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Virtual gravitons and brane field scattering in the Randall-Sundrum model with a small curvature
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The contribution of virtual s-channel Kaluza-Klein (KK) gravitons to high energy scattering of the
standard model (SM) fields in the Randall-Sundrum (RS) model with two branes is studied. The small
curvature option of the RS model is considered in which the KK gravitons are narrow low-mass spin-2
resonances. The analytical tree-level expression for a process-independent gravity part of the scattering
amplitude is derived, accounting for nonzero graviton widths. It is shown that one cannot get a correct
result, if a series of graviton resonances is replaced by a continuous mass distribution, in spite of the small
graviton mass splitting. Such a replacement appeared to be justified only in the trans-Planckian energy
region.
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I. RS SCENARIO WITH THE SMALL CURVATURE

The models with spacial extra dimensions (ED’s) have
pretensions to solving theoretical problems which have not
yet received a satisfactory answer (such as hierarchy prob-
lem, proton lifetime, hierarchy of fermion masses and
mixing angles, etc.) and lead to a new phenomenology in
the TeV energy region. The multidimensional gravity is
strong, and the fundamental Planck scale can be related
with the string scale. One manifestation of theories with
ED’s is the existence of Kaluza-Klein (KK) gravitons and
their interactions with the SM fields.

In the present paper, we consider one realization of the
ED theory in a slice of the AdS5 space-time with the
following background warped metric:

ds2 � e2���r�jyj����dx
�dx� � dy2; (1)

where y � r� (� � < � < �), r being the ‘‘radius’’ of
extra dimension, and ��� is the Minkowski metric. The
parameter � defines a 5-dimensional scalar curvature of the
AdS5 space.

We will be interested in the Randall-Sundrum (RS)
model [1] which has two 3D branes with equal and oppo-
site tensions located at the point y � �r (called the TeV
brane, or visible brane) and point y � 0 (referred to as the
Plank brane). If k > 0, then the tension on the TeV brane is
negative, whereas the tension on the Planck brane is posi-
tive. All the SM fields are constrained to the TeV brane,
while the gravity propagates in five dimensions.

The main goal of the paper is to estimate s-channel
graviton contribution to the scattering of the brane fields
in such a scheme.

Let us note that the warp factor in the metric (1) is equal
to 1 on the negative tension (visible) brane, and a correct
determination of particle masses on this brane is thus
achieved [2]. By calculating the zero mode sector of the
effective theory, one then obtains the ‘‘hierarchy relation’’,
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�M 2
Pl �

�M3
5

�
�e2��r � 1�; (2)

with �M5 being a 5-dimensional Planck scale.
From the point of view of an observer located on the TeV

brane, there exists an infinite number of graviton KK
excitations with masses

mn � xn�; n � 1; 2 . . . ; (3)

where xn are zeros of the Bessel function J1�x�, with

xn � ��n� 1
4� � O�n�1�: (4)

Note that all zeros of J1�x�=x are simple ones, and that they
are real positive numbers [3].1

The interaction Lagrangian on the TeV brane looks like
(with the radion field omitted)

L � �
1
�MPl

T��G�0��� �
1

��
T��

X1
n�1

G�n���: (5)

Here T�� is the energy-momentum tensor of the matter on
the brane, G�n��� is the graviton field with the KK number n,
and

�� � �M5

� �M5

�

�
1=2

(6)

is a physical scale on the TeV brane (here and in what
follows, we neglect small corrections O�e��kr�).

To get m1 � 1 TeV, the parameters of the model are
usually taken to be �� �M5 � 1 TeV. Then one obtains a
series of massive graviton resonances in the TeV region
which interact rather strongly with the SM particles, since
�� � 1 TeV.

In the present paper we will consider a different scenario
which we call ‘‘small curvature option’’ [4,5]:

�� �M5 � 1 TeV: (7)
1The minimal positive zero of the Bessel function J��z� is
approximately equal to �� 1:86�1=3 [3].
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In such a scheme, the scale �� appears to be signi-
ficantly larger than the gravity scale �M5, as one can see
from Eq. (6). Namely, we get �� � 100� �M5=TeV�3=2�

�100 MeV=��1=2 TeV. Nevertheless, for both real and vir-
tual graviton production, a magnitude of a scattering am-
plitude is defined by the 5-dimensional Planck scale �M5,
not by �� or �, separately (see formulas in the next
Section).2

Contrary to the case �� �M5 � 1 TeV, there exists a
series of very narrow low-mass spin-2 resonances with an
almost continuous mass distribution. For such a case, the
following inequalities were derived in Ref. [5]:3

10�5 <
�
�M5

< 0:1: (8)

Notice, in order the hierarchy relation for the warped
metric (2) to be satisfied, we have to put �r 	 10.

It is worth to underline that the AdS5 space-time differs
significantly from a 5-dimensional flat space-time with one
large ED even for very small � (i.e. for the small curva-
ture). Indeed, let us consider the hierarchy relation for d
compact ED’s of the size Rc:

�M 2
Pl � �2�Rc�

d �M2�d
4�d; (9)

where �M4�d is a gravity scale in the flat space-time with d
compact ED’s. For d � 1, Eq. (9) is a particular case of (2)
in the limit 2��r� 1. However, the condition 2��r� 1
means that the ratio �M5=� should be unrealistically large:

�M5

�



� �MPl

�M5

�
2
: (10)

This inequality means, for example, that �� 10�22 eV, if
�M5 � 1 TeV.

The present astrophysical bounds [8] rule out the possi-
bility d � 1 and significantly restrict the parameter space
for d � 2; 3.4 The most stringent constraints come from
neutron-star (NS) excess heat due to the trapped cloud of
the KK gravitons surrounding the NS (for details, see the
second paper in [8]). For instance, one gets R�1

c > 4:4 �
10�12 GeV (and, correspondingly, �M4�1 > 1:6 � 105 TeV)
for d � 1.

Fortunately, the above mentioned restrictions can not be
directly applied to the AdS5 space-time, since they were
derived in the soft radiation approximation, !� T, where
! is the graviton energy, while T is the temperature of the
nuclear medium (for instance, in the NS). Equation (8)
2Contrary to the KK gravitons, the radion will be hardly
produced, since the radion coupling to SM fields is equal to
1=�

���
3
p

���. The radion-Higgs mixing (if it exists, see [6]) will be
also suppressed.

3For the case �� �M5 � �MPl, analogous bounds look like
0:01 < �= �MPl < 0:1 [7].

4If one insists that �M4�1 should be of order of few TeV, the
case d � 1 is completely excluded, since Rc exceeds the size of
the solar system.
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means that ! > m1 � 38� �M5=TeV� MeV. On the other
hand, a typical value of T is equal to 30 MeV. Thus, for
�M5 * 1 TeV the condition!� T is not satisfied, even for
� � 10� �M5=TeV� MeV.
II. VIRTUAL s-CHANNEL GRAVITONS

Let us study the scattering of two SM fields mediated by
massive graviton exchanges in the s-channel,

a �a! G�n� ! b �b; (11)

where a�b� � e�; �; q; g, etc. For instance, in hadron col-
lisions virtual graviton effects could be seen in the pro-
cesses pp! 2 jets� X, pp! ��� X, and Drell-Yan
process pp! l�l� � X. At linear colliders, the promising
reactions are e�e� ! �� and e�e� ! f �f. In what fol-
lows, the invariant energy of the process,

���
s
p

, is assumed to
be around 1 TeV.5 It means that we are working in the
following region:

�� 

���
s
p
�M5 
 �: (12)

The matrix element of the process (11) looks like

M �AS: (13)

The fist factor in Eq. (13) contains the following contrac-
tion of tensors:

A � Ta��P���	Tb�	 � Ta��Tb�� �
1
3�T

a�
�
��Tb���; (14)

where P���	 is a tensor part of the graviton propagator,
while Ta�b��� is the energy-momentum tensor of the field
a�b�.

A. Nonzero graviton widths

We will concentrate on the second factor in Eq. (13)
which is universal for all types of processes mediated by
the s-channel exchanges of the KK gravitons. It is of the
form:

S �s� �
1

�2
�

X1
n�1

1

s�m2
n � imn�n

: (15)

Here �n denotes the total width of the graviton with the KK
number n and mass mn.

This sum was estimated in Ref. [4] in a zero width
approximation (assuming �n � 0 for all n). It was shown
that S�s� is purely imaginary in this limit (if no ultraviolet
(UV) cutoff is imposed). Thus, there is no interference of
ED effects with SM contributions to the same processes.

The width of the massive graviton is indeed very small if
its KK-number n is not too large [9]:
5The energy region
���
s
p

 1 TeV will be also briefly consid-

ered, see Eqs. (32)–(35).
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�n
mn
� �

�
mn

��

�
2
; (16)

where � ’ 0:09.6 However, the main contribution to the
sum (15) comes from the region n�

���
s
p
=�
 1. So, non-

zero widths of the gravitons in the RS model with the small
curvature should be taken into account. That is why we
will study a general case (�n � 0). For comparison, a
particular case (all �n � 0) will be also analyzed (see
subsection II C).

It is useful to present S�s� in the form:

S �s� �
X1
n�1

1

ax4
n � bx2

n � c

�
1

a�
2 � �2�

X1
n�1

�
1

x2
n � 
2 �

1

x2
n � �2

�
; (17)

with

a � i��4; b � �����
2; c � s�2

�: (18)

Here


2 �
s

�2

2

1�
�����������������������
1� 4i� s

�2
�

q (19)

and

�2 �
1

2i�

�
��

�

�
2
�

1�

�������������������������
1� 4i�

s

�2
�

s �
(20)

are zeros of the quadratic equation az2 � bz� c � 0. In
the kinematical region (12), the parameter 
 (19) can be
approximated as


 ’

���
s
p

�
�
i�
2

� ���
s
p

�M5

�
3
; (21)

with j
j 
 1.
The sum in Eq. (17) can be calculated analytically by the

use of the formula [3]

X1
n�1

1

z2
n;� � z

2 �
1

2z
J��1�z�
J��z�

; (22)

where zn;� (n � 1; 2 . . . ) are zeros of the function z��J��z�.
As a result, we obtain:

S �s� � �
1

2� �M3
5

1�����������������������
1� 4i� s

�2
�

q �
1



J2�
�
J1�
�

�
1

�
J2���
J1���

�
:

(23)
6To estimate �n, masses of the SM particles were neglected
with respect to the graviton mass mn [9]. This approximation is
well justified since the sum in n (15) is mainly given by the
gravitons with the masses mn �

���
s
p
� 1 TeV.
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Since �s=�2
� � 1, we have the inequality:

j�j ’
1����
�
p

��

�

 j
j; (24)

and Eq. (23) becomes

S �s� � �
1

2� �M3
5

1



J2�
�
J1�
�

; (25)

with 
 given by Eq. (21) (here and in what follows, small
corrections like O��=

��
s
p
� are omitted). The function S�s�

has no singularities, as all zeros of J1�z� are real, and
Im
 � 0 at physical s.

By using asymptotic behavior of the Bessel function [3]
and formulas (A4) in Appendix A, we obtain from (25):

S �s� � �
1

4 �M3
5

���
s
p

sin2A� i sinh2"

cos2A� sinh2"
; (26)

where

A �

���
s
p

�
�
�
4
; " �

�
2

� ���
s
p

�M5

�
3
: (27)

Formulas (25) and (26) are our main result.
The following inequalities immediately result from (26):

� coth" < Im~S�s� < � tanh" (28)

jRe~S�s�j <
1

1� 2sinh2"
; (29)

��������Re~S�s�

Im~S�s�

��������<
1

sinh2"
; (30)

where the notation ~S�s� � �2 �M3
5

���
s
p
S�s� is introduced.

Note that the upper bound for the ratio jReS�s�=ImS�s�j
decreases rapidly with energy, and it becomes as small as
0.08 at

���
s
p
� 3 �M5. For comparison, this bound is equal to

0.85 at
���
s
p
� �M5. The absolute value of Im~S�s� tends to 1

when s grows. For instance, we find 0:98 < jIm~S�s�j <

1:02 at
���
s
p
� 3 �M5.

If
���
s
p

< �M5, the parameter " is numerically small, and
we obtain that

S �s� � �
i

�s2

�
1�

"2

3
� O�"4�

�
(31)

at
���
s
p
� z0�, where z0 is some zero of the Bessel function

J1�z�. Thus, the value of S�s� at the point
���
s
p
� z0� is

actually defined by the graviton with the mass mn �
���
s
p

,
while the relative contributions from other KK gravitons
are suppressed at least by the factor �2=12 	 7 � 10�4.

At ultrahigh energies, namely, at������
�s
p


 ��; (32)

our sum can be approximated as follows:
-3
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S �s� �
X1
n�1

1

ax4
n � c

; (33)

with the parameters a and c being defined above (18). The
sum (33) has the following asymptotics (see Appendix A):

S �s�j �����sp

��

’ e�iB
1

2
���
2
p

1
�M3

5

���
s
p

�
�2
�

�s

�
1=4
; (34)

where

B � 2
���
2
p �

sin
�
8

�
1

�

�
s�2

�

�

�
1=4
�
�
8
: (35)

Notice, the condition
������
�s
p


 �� means that we are
working in the energy region

���
s
p

 100�M5=TeV�3=2�

�100 MeV=��1=2 TeV.

B. Continuous mass spectrum of the gravitons

Since xn ’ �n at large n,7 the mass splitting, �mKK ’
��, is very small with respect to the energy, and it seems
reasonable to approximate a summation in n by integration
over graviton mass mKK.

Let us calculate the real and imaginary parts of S�s�
separately and compare the results of these calculations
with Eq. (26). We start from the following expressions:

ReS�s� �
1

�����
2

X1
n�1

�� x2
n

��� x2
n�

2 � 	x8
n
; (36)

ImS�s� � �
�

�4
�

X1
n�1

x4
n

��� x2
n�

2 � 	x8
n
; (37)

with � � s=�2 and 	 � �2��=���
4. The usual way of

calculating Eqs. (36) and (37) is to replace them by the
integrals:

ReS�s� �
1

�
1���
s
p �M3

5

Z 1
����=

��
s
p dz

1� z2

�1� z2�2 � �z8 ; (38)

ImS�s� � �
�
�

���
s
p

��4
�

Z 1
����=

��
s
p dz

z4

�1� z2�2 � �z8 ; (39)

where

� �
� ������
�s
p

��

�
4
� 1: (40)

These integrals are estimated in Appendix B. The result
of the calculations is the following:

ReS�s� ’
1

2 �M3
5

���
s
p

� ����������
��s

2 �M3
5

s
�

2����
s
p

�
; (41)
7To be more correct, one should use dxn=dn ’
��1� �3=8��n�2�. However, we can put xn � �n at large
values of n which are relevant for our calculations.
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ImS�s� ’ �
1

2 �M3
5

���
s
p : (42)

It follows from Eqs. (41) and (42) that the imaginary part
dominates the real one.

These expressions for the real and imaginary parts of
S�s� do not agree with the ‘‘discrete mass’’ expression
(26), although they obey inequalities (28)–(30).
Remember that Eq. (26) was derived by the direct calcu-
lation of the input sum (15). However, the imaginary parts
become practically the same in both cases in the trans-
Planckian kinematical region, namely, at

���
s
p

> 3 �M5, as
one can see from (28) and (42). As for the real parts,
they are small in comparison with the imaginary parts in
this energy region.8

Can we approximate the discrete spectrum by the con-
tinuous mass distribution, if the mass splitting �mKK is
‘‘very small’’? First of all, let us note that �mKK is dimen-
sional and it should be compared with another dimensional
quantity. Actually, we may regard a set of narrow graviton
resonances to be a continuous mass spectrum (within some
interval of n), if only

�mKK < �n (43)

is satisfied. Let us stress, it is the inequality that allows one
to replace a summation in KK number n by integration
over graviton mass mKK.9

In our case, the relevant values of n, which give the
leading contribution to the sought for quantity S�s�, are
n�

���
s
p
=����. Then we obtain from (43) and (16):

�
�
���
s
p
�3

�2
�
> ��; (44)

or, equivalently, ���
s
p

* 3 �M5: (45)

It is a common belief that in the flat space-time with
large ED’s of the size Rc, the mass splitting is so small
(�mKK � R�1

c ) that the continuous mass approximation is
undoubtedly valid.10 Surprisingly, it is not a case. The
reason is that the gravitons are extremely narrow reso-
nances, �n �m3

n=
�M2
Pl. Accounting for the hierarchy rela-

tion for d compact ED’s (9), one finds from (43) that only
KK gravitons with unrealistically large masses,

m3
n > �M2��2=d�

Pl
�M1��2=d�

4�d ; (46)

are continuously distributed for d > 2. For all that, the
From the point of view of experimental measurements, the
mass splitting must be compared with the experimental resolu-
tion �mres. The spectrum looks continuous when �mKK <
�mres, irrespective of Eq. (43).

10For instance, R�1
c 	 130 eV, for d � 4 and �M4�4 � 1 TeV.
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p
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widths of these gravitons remain relatively small, �n *
�M4�d� �M4�d= �MPl�

2=d.
In particular, we get the conditions (for mn �

���
s
p

):���
s
p

> �M4�1; for d � 1;���
s
p

> � �MPl
�M2

4�2�
1=3; for d � 2;���

s
p

> � �M2
Pl

�M4�d�
1=3; for d
 1:

(47)

It is not surprising that the first of these inequalities is
similar to Eq. (45).

C. Zero width approximation

Now let us consider the limiting case of zero graviton
widths (stable KK gravitons). The corresponding formulas
can be obtained from the formulas derived above, if one
formally takes the limit �! 0, �> 0 in them (remember
that all �n are proportional to �). Let us introduce the
notation

S0�s� � S�s�j�n�0: (48)

Then we get from (26):

S0�s� �
1

2 �M3
5

���
s
p

�
P cot

� ���
s
p

�
�
�
4

�

� i�
X1
n�0

�
� ���
s
p

�
� �

�
n�

1

4

���
; (49)

where P means the principal value. As one can see, neither
S0�s�, nor S�s�j ��sp ��z0

(31) depend on the large mass scale
��.

This result (49) may be also obtained by direct calcu-
lations in the zero width approximation, if one uses the
asymptotics of xn at large values of n (4) which are relevant
in our case. Indeed, at

���
s
p
=�
 1 the quantity S0�s� is

approximated as

S0�s�j ��sp =��
1 �
1

�2� �M3
5

X1
n�1

1
s

����2
� �n� 1

4�
2 � i0

; (50)

and Eq. (49) is then reproduced, as it is shown in
Appendix C.

If we replace the summation in n by integration, we find
that the imaginary part of S0�s�,

ImS0�s� � �
��

2 �M3
5

���
s
p

X1
n�1

��
���
s
p
�mn�; (51)

is of the form:

ImS0�s� � �
1

2 �M3
5

���
s
p

Z 1
m0

dm��
���
s
p
�m� � �

1

2 �M3
5

���
s
p ;

(52)

where m0 � ��. This expression coincides with formula
(42) derived in the previous subsection.
024007
The same procedure, when applied to calculating
ReS0�s�, results in

ReS0�s� �
1

� �M3
5

P
Z 1
m0

dm
1

s�m2 � �
�

s �M3
5

: (53)

The last term in (53) is a particular case of expression (41)
in the limit �! 0. As one can see, S0�s� is actually purely
imaginary.11 Note that ‘‘continuous mass spectrum’’ for-
mulas (52) and (53) are in disagreement with the imagi-
nary and real parts of the ‘‘discrete mass spectrum’’
expression (49) taken at �! 0 (this discrepancy is dis-
cussed in the end of subsection II B).

Let us stress that a more rapid falloff of S�s� at
������
�s
p




�� (see Eq. (34)) is completely lost in the zero width
approximation.

III. CONCLUSIONS AND DISCUSSIONS

In the present paper we have estimated the contribution
of the virtual s-channel KK gravitons to the scattering of
two SM fields. We have considered the small curvature
option of the RS model with two branes (�� �M5). In such
a scheme, the KK graviton spectrum is a series of rather
narrow low-mass resonances. All the SM fields are con-
fined to one of the branes.

We have studied the case when both the colliding energy���
s
p

and 5-dimensional Planck scale �M5 are equal to one or
few TeV (and, consequently,

���
s
p
� �M5 
 �). Ultrahigh

energy region
���
s
p

 �M5 is also considered. By taking

into account nonzero graviton widths �n (with n being
the KK number), we have derived tree-level analytical
expression for S�s�, the process-independent gravity
part of the scattering amplitude (see our main formulas
(25) and (26)).

Then we have considered the case when a series of
narrow low-mass graviton resonances is replaced by a
continuous mass spectrum. Both the real and imaginary
parts of S�s� appeared to differ drastically from those
derived without such a replacement. Thus, one has to
conclude that an accurate estimation of the input sum in
n is needed in order to get a correct result, epecially at���
s
p

& �M5. The replacement of the summation in the KK
number by integration over graviton mass is well justified
if the graviton mass splitting �mKK is less than �n. In its
turn, this condition is actually satisfied only in the trans-
Planckian region (when the invariant energy

���
s
p

is several
times larger than the 5-dimensional Planck mass).

Zero width approximation (all �n � 0) has been also
studied. It is shown that some results can not be reproduced
in this approximation, as one can see, for instance, from
Eq. (34) which does not admit the limit �n ! 0.

Possible loop corrections to our results originating from
the exchange of s-channel gravitons can be estimated in the
-5
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zero width approximation as follows. Each new virtual
graviton brings the coupling 1=�2

�, while a corresponding
summation in n results in the additional dimensional factor
1=� (after the substitution n! mn=����). Using dimen-
sional arguments, we conclude, for example, that m-loop
graviton contribution to a vector field scattering amplitude,
M�m��s�, should be proportional to

M �m��s� �
s2M3m�1

cut

���2
��
m�1 �

s2M3m�1
cut

�M3m�3
5

; (54)

whereMcut is the UV cutoff in Feynman integrals, andm >

1. Thus, multiloop effects may become dominating at
Mcut * �M5. In such a case, an effective operator analysis
will be probably useful (see, for instance, Ref. [4]). Similar
arguments are also applied to the flat space-time with the
large compact ED’s, after replacements 1=�2

� ! 1= �M2
Pl,

1=�! Rdc . Note that the zero width approximation is very
well justified for this case, since �n �m3

n=
�M2
Pl (i.e. grav-

itons are extremely narrow spin-2 resonances, even for
mn �

���
s
p

).
In a general case (nonzero �n), an additional nontrivial

dependence on the scale �� appears in the RS scheme,
since the graviton widths depend on this mass scale (see
Eq. (16)). Both simple dimensional arguments and formu-
las like Eq. (54) are no longer valid.

Our formula (25) can be also applied to the scattering of
the brane particles, induced by t-channel graviton ex-
changes.12 Let

�M3
5

�

�t
 �2; (55)

with t being 4-momentum transfer. Then we obtain from
(25):

S �t� � �
1

2� �M3
5

1

~

I2�~
�
I1�~
�

; (56)

where I��z� � exp��i��=2�J��iz� is the modified Bessel
function, and

~
 ’

������
�t
p

�
�
i�
2

� ������
�t
p

�M5

�
3
: (57)

Since I2�z�=I1�z� ! 1 at z
 1 (� �=2< argz < 3�=2),
we find from (56) that

S �t� � �
1

2 �M3
5

������
�t
p (58)

in the kinematical region (55). Note that S�t� (58) is pure
real and it coincides with the imaginary part of S�s�
derived in the zero width approximation (52) up to the
replacement s! �t. In more general approach, one
12See also Ref. [9] in which t-channel graviton contribution to
the scattering amplitude was studied in a large curvature scenario
of the RS model.
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should sum KK-charged gravi-Reggeons, i.e. Regge tra-
jectories �n�t� which are numerated by the KK number n
[5,10]. In such a case, the amplitude has both real and
imaginary parts.

The relations of all cross sections necessary for studying
effects induced by tree-level exchange of the KK gravitons
with the quantities S�s� and S�t� can be found in the
Appendix of Ref. [4].
APPENDIX A

The sum (33) can be written as

S �s� � �
i

�����4
X1
n�1

1

n4 � C4 ; (A1)

where a and c are defined by Eq. (18), and

C � e�i�=8 1

��

�
s�2

�

�

�
1=4
� x� iy: (A2)

The sum in Eq. (A1) is of the form [11]:

X1
n�1

1

n4 � C4 �
�

2
���
2
p
C3

sinh
���
2
p
�C� sin

���
2
p
�C

cosh
���
2
p
�C� cos

���
2
p
�C
�

1

2C4 :

(A3)

At large C, the main contribution to (A1) comes from
n� jCj. The disregard of term bx2

n in (17) is justified if it is
much less than c, that results in the inequality b�2jCj2 �
c, or, equivalently,

������
�s
p


 �� (32).
By using formulas

sin�x� iy� � sinx coshy� i cosx sinhy;

cos�x� iy� � cosx coshy� i sinx sinhy;
(A4)

and

sinh�x� iy� � cosy sinhx� i siny coshx;

cosh�x� iy� � cosy coshx� i siny sinhx;
(A5)

and taking into account that coshx ’ sinhx
 coshy ’
sinhy is valid at x � cot��=8�y ’ 2:4y
 1, we obtain
formula (34).
APPENDIX B

At small ratio �=
���
s
p

, we get from Eq. (36) that

ReS0�s� �
1

�
���
s
p �M3

5

�
I �

�����
s
p

�
; (B1)

where

I �
Z 1

0
dz

1� z2

�1� z2�2 � �z8 ; (B2)

with � being defined by Eq. (40).
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It is convenient to divide our integral (B2) into two parts:

I � I1 � I2: (B3)

Here

I 1 �
Z 1

0
du
�

u�2� u�

u2�2� u�2 � ��1� u�8

�
u�2� u�

u2�2� u�2 � ��1� u�8

�
; (B4)

and

I 2 � �
Z 1

1
du

u�2� u�

u2�2� u�2 � ��1� u�8
: (B5)

Up to higher powers of �, the integrals (B4) and (B5) are
equal to

I 1 �
1

2
ln3�

3�
4

����
�
p
; I2 � �

1

2
ln3�

�

2
���
2
p

����
�4
p
;

(B6)

and we obtain formula (41) of the main text.
As for the imaginary part, it is given by

ImS0�s� � �
�

���
s
p

���4
�
J ; (B7)

where

J �
Z 1

0
dz

z4

�1� z2�2 � �z8 : (B8)

As in the previous case, we divide the integral in (B8)
into two parts:

J � J 1 � J 2; (B9)

with

J 1 �
Z 1

0
du
�

�1� u�4

u2�2� u�2 � ��1� u�8

�
�1� u�4

u2�2� u�2 � ��1� u�8

�
; (B10)

and

J 2 �
Z 1

1
du

�1� u�4

u2�2� u�2 � ��1� u�8
: (B11)
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The leading parts of the integrals (B10) and (B11) are
equal to

J 1 �
�

2
����
�
p ; J 2 �

�

2
���
2
p

1����
�4
p : (B12)

Thus, we get

J ’
�
2�

�2
�

s
; (B13)

that results in formula (42) in the main text.
APPENDIX C

Let us consider the sum

K �
X1
n�1

1

u2 � �n� v�2
; (C1)

with

u �

���
s
p

��
� i0; v �

1

4
(C2)

(remember that
���
s
p

 �).

The infinite sum (C1) can be found in Ref. [11]:

K �
1

2u
���v� u� ���v� u� �

1

u2 � v2 ; (C3)

where ��z� is the psi-function. Then one can apply the
formula

���z� � ��z� �
1

z
� � cot��z�; (C4)

and use the asymptotic behavior of the function ��z� at
large z (j argzj<�),

��z�jjzj
1 � lnz�
1

2z
� O�z�2� (C5)

(both formulas are taken from [12]).
As a result, the asymptotics of K looks like

K jjuj
1 �
�
2u

cot���u� v� � O�u�2�; (C6)

and we come to Eq. (49) presented in the text.
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