdS black holes have direct
interpretation in the conformal field theory in the regime
of strong coupling [18].

Let us start with asymptotically flat black holes. The
effective potential (17) approaches constant values both at
event horizon and spatial infinity in this case. Therefore the
standard QN boundary conditions �� e�ik�r� , r� � 1
(k� � !, k� �

�������������������
!2 �m2
p

) are reasonable. More accu-
rately, taking into consideration the subdominant asymp-
totic term at infinity, the QN boundary conditions are

��r�� � C�ei�r
�
r�iMm

2=��; �r; r� ! �1�;

� �
�������������������
!2 �m2

p
:

(23)

Note that the sign of � is to be chosen to remain in the same
complex plane quadrant as !.

Following the Leaver method, one can eliminate the
singular factor from �, satisfying the ingoing wave bound-
ary condition at the event horizon and (23) at infinity, and
expand the remaining part into the Frobenius series that are
convergent in the region between the event horizon and the
infinity (see [11] for more details). The Frobenius series
are:

��r� � ei�rr�2iM��iMm
2=��

�
1�

2M
r

�
�2iM!

	
X
n

an

�
1�

2M
r

�
n
: (24)

Substituting (24) into (14) we find a three-term recur-
rence relation:

	0a1 � 
0a0 � 0; 	nan�1 � 
nan � �nan�1 � 0;

n > 0: (25)

Then, using algebra of continued fractions we can find
the quasinormal modes as those values of ! for which
-4
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FIG. 4. Imaginary part of ! as a function of real part of ! for
first three overtones for increasing mass: m 2 �0:01; 0:28� for
n � 0 (diamond), m 2 �0:01; 0:48� for n � 1 (star), m 2
�0:01; 0:75� for n � 2 (box).
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n �
	n�1�n


n�1 �
	n�2�n�1


n�2�	n�3�n�2=...

�
	n�n�1


n�1 �
	n�1�n�2


n�2�	n�2�n�3=...

:

(26)

As this procedure is described in many papers (see for
instance [19] and references therein), we shall not describe
it here in details, and, go over directly to the obtained
results. We shall write ! � Re!� iIm!, and the damped
modes should have Im!< 0.

First of all, let us look at the Table I where first ten
QNMs are presented for three small (with respect to the
black hole massM) values of field massm. Note that as we
consider a vector field minimally interacting with gravity,
i.e. backreaction of the vector field on the metric is not
considered we cannot consider large values of m=M. We
see from Table I that as the overtone number is increasing
the difference between QNMs for different values of m is
decreasing and becomes small even at around the tenth
overtone. Thus, one can conclude (and we check this by
computing high overtones), that high overtone behavior
does not depend on the mass term m coming into the
effective potential (15), that is in agreement with the
previous study of high overtones for massive scalar field
in [11]. Let us remind that asymptotic limit of the QN
spectrum for massive vector field does not reduce to that
for the massless case, because the effective potential (15),
does not have physical meaning in the limit m � 0. The
most unexpected feature of the quasinormal spectrum we
found (see Fig. 4) is that the fundamental mode shows
correlation with mass of the field m, totally different from
all the remaining higher overtones. Thus, as the mass m is
increasing, the real part of the fundamental mode is in-
creasing, while the imaginary part is falling off to tiny
values, leading thereby to existence of the so-called qua-
siresonant modes, i.e. of infinitely long living oscillating
modes [10,11]. On contrary, the second, third (see Fig. 4),
and higher overtones have their real part decreasing to tiny
values, and, the imaginary part is growing when the mass
m is growing. Thus higher overtones can lead to existence
TABLE I. First ten quasinormal modes for Schw
0:1, and m � 0:25.

m � 0:01 m
n Re�!0� �Im�!0� Re�!0�

0 0.110 523 0.104 649 0.121 577
1 0.086 079 0.348 013 0.082 277
2 0.075 725 0.601 066 0.074 036
3 0.070 401 0.853 671 0.069 451
4 0.067 068 1.105 630 0.066 451
5 0.064 737 1.357 140 0.064 299
6 0.062 991 1.608 340 0.062 660
7 0.061 619 1.859 320 0.061 359
8 0.060 504 2.110 150 0.060 293
9 0.059 575 2.360 860 0.059 400
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of almost pure imaginary modes which just damp without
oscillations. We do not know examples of such a different
behavior between the fundamental mode and higher over-
tones, for massless fields of any spin [20], or for massive
scalar field [9–11], at least for asymptotically flat or de
Sitter black holes. The infinitely long living modes can
exist for massive scalar field perturbations [10], but for all
modes [11], not only for the fundamental one. Note how-
ever, that for massless vector perturbations of asymptoti-
cally AdS black holes under Dirichlet boundary conditions,
the fundamental mode is pure imaginary (see for instance
[21] and references therein), what represents the hydro-
dynamic mode in the dual conformal field theory [22]. So,
the qualitative difference between fundamental and higher
overtones is not absolutely new phenomena, yet, com-
pletely unexpected for asymptotically flat space-times.
Note also that despite the fact that we have two tendencies:
approaching Re! the constant value log3=8�M , when n is
growing, and at the same time approaching zero, whenm is
growing, there is no contradiction: to approach the limit
arzschild black hole: M � 1, m � 0:01, m �

� 0:1 m � 0:25
�Im�!0� Re�!0� �Im�!0�

0.079 112 0.222 081 0.012 994
0.344 140 0.062 605 0.325 191
0.599 791 0.065 511 0.592 979
0.853 002 0.064 570 0.849 359
1.105 200 0.063 243 1.102 860
1.356 830 0.062 006 1.355 170
1.608 110 0.060 925 1.606 850
1.859 140 0.059 991 1.858 140
2.110 001 0.059 182 2.109 180
2.360 730 0.058 475 2.360 050

-5
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log3=8�M, real part of! should increase again after some
certain n � nc [23]. We can observe it on the Table I (third
column), where we can observe the ‘‘local maximum’’ of
Re! at n � 2.

The modes in Table I and Fig. 4 were found with the help
of the above described Frobenius technique. For lower
overtones, one can use, alternatively, the WKB approach
suggested in [24] and consequently developed to 3rd [25]
and 6th [26] WKB orders beyond the eikonal approxima-
tion. The WKB formula has been used recently in a lot of
papers [27] and comparison with accurate numerical data
in many cases [28] shows good accuracy of the WKB
formula up to the 6th WKB order. Here we can compare
the results with WKB values, but only for the fundamental
overtone, because for higher ones: n > ‘ � 0, and the
WKB method cannot be applied.

Note also that an effective potential takes negative val-
ues near the event horizon, and, the WKB formula does not
take into consideration ‘‘sub’’ scattering by the local mini-
mum of the potential and should not be so accurate as in the
case of the ordinary positive definite potential. For ex-
ample, for m � 0:01 we get 0:110 523� 0:104 649i with
the help of the Frobenius method, and 0:1195� 0:0871i by
WKB formula [24]. The largerm is, the worse convergence
of the WKB method. Generally we see that the accuracy of
WKB approach is not satisfactory here because the WKB
formula is actually good only for ‘ > n.

Now let us go over to asymptotically high overtones. It is
known [11] that the mass term does not change the infi-
nitely high overtone asymptotic of the Schwarzschild black
hole. Thus it is natural to expect that the same will take
place for a massive vector field. Yet, as there are no
monopole dynamical degrees of freedom for massless
vector perturbations, we cannot formally take m � 0 in
the considered effective potential. Therefore, using the
Nollert’s method [29], we computed numerically high
overtones for nonvanishing values of m (see Fig. 5).
From Fig. 5 one can learn that as n is growing, the real
part approaches ln3=8�M, while the spacing in imaginary
250 500 750 1000 1250 1500
Im ω

0.045

0.055

0.06

0.065

0.07

Re ω

FIG. 5. Imaginary part of ! as a function of real part of ! for
high overtone behavior: m � 0:01, M � 1.
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part approaches constant:

Re!n !
ln3

8�M
; Im!n !

�2n� 1�

8M
; n! 1:

(27)

It is different from the asymptotic limit which takes
place for higher multipole perturbations of massless vector
field [30]: because for the latter case the real part of !
asymptotically approaches zero [30]. To see better that in
the obtained plot Re! approaches ln3=8�M let us make fit
on values n � 1000; 1500; 2000; . . . ; 6000. In a similar
fashion with Nollert’s approach, we see that fit in powers
of 1=

���
n
p

is better then in powers of 1=n, and gives

Re!n 
 0:04372�
0:047 80���

n
p �

0:033 53

n
; n! 1:

(28)

This is very close to ln3=�8�M� 
 0:043 73. When in-
creasing the number of overtones, the obtained fit is closer
to ln3=�8�M�.

Following the arguments of [30], it is straightforward to
reproduce numerically obtained asymptotic (28) in an
analytical way. For this it is enough to remember that the
effective potential (15), has the following asymptotic be-
havior in the origin:

V�r� !
12M2

r4 ; r! 0; (29)

and at the event horizon

V�r�!const�r�2M��O��r�2M�2�; r!2M: (30)

Therefore the general asymptotic solution near the origin is

��r�� � c1
���������
!r�
p

J1�!r�� � c2
���������
!r�
p

J�1�!r��; r! 0:

(31)

Then, repeating all relevant steps of [30] and taking into
account that near the event horizon the wave function has
the following asymptotic

��r�� � e
2Mi!ln�r��r��r��r�2M��; r! 2M; (32)

and equating the two monodromy (which look similar to
those in [30]) one gets (28).

We see that the high overtone asymptotic (28) is the
same as for gravitational perturbations. This is easily
understood, because the effective potential looks like that
for gravitational perturbations with formally taken ‘ � 1
plus massive term times f�r�. Then, as we have shown here
for vector and in [11] for scalar fields, the massive term
does not contribute in high overtone asymptotic.

The quasinormal behavior of Schwarzschild-anti-de
Sitter black holes is essentially dependent on the radius
of a black hole: one can distinguish the three regimes of
large (r� � R), intermediate (r� � R), and small (r� �
R) AdS black holes. From detailed previous study of
-6
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massless fields, one can learn that QNMs of large AdS
black holes are proportional to the black hole radius, and
therefore to the temperature [18]. QNMs of intermediate
AdS black holes do not show simple linear dependence on
radius [18]. Finally, QNMs of small AdS black holes
approach normal modes of empty AdS space-time [31].
In the limit of asymptotically high damping, QNMs show
equidistant spectrum with the same spacing between
nearby modes for different massless fields (scalar, electro-
magnetic, and gravitational) [21].

Using the Horowitz-Hubeny method, we obtain the qua-
sinormal frequencies for SAdS black hole numerically. As
this method is described in a lot of recent works, we shall
outline only the key points of it here. The Schwarzschild-
AdS metric function can be written in the form

f�r� � 1�
r0

r
�
r2

R2 ; (33)

where R is the anti-de Sitter radius. The corresponding
effective potential is divergent at infinity and is polynomial
function of r. Therefore, one can expand the wave function
� near the event horizon in the form:

��x� �
X1
n�0

an�x� x��
n; x� � 1=r�: (34)

Here r� is the largest of the zeros of the metric function
f�r�. The Dirichlet boundary conditions we shall use here
imply that

j��r � 1�j � 0: (35)

Then we need to truncate the sum (34) at some large n �
N, in order to observe the convergence of the values of the
root of the Eq. (35) ! to some true quasinormal frequency.

The fundamental quasinormal frequencies are shown in
Table II for large, intermediate, and small SAdS black
holes for different values of m. From Table II one can
see that both real and imaginary parts of the quasinormal
frequency are increasing when the mass of the field is
growing.

Finally, let us find the normal modes of pure AdS space-
time for the case of massive vector field. The metric
TABLE II. Fundamental quasinormal modes fo
and small (r� � 1=10R) Schwarzschild-anti-de S

r� � 100R
m Re�!0� �Im�!0� Re�!

0.01 184.959 733 266.385 59 2.798
0.05 185.109 096 266.671 681 2.800
0.1 185.571 219 267.521 739 2.807
0.15 186.325 972 268.912 194 2.818
0.2 187.352 413 270.806 932 2.833
0.25 188.625 045 273.161 253 2.851
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function f�r� of pure AdS space-time has the form:

f�r� � 1�
r2

R2 : (36)

We can put the anti-de Sitter radius to be R � 1 in further
calculations. The tortoise coordinate is connected with the
Schwarzschild radial coordinate by the relation:

r � tanr�: (37)

Then, the effective potential has the form:

V �
2

sin2r�
�

m2

cos2r�
: (38)

Let us introduce a new variable

z � sin2r�: (39)

Then the wave equation can be written in the form:

4z�1� z��;zz�z� � 2�1� 2z��;z�z�

�

�
!2 �

2

z
�

m2

1� z

�
� � 0: (40)

After introducing a new function

� � �z	�1� z�
;

the wave equation takes the form:

z�1� z��;zz�z� �
�
1

2
� 2	� �2	� 2
� 1�z

�
�;z�z�

�

�
2	�	� 1� � 	� 1

2z
�

2
�
� 1� � 
� �m2=2�

2�1� z�

�
!2

4
� �	� 
�2

�
� � 0: (41)

We are in position now to choose the values of 	 and 
,
so that the terms proportional to 1=z and 1=�1� z� vanish.
The general solution is
r large (r� � 100R), intermediate (r� � 1R),
itter black hole.

r� � 1R r� � 1=10R

0� �Im�!0� Re�!0� �Im�!0�

314 2.671 325 2.6929 0.1010
496 2.674 197 2.6949 0.1012
245 2.683 084 2.700 0.103
276 2.697 634 2.709 0.1035
289 2.717 471 2.7247 0.1039
928 2.742 088 2.7416 0.1055
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TABLE III. Higher overtones for large (r� � 100R)
Schwarzschild-anti-de Sitter black hole.

m � 0:1 m � 0:2 m � 0:3
n Re�!0� �Im�!0� Re�!0� �Im�!0� Re�!0� �Im�!0�

1 316.780 492.755 318.601 495.990 321.437 501.024
2 447.102 717.863 448.936 721.089 451.792 726.109
3 577.201 942.921 579.043 946.141 581.913 951.155
4 707.218 1167.952 709.064 1171.171 711.940 1176.185
5 837.194 1392.973 839.044 1396.191 841.925 1401.203
6 967.150 1617.987 969.002 1621.204 971.886 1626.215
7 1097.093 1842.997 1098.946 1846.214 1101.832 1851.226
8 1227.027 2068.006 1228.881 2071.222 1231.77 2022.23
9 1356.956 2293.009 1358.811 2296.230 1361.70 2301.24
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� � C1z�1=2��	�1� z�
2F1

�
1

2
� 	� 
�

!
2
;
1

2
� 	� 


�
!
2
;
3

2
� 2	; z

�
� C2z

	�1� z�
2F1

�
	� 
�

!
2
; 	

� 
�
!
2
;
1

2
� 2	; z

�
; (42)

where constants C1, C2 may be complex. We require
regularity of the solution at the origin z � 0, C1 � 0,
and, the vanishing of the wave function at spatial infinity
implies

2F1

�
	� 
�

!
2
; 	� 
�

!
2
;
1

2
� 2	; z

�
� 0: (43)

Note also that the choice 	 � 1, 
 � 1
4 �1�

1
4 	������������������

1� 4m2
p

� corresponds to the above boundary conditions
both at infinity and at the event horizon.

Now it is not hard to see that ! has the form:

!n �
������������
j�j=3

q �
2n� 3�

1

4
�1�

1

4

������������������
1� 4m2

p
�

�
: (44)

This is different from the AdS normal modes for mass-
less vector field !n �

���������
�=3

p
�2n� 2� ‘� [30], where ‘ �

1; 2; . . . , i.e. monopole perturbations are not dynamical.
Note that it is expected that similar to scalar field be-

havior [31], the massive vector quasinormal modes of
SAdS black holes should approach their pure AdS values
(44) as the mass of the black hole goes to zero. For the
fundamental mode, we see that according to formula (44),
for m � 0:1, one has ! � 3:004, and, according to the
extrapolation of the data in Fig. 6 obtained numerically
with the help of Horowitz-Hubeny method, !, indeed,
approaches some constant value close to 3. Unfortunately
we cannot check the accurate numerical correspondence to
the formula (44), because the series (34) converges very
slowly for small black hole radius, and therefore one needs
0.1 0.2 0.3 0.4 0.5
r

2.4

2.5

2.6

2.7

2.8

2.9

Re (ω) +

FIG. 6. Real part of ! as a function of the black hole radius r�
for small AdS black holes: m � 0:1, R � 1.
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enormous computer time to achieve the regime of very
small black holes.

Numerical data for high overtones, in the regime of large
black holes, is shown in Table III. There one can see that,
indeed, in concordance with analytical formula (34), one
has

!n�1 �!n

r�

 1:29� 2:25i: (45)

At a sufficiently high n, the above formula is valid inde-
pendently of the value of the mass field m. It is also valid
for any large r� because in the regime of large black holes
the QNMs are proportional to the black hole radius r� for
massive fields as well. One could say that a quasinormal
mode at high damping consists of two contributions [32].
One is proportional to an overtone number n and thereby
equals to a spacing between nearby modes; it is called
‘‘gap.’’ Another contribution does not depend on n in the
limit n! 1, called ‘‘offset.’’ Thus, one has

!n � offset� � gap�n; gap� � 2
���
3
p
�R2e�i�=3=9;

(46)

where R is the anti-de Sitter radius, i.e. at high overtones,
the spectrum is equidistant with spacing which does not
depend on m, and is the same as for gravitational or
massless vector perturbations. This should be true also
for intermediate and small AdS black holes, yet to check
this numerically one needs considerable computer time,
because of the slow convergence of the series for small
black holes.

All numerical computations in this paper were made
with the help of Mathematica.
V. CONCLUSION

Fortunately the monopole perturbations of the Proca
field in the Schwarzschild-(A)dS black hole background
can be reduced to the wavelike equation with some effec-
tive potential. Even though the effective potential is not
positive definite everywhere outside black hole, we have
-8
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proved that spherically symmetrical perturbations of mas-
sive vector field is stable, i.e. there are not growing modes
in this case. This is confirmed by numerical computations
of the QNMs spectrum, which is done for Schwarzschild
and Schwarzschild-AdS black holes. A quite unexpected
property, we found, is that the behavior of the fundamental
mode and all higher overtones (for the asymptotically flat
case) are qualitatively different: when increasing the field
mass m, the damping rate of the fundamental mode goes
gradually to zero, leading to appearing of infinitely long
living mode, while all higher overtones, on the contrary,
decrease their Re! that results in existence of almost pure
imaginary modes, i.e. damping modes without oscillations.

Asymptotics of infinitely high overtones for
Schwarzschild black holes are the same as for correspond-
ing gravitational (massless) perturbations. In particular, for
Schwarzschild black hole, real oscillation frequency ap-
proaches ln3=8�M, while damping rates become equidis-
tant with spacing equal 1=4M. This value of high damping
024009
asymptotic, which coincides with that for massless scalar
and gravitational fields for Schwarzschild black holes can
be easily explained by two factors: 1) the mass term does
not contribute to the limit of infinite damping of the
quasinormal spectrum, and 2) when formally taking the
limit m � 0 in the effective potential which governs the
evolution of massive vector perturbations, one has the
potential which looks qualitatively like that for gravita-
tional perturbations.

For asymptotically AdS black holes the quasinormal
spectrum is equidistant at high overtones with spacing
which does not depend on the mass of the field.
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