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No hair conjecture, non-Abelian hierarchies, and anti-de Sitter spacetime
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We consider globally regular and black holes solutions for the Einstein-Yang-Mills system with
negative cosmological constant in d-spacetime dimensions. We find that the ADM mass of the spherically
symmetric solutions generically diverges for d > 4. Solutions with finite mass are found by considering
corrections to the YM Lagrangian consisting in higher order terms of the Yang—Mills hierarchy. Such
systems can occur in the low energy effective action of string theory. A discussion of the main properties
of the solutions and the differences with respect to the four dimensional case is presented. The mass of
these configurations is computed by using a counterterm method.
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I. INTRODUCTION

If we allow for a negative cosmological constant, the
solution of the matter-free Einstein equations possessing
the maximal number of symmetries is the anti-de Sitter
(AdS) spacetime. Recently a considerable amount of inter-
est has been focused on solutions of Einstein equations
with this type of asymptotics. This interest is mainly
motivated by the proposed correspondence between physi-
cal effects associated with gravitating fields propagating in
AdS spacetime and those of a conformal field theory on the
boundary of AdS spacetime [1,2].

In view of these developments, an examination of the
classical solutions of gravitating fields in asymptotically
AdS (AAdS) spacetimes seems appropriate. Recently,
some authors have discussed the properties of gravitating
SU(2) non-Abelian fields with a negative cosmological
constant A [3,4]. Considering the case of four spacetime
dimensions, they obtained some surprising results, which
are strikingly different from the results found in the asymp-
totically flat case. For example there are solutions for
continuous intervals of the parameter space, rather than
discrete points. The asymptotic values of the gauge poten-
tials are arbitrary and there exist solutions supporting
magnetic and electric fluxes without a Higgs field. Some
of these solutions are stable against spherically symmetric
linear perturbations. The literature on AAdS solutions with
non-Abelian fields is growing steadily, including stability
analyses [5,6], the study of configurations with a Newman-
Unti-Tamburino charge [7], topological black holes with
non-Abelian hair [8] as well as axially symmetric general-
izations [9,10]. The existence of these solutions invalidates
the AdS, version of the no hair conjecture, which states
that the black holes are completely characterized by their
mass, charge, and angular momentum.

However, all these studies approach the case of a four
dimensional AAdS spacetime, and relatively little is
known about higher dimensional AAdS solutions with
non-Abelian matter fields. Practically all that is known
for d > 4 is the five dimensional non-Abelian SU(2) solu-
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tions discussed in [11]. At the same time gauged super-
gravity theories playing an important role in AdS/CFT
generically contain non-Abelian matter fields in the bulk,
although in the literature only Abelian truncations are
considered, to date. Thus, the examination of higher di-
mensional gravitating non-Abelian solutions with A < 0is
a pertinent task.

Higher dimensional asymptotically flat solutions of the
Einstein-Yang-Mills (EYM) equations have recently been
the subject of several studies. As found in [12], in five
spacetime dimensions, the particle spectrum obtained by
uplifting the d = 4 flat space YM instantons become com-
pletely destroyed by gravity, as a result of their scaling
behavior. However, by adding higher order' terms in the
Yang-Mills (YM) hierarchy this obstacle due to scaling is
removed and solutions in higher dimensions can be found.
Such regular, static, and spherically symmetric solutions in
spacetime dimensions d = 8 were presented in [13], and
for d = 5, both globally regular and black hole solutions
of the EYM system were found in [14]. The properties
of these solutions are rather different from the familiar
Bartnik-McKinnon (BK) solutions [15] to EYM in
d =4, and are somewhat more akin to the gravitating
monopole solutions to EYM-Higgs (EYMH) [16]. This is
because like in the latter case [16], where the vacuum
expectation value (VEV) of the Higgs field features as an
additional dimensional constant, here [13] also additional
dimensional constants enter with each higher order YM
curvature term.” They are however quite distinctive in their

'"The only higher order curvature terms considered in this
paper are those constructed from a 2p-form field such that the
La;rangian contains velocity square fields only.

Like the gravitating monopoles, these have gravity decou-
pling limits exceptin d = 5 (and in d = 4p + 1 modulo 4), and
in all odd spacetime dimensions, the flat space solutions are
stabilized by a Pontryagin charge analogous to the magnetic
charge of the monopole, provided that the representations of the
gauge group are chosen suitably. In all even d however, they are
like the BK solution in that they are not stabilized by a topo-
logical charge and are likewise sphalerons [17]
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critical behavior. The typical critical features discovered in
[13,14] have recently been analyzed and explained in [18].

These results can be systematically extended to all
d = 5 and one finds that no finite mass solutions can exist
in EYM theory, unless one modifies the non-Abelian action
by adding higher order curvature terms® in the YM
2p-form curvature F(2p), the p = 1 case being the usual
2-form YM curvature. Without these higher order YM
terms, only vortex-type finite energy solutions [12] exist,
describing effective systems in 3 spacelike dimensions,
and with a number of codimensions.

It is the purpose of this paper to examine the correspond-
ing situation in higher dimensions, in the presence of a
negative cosmological constant. It is interesting to inquire
whether the introduction of a negative cosmological con-
stant to these higher dimensional EYM models will lead to
some new effects as it does in the d = 4 case, due to the
different asymptotic structure of the spacetime. In the first
place this would lead to our understanding of how the
behavior of EYM theory depends on the dimensionality
of the spacetime. But such higher dimensional AAdS
solutions might be relevant to superstring theory, namely,
in the context of solutions to various supergravities con-
taining non-Abelian matter fields. Here, however, we re-
strict our considerations to the simplest case of systems
consisting only of gravitational and YM fields, namely, to a
higher dimensional EYM model. In particular, we restrict
to Einstein-Hilbert gravity and the first two members of the
YM hierarchy, and hence to d = 8, augmented with nega-
tive cosmological constant in d spacetime dimensions. As
in [3,4], for the d = 4 case, we seek static spherically
symmetric solutions in the d — 1 spacelike dimensions.
We find both globally regular and black hole solutions
with finite ADM mass. Unlike in the d = 4 case however,
we find that for d > 4 and a negative cosmological con-
stant, the properties of the AAdS solutions do not differ
qualitatively from the asymptotically flat case.

Our strategy is to first consider the usual YM model,
namely, the p = 1 member of the YM hierarchy, or the
square of the 2-form curvature F(2). We present an argu-
ment for the absence of solutions with reasonable asymp-
totics for any spacetime dimension d = 5. Although the
EYM equations in this case present solutions approaching
asymptotically the AdS background, the mass generically
diverges. This can be seen as a simple version of the no hair
theorem, holding for the EYM system in d >4 dimen-
sions. In other words, the Schwarzschild-AdS black hole is
the only static, spherically symmetric solution of the EYM
system with finite mass. This is presented in Sec. II, where

*In principle higher order terms with the desired scaling can be
chosen to consist both of the YM and the Riemann curvatures,
but in practice we restrict to the YM hierarchy. The reason will
be explained in Sec. II E. Besides, it was found in [13] that the
inclusion of Gauss-Bonnet terms does not result in any new
qualitative features to the solutions.
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in addition we have considered the special case d = 3,
extending Deser’s analysis [19] for A <0.

In Sec. IIT we introduce the higher order YM hierarchy
models featuring the terms F(2p), p = 2. We derive the
classical equations subject to our spherically symmetric
ansatz, and present a detailed numerical study of both
regular and black hole solutions. As is the case with the
usual EYM system, where the existence of finite mass
regular solutions leads to the violation of the no hair
conjecture, here too, these solutions are explicit counter-
examples to this conjecture in AdS,; spacetime.

One may ask about the possible relevance of these
higher dimensional configurations within the AdS/CFT
correspondence. In Sec. IV we compute the boundary
stress tensor and the mass and action of the solutions in a
number of spacetime dimensions up to eight. In five and
seven dimensions, the counterterm prescription of [20]
gives an additional vacuum (Casimir) energy, which agrees
with that found in the context of AdS/CFT correspondence.
A counterterm based proposal to remove the divergences of
a F(2) theory, such that the mass and action be finite, is also
presented in Appendix B. We give our conclusions and
remarks in the final section.

Everywhere in this paper we employ the notations and
conventions of [13].

II. THE F(2) MODEL

A. The action principle

We start with the following action principle in d —
spacetime dimensions

1
— d
1 j:Md x4/ g<—16 (R—2A) + £m>

1 3
e /m dB3xV/—hK, (1)
where R is the Ricci scalar associated with the spacetime
metric g,,, A = —(d — 1)(d — 2)/(2¢?) is the cosmologi-
cal constant, and G is the gravitational constant [following
[14], we define also k = 1/(87G)].

The matter term in the above relation

L, = —imwF, F* ()

is the usual 2 non-Abelian action density, F wy = 0,4, —
d,A, —i[A,, A,] being the gauge field strength tensor.
Here 7, is the coupling constant of the model (in the usual
notation 7, = 1/g%).

The last term in (1) is the Hawking-Gibbons surface
term [21], where K is the trace of the extrinsic curvature for
the boundary M and & is the induced metric of the
boundary. Of course this term does not affect the equations
of motion but it is relevant for the discussion of the mass
and the action of the solutions in Sec. IV.

The field equations are obtained by varying the action
(1) with respect to the field variables g,,, A,
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R,, — %gwR + Ag,, = 87GT,,,

‘ y 3)
V, Fr" —i[A,, F*"] =0,
where the energy momentum tensor is defined by
T, =twF, ,F, 8% — g, ttF g F*F. “4)

B. The general Ansatz

For the case of a d-dimensional spacetime, we restrict to
static fields that are spherically symmetric in the d — 1
spacelike dimensions, with a metric ansatz in terms of
Schwarzschild coordinates

d 2
ds? = N—Z ) + rzdﬂfF2 — o(r)N(r)dt?, (5)
r

with dQ,_, the d — 2 dimensional angular volume ele-
ment and

2m(r) 2

N=1_ d73+ﬁ, (6)

K1

the function m(r) being related to the local mass-energy
density up to some d-dependent factor.

As discussed in [13], the choice of gauge group compat-
ible with the symmetries of the line element (5) is some-
what flexible. In [13] the gauge group chosen was SO(d), in
d dimensions. But the gauge field of the static solutions in
question took their values in SO(d — 1). Thus in effect, it is
possible to choose SO(d) in the first place. Now for even d,
it is convenient to choose SO(d) since we can then avail of
the chiral representations of the latter, although this is by
no means obligatory. Adopting this criterion, namely,
to employ chiral representations, also for odd d, it is
convenient to choose the gauge group to be SO(d — 1).
We shall therefore denote our representation matrices by
SO..(d), where d = d and d = d — 1 for even and odd d
respectively.

In this unified notation (for odd and even d), the spheri-
cally symmetric Ansatz for the SO. (d)-valued gauge fields
then reads [13]

Ai = (m)z(*’)j&j’

r i

(=) L=, @
s __<4>[r,., Tl

i 4\ 2

The I"s denote the d-dimensional gamma matrices and
I,j=12,---,d — 1 for both cases.

Inserting this ansatz into the action (1), the EYM field
equations reduce to

0= (4 *oNw) — (d —3)r" c(w?* — Dw, (8)
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2 1 2
m = %rd_“(Nw’z r@-n o ) ) )
I w?
T = (10)

which can also be derived from the reduced action

2 _1)2
S = fdra(m’ — %rd_“<Nw’2 +(d—3) w-r 2r21) >>
oy

For a F? theory, the constants x, 7, can always be absorbed
by rescaling r — cr, A — A/c? and m — mkc?3, with
c=.7/kK.

The above differential equations have two analytic so-
lutions. One of them with

w(r) = =1,

corresponds to Schwarzschild-AdS spacetime. For
w(r) =0 we find a non-Abelian generalization of the
magnetic Reissner-Nordstrgm solution with o(r) = 1 and

m(r) = M, or)=1 (12)

m(r) = M, +% logr if d =S5,

Tl(d - 3) rd_s
A(d - 5)

(13)
and m(r) = M, + for d # 5,

M, being an arbitrary constant. We can see that, although
these solutions are asymptotically AdS, the mass defined in
the usual way diverges.

C.d=3

The (2 + 1) dimensional case is rather special. Three
dimensional gravity has provided many important clues
about higher dimensional physics. This theory with A <0
has nontrivial solutions, such as the BTZ black-hole space-
time [22], which provide an important testing ground for
quantum gravity and the AdS/CFT correspondence. Many
other types of 3d regular and black hole solutions with a
negative cosmological constant have also been found by
coupling matter fields to gravity in different ways.

However, as proven in [19], there are no d = 3 asymp-
totically flat static solutions of the EYM equations. The
arguments in [19] can easily be generalized for the AAdS
case. We notice that for d = 3, the YM Eq. (8) implies the
existence of a first integral w' = ar/(oN) with a an
arbitrary real constant. Therefore, assuming AdS; asymp-
totics, w' decays asymptotically as 1/r which from (9)
implies a divergent value of m(r) as r — co. However,
similar to the A = 0 case [23], this argument does not
exclude the existence of nontrivial solutions of the field
equations.

Here we should remark that since for d = 3 we are
dealing with SO(d — 1) = SO(2), the gauge group is
Abelian and we recover Einstein-Maxwell theory with a
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negative cosmological constant, whose solutions are
known in the literature. The corresponding solution with
a vanishing electric field was found by Hirschmann and
Welch [24] and has a line element”
. r dr?

r* + c?log|r? /€2 — M| (r*/€> — M)

+ (r? + 2 log|r?/€? — M|)dp? — (r*/€> — M)d??,

(14)

ds?

the magnetic potential being
c
V2

with wy, ¢ and M arbitrary real constants, the BTZ metric
being recovered for ¢ = 0 (see also [25,26] for more de-
tails on this solution).

One can see that, although the quasilocal mass defined in
the usual way diverges as r — oo, the metric still ap-
proaches the AdS; background. However, a similar prob-
lem appears for other d = 3 AdS solution, e.g. for the
electrically charged BTZ black hole [22], or for a self-
interacting scalar field minimally coupled to gravity [27],
in which cases it was possible to find a suitable mass
definition. We expect the formalism developed in those
cases to work also for the Hirschmann-Welch solution (14)
and (15), but this lies outside the scope of the present work.

w(r) = wy + log|r?/€* — M|, (15)

D.d=4

Four dimensional black hole solutions of the Egs. (8)—
(10) have been found in [3], the globally regular counter-
parts being discussed in [4]. Differing from the asymptoti-
cally flat case, for A < 0 there is a continuum of solutions
in terms of the adjustable shooting parameter that specifies
the initial conditions at the origin or at the event horizon.
As a new feature, the asymptotic value of the gauge func-
tion wy is arbitrary. The spectrum has a finite number of
continuous branches, depending on the value of A. When
the parameter A approaches zero, an already-existing
branch of solutions collapses to a single point in the moduli
space. At the same time new branches of solutions emerge.
A fractal structure in the moduli space has been noticed
[28]. There are also nontrivial solutions stable against
spherically symmetric linear perturbations, corresponding
to stable configurations. The solutions are classified by
non-Abelian magnetic charge and the ADM mass.

Note also that the d = 4 EYM solutions with a negative
cosmological constant A = —3 /7, have some relevance in
AdS/CFT context. As proven in [29], for this value of the

cosmological constant, an arbitrary solution (g,,,, Aﬁf)) of
the four dimensional EYM equations gives a solution of

“One can also solve directly the field equations (8)—(10), but
the solution takes a much more complicated form for the metric
ansatz (5).
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the equations of motion of the d = 11 supergravity. Based
on this observation, an exact Bogomol'nyi-Prasad-
Sommerfield monopoles (BPS)-type EYM solution has
been constructed in [10]. However, similar to some super-
symmetric solutions in FEinstein-Maxwell theory with
A <0, this A = —3/7, configuration presents a naked
central singularity.

E.d=5

As discovered by Coleman [30] and Deser [31], there are
no flat space static solutions of the YM equations, except
for d = 5. However, the inclusion of gravity may change
this picture, as seen from the famous d = 4 asymptotically
flat Bartnik-McKinnon solutions [15]. In this case, the
repulsive YM force is compensated by the attractive char-
acter of the gravity, and as a result we find both regular and
black hole unstable configurations (see [32] for a fairly
recent survey). As found in [12] the d = 5 particlelike
solutions are destroyed by gravity, their mass diverging
logarithmically, while w(r) presents an infinite number of
nodes. The AAdS couterparts of the d = 5 asymptotically
flat solutions are discussed in [11]. Although approaching
asymptotically the AdSs background, the mass of these
configurations also diverges logarithmically.

As conjectured by several authors, this result extends to
higher dimensions. Following the approach in [11], we
prove in Appendix A the nonexistence of asymptotically
flat or AdS solutions with a finite mass in a F(2) EYM
model given by (2) for any spacetime dimension d = 5
(see also the discussion in Sec. IIIC). Therefore, the
d-dimensional Schwarzschild-AdS configuration is the
only finite mass solution of the Egs. (8)—(10) and a simple
version of the no hair theorem seems to hold for the F(2)
(usual) EYM system in d > 4.

We should remark that in deriving this result we as-
sumed implicitly that m(r), o(r), w(r) are smooth func-
tions approaching finite values as r — oco. A divergent
asymptotic value of m(r) invalidates the proof presented
in Appendix A and also the virial arguments in Sec. III C.
Therefore we cannot exclude the existence of spherically
symmetric, nontrivial solutions of the field equations for
any d > 4. However, the mass of these solutions generi-
cally diverges, although the spacetimes are still AAdS. The
work of Ref. [11] presents an extensive discussion of such
AAdS solutions for d = 5. Both regular and black hole
solutions exist in d = 5 for compact intervals of the pa-
rameter that specifies the initial conditions at the origin or
at the event horizon. Differing from the A = 0 case, the
gauge field function w(r) does not oscillate between 1 and
—1 but approaches asymptotically some finite value wy,
the node number being finite. The masses of these solutions
behave asymptotically as (w3 — 1) logr, with all wy = =1
solutions corresponding to pure gauge configurations.

The results we found by solving numerically the
Egs. (8)—(10), for d = 6,7, 8 and several negative values
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FIG. 1. The functions o(r), w(r), and the ratio m(r)/r are
plotted as functions of radius for typical d = 6 regular solutions
in a F2 EYM theory with A = —0.1 and several values of the
parameter b = — 3w"(0).

of A confirm that this is a generic behavior for d > 4. The
corresponding boundary conditions at the origin (or event
horizon) are found by taking P = 1 in relations (26) and
(27) given in Sec. III. Except for a divergent value of m(r)
as r — 00, according to

’Tl(d - 3)

m(r) = M, +m

(w3 — 1)2rd=3, (16)

the properties of these solutions are very similar to the
more familiar d = 4 case. For d > 5, the asymptotic value
wq of the gauge field function w is also arbitrary, being
fixed by the initial parameters w'(0) or w(r;,) respectively,
wo = *£1 corresponding to pure gauge configurations.
Solutions for a compact interval of these parameters were
found to exist, the general structure being A-dependent.
Solutions with nodes in w(r) were also found. Typical d =
6 configurations with a regular origin are presented in
Fig. 1, for A = —0.01 and three different values of b =
—w'(0)/2. One can see that the mass function diverges
linearly while o(r) and w(r) asymptotically approach
some finite values. In Fig. 2 we plot the parameters M,
(appearing in (16), which in Sec. III Cwe argue that it can
be taken as the renormalized mass of the solutions), w, the
value o of the metric function o at the origin and the
minimal value N,, of the metric function N as a function of
b for a family of d = 6 AAdS solutions with A = —1. This
branch ends for some finite value of b, where o(0) — O.
Black hole solutions have been found as well, presenting
the same general features. Here we also find a continuum
of solutions with arbitrary values of wy, the relevant pa-
rameter being the value of the gauge potential at the event
horizon. Similar to d = 4, solutions appear to exist for any
value of the event horizon radius.

I I I I somnT I
-1.5 -1 -0.5 0 0.5 1 1.5 2

d=6 A=-1

08|
...__.\.6(0)

06|

04 |

02 |

02 %

-0.4

b

FIG. 2. The value N,, of the minimum of the metric function
N(r), the parameter M|, appearing in the asymptotic expansion of
m(r), the asymptotic value wy of the gauge function w(r) as well
as the value o(0) of the metric function o at the origin, are
shown as functions of b for d = 6 solutions of F? theory with
A=—1.

The drawback of the solutions in d > 5 described above
is that their ADM masses are divergent, making their
physical significance obscure (see, however, the discussion
in Appendix B).

One may hope to find a different picture by including
some other matter field in the action . Such fields should
interact with the YM sector so as to compensate for the
scaling behavior of the non-Abelian fields. This excludes
the dilaton field, as it can be proven that the latter does not
change this nonexistence result. Note that d = 5 finite
mass spherically symmetric gravitating non-Abelian solu-
tions with a Liouville-type dilaton potential are known to
exist [33]; however these solutions are asymptotically
neither flat nor AdS.

In the next section, we will remedy this problem of
nonexistence by adding higher order YM curvature terms
F(2p), (p > 1), to (2). The main role of these terms is to
alter the scaling properties of the action density in (1). But
logically, such a role can be played also by altering the
gravitational part of (1), through the introduction of higher
order (in the Riemann curvature) terms R(p), (p > 1). R(p)
here denotes the generalized Ricci scalar constructed from
the 2 p-form antisymmetrized p-fold product of Riemann
tensor 2-forms, the p = 1 member of which gives the
Einstein-Hilbert action, the p = 2, the Gauss—Bonnet,
etc. Here we have eschewed the possibility of employing
additional R(p) terms instead of, or together with F(2p)
YM terms, because in the present work we exclude the
participation of fields other than gravitational and Yang-
Mills. In particular, the exclusion of the dilaton renders the
usefulness of higher order (Gauss-Bonnet) gravities trivial
from a practical point of view.
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To see this, consider the situation where a term scaling
as L 727 is needed, i.e. that the term

Kp\/_—gR(P)

must be added to the density in (1). Using the metric
Ansatz (5), and discarding purely boundary terms in the
residual one dimensional (spherically symmetric)
Lagrangian, the term L, to be added is

(d —2p)!

Lo = =

d
(Trd_zp_z[r— (1—-N)?
dr

+d—2p - 1)1 —N)P} a7

in spacetime dimension d, which vanishes identically in
dimensions up to d = 2p. This is because in the given
dimensions the pth member of the gravitational hierarchy
becomes a total divergence. But for given d it is necessary
to have 2p = d, whence (17) trivializes. The situation
would be quite different if the dilaton field were included
together with the higher order gravitational terms, prevent-
ing the p-gravity density becoming a total divergence. But
this option is excluded here and we opt to the exclusive use
of higher order p-YM densities.

Yet other fields occurring in supergravities might be
considered, e.g. Kalb-Ramond, or totally antisymmetric
tensor fields. But these being Abelian, their effect would
be felt only in given dimensions, or, subject to much less
stringent symmetries than the spherical. This also is not a
flexible option, so we restrict our attention to p-YM den-
sities only.

II1. NON-ABELIAN HIERARCHIES
A. The Lagrangian and field equations

Since finite mass spherically symmetric solutions play a
central role in AdS/CFT, it is desirable that the nonexis-
tence result presented in Sec. I E be circumvented.

A simple way to circumvent these arguments and to find
nontrivial solutions is to modify the matter Lagrangian by
adding higher order terms in the YM hierarchy. As noted in
footnote 1, these are constructed exclusively from YM
curvature 2p-forms. For A = 0, asymptotically flat, finite
energy solutions of this modified EYM system are con-
structed in [13,14].

Such terms as we propose to add are predicted by string
theory, and hence provide a link with the AdS/CFT corre-
spondence too. But here we are guided predominantly by
symmetry considerations and do not claim to be employing
terms strictly following from superstring theory. The situ-
ation concerning higher order YM curvature terms in the
string theory effective action is complex and as yet not

PHYSICAL REVIEW D 73, 024006 (2006)

fully resolved. While YM terms up to F* arise from (the
non-Abelian version of) the Born-Infeld action [34], it
appears that this approach does not yield all the F® terms
[35]. Terms of order F° and higher can also be obtained by
employing the constraints of (maximal) supersymmetry
[36]. The results of the various approaches are not
identical.
The definition we use for superposed YM hierarchy is

P
1
L,=-)» 20 T8 TIF(2p)%,  (18)

where F(2p) is the 2 p-form p-fold totally antisymmetrized
product of the SO(d) YM curvature 2-form F(2)

F(2p) = FM1M2--»M2p = F[F«lMZFM3M4"'FM2p—1M2p]' (19)

Even though the 2 p-form (19) is dual to a total divergence,
namely, the divergence of the corresponding Chern-
Simons form, the density (18) is never a total divergence
since it is the square of one. But the 2 p-form (19) vanishes
by (anti)symmetry for d < 2p so that the upper limit in the
summation in (18) is P = 4 for even d and P = <! for odd
d.

We define the p-stress tensor pertaining to each term in
(18) as

Mg Ay,
TiE) = TrF2p)uaayn,,  F@P) "

1
- EgM,,TrF(Zp),\]Az.__/\zpF(2p)A1A2"')‘21’. (20)

For the particular spherically symmetric ansatz consid-
ered in Sec. II, we express the reduced YM Lagrangian
arising from (18) as

P
L£,=-3 L% 1)

p=1
with L%, given by
Ty (d—2)!
2-2p)t(d—[2p + 1))

X Wp—l[(Zp)N<1 ?)2 d-T2p+ 1])W}

r ar

L%\),[ =i 24

(22)

having used the shorthand notation

w2 — 1\2
w=( i ) (23)

r

For this general ansatz, we find the field equations
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rd= (d —3)! _ 1 dw
Z s " e E) “a Ly W
o _(d-3) & T, WPl
ra Wz;(d—[zpiu)z(zp—l)!’

L ri4or a AN P =gt 2W(w2 - wr! B w? d—2p—1
p;ﬂ(d G =) - 2 @—Dp+ iz~ 1! e L
which can also be derived from the reduced action

B , 2 (d - 3)! _ 1 dw B
S = /dra’(m Z 20 [@—2p 1)) wp 1[(2P)N(; E)z +(d—-[2p+ 1])W}>. (25)

For 7;

=0, i > 2 the Eqgs. (8)—(10) are recovered. Note also the o equation decouples and can be treated separately.

B. Boundary conditions

The asymptotic solutions to these equations can be systematically constructed in both regions, near the origin (or event

horizon) and for r > 1.
The corresponding expansion as r — 0 is

w(r) =1—=br* + O(r*), m(r) = (

7,(d — 3)1(4b2)7

o(r) =0y +

MN(&
(2

and contains one essential parameter b [the value of
0 (0) = o can be fixed by rescaling the time coordinate].

For black hole configurations with a regular, nonextre-
mal event horizon at r = r;, the expression near the event
horizon is

m(r) = my + m'(r,)(r = r,) + O(r — 1),

w(r) =wy, + w'(r,)(r = r,) + O(r = )%, (27)
o(r) = o, + o) (r—r,) + 0(r —r,)>
where
! i (wj, — 1?
m(ry) = —Krd‘3<1 + l), W, =
27 €2 r;tl
7, r972(d — 3)!
m/(r ) — P h Wp’
! p; 22p)id—2p—2) "
d—3 (d-1r, 2m’(rh)
N; = + )
h ry €2 K}’Z 3
ol = Uh(d - 3)' i 7'1,W,‘;’_1
" £ 2p—Did—[2p + 1]
W !
= w1 Y gz 08)
h Nh r% T,,W" ! ’

S

2 a2 1])z)rdl + 0l
(4b?) 20
- 1)!€d “2p + 1])!)’2 + o0,

{
the value of the gauge field on the event horizon being the
essential parameter. Here the obvious condition N'(r;,) > 0
imposes some limits on the event horizon radius as a
function of wy, for given (7;, A).

Since the field equations are invariant under w — —w,
one can take w(0) = 1 and w(r;,) > 0 without any loss of
generality.

For r> 1 we find for both regular and black hole
solutions

- Wi

(d—=3wm? 1
m(r) =M — - e lrd‘3+"" (29)
w2 (d — 3727 1
=1-21
() 2k(d —2) ri*

These boundary conditions are also shared by the asymp-
totically flat solutions [with a different decay of the mass
function m(r), however], w = =1 being again the only
allowed values of the gauge function as
Therefore, we expect to find a qualitatively similar picture
in both cases. We will find in Sec. V that the constant M in
the above relations is the ADM mass up to a d-dependent

r— oo.
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factor. However, in the discussion of numerical solutions
we will refer to M to as the mass of the solutions.

C. Further relations

The form (25) of the reduced action allow to derive an
useful virial relation. To this end, we use the scaling
technique proposed in [37,38] for the case of spherically
symmetric gravitating systems. Let us assume the exis-
tence of a globally regular solution m(r), o(r), w(r) of
the field equations (24), with suitable boundary conditions

at the origin and at infinity. Then each member of the
J

7,(d — 3)!

PHYSICAL REVIEW D 73, 024006 (2006)

1-parameter family
oxr)=oa(Ar),  wy(r) =wr)
(30)

my(r) = m(Ar),

assumes the same boundary values at » = 0 and r = oo,
and the action S, = S[m,, o,, w,] must have a critical
point at A = 1, i.e. [dS/dA],—; = 0. Therefore, we find
the following virial relation satisfied by the finite energy
solutions of the field equations (note that following [37], it
is possible to write a similar relation for black hole con-
figurations, also)

12

P e ! 2 2(d—3)m  2r*
r=1((d—4p — Y td-2p- +op (RET ML LT g,
p; L dro s ond—ap 11" <(d 4p 1)<2PN o T d=2p 1)W> 20— |(—a= T 7)) =0

For p = 1, i.e. a F?-theory, the above relation reads

]m drard_4<(d —5)(Nw”? +
0

which clearly shows that no nontrivial gravitating solution
with finite mass exists for d > 4, since all terms in the
integrand are strictly positive quantities.

Therefore, it becomes obvious that new terms in the YM
hierarchy should be introduced as the spacetime dimension
increases. For a given d, the relation P >[(d + 1)/4]
should be satisfied. As it happens, to go to 5 =d <9 it
is necessary to include at least the second member of the
YM hierarchy to provide the requisite scaling (similarly for
9 = d < 13 it is necessary to include the thrid member of
the YM hierarchy). In practice we add only the lowest
order such term necessary.

We mention here also the Hawking temperature expres-
sion of the black hole solutions. For the line element (5), if
we treat ¢ as complex, then its imaginary part is a coor-
dinate for a nonsingular Euclidean submanifold if and only
if it is periodic with period

4T

P Nt

(33)
Then continuous Euclidean Green functions must have this
period, so by standard arguments the Hawking temperature
is(withkz =h=1)

oy, 2m'(ry,) rﬁ
T, = d—3— +d—1)-2
H 47Trh< 3 KTZ_3 ( )€2>
2
gy l"h
= d—3+(d—-1)-2) 34
4'7Trh< ( )€2> ( )

Thus the Hawking temperature of such systems appears to
be suppressed relative to that of a vacuum black hole of
equal horizon area.

(w2 = 1)?
272

(3D

) 4 w’2< 24— 3) + ﬁ)) —0, (32)

Krd=3

{
In the presence of higher order terms in the YM action,

dimensionless quantities are obtained by rescaling
r— (mo/m)'4,

m(r) = m(r)x(7,/73)

A— (7'1/7'2)1/2,

(d=3)/4 (33)

This reveals the existence of one fundamental parameter
which gives the strength of the gravitational interaction

3/2
r
=L (36)
KT,
and P — 2 independent coupling constants
T (T1\F1
g = (1) (37)
TI\T2

with k = 3, P — 2 (i.e. no such constants appearina p = 2
system).

For the F(2) + F(4) systems in d = 6, 7, 8 considered in
[13], there exist gravity decoupling solutions at a = 0,
from which the gravitating solutions branch out to a maxi-
mum value of «,,,, and then decrease. The second limit of
a — 0 also exists. For the same system in d = 5 studied in
[14] on the other hand, there exists no gravity decoupling
limit but nonetheless the solution branches out from a = 0
by employing a scaling procedure [18], and again « in-
creases to a value «,,,, and decreases. But in this case it
does not reach the & — 0 limit. Rather it stops at a new
critical point &, around which it oscillates [14], which is a
new type of critical point identified in [18] and named a
“conical” fixed point.
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D. Numerical solutions

In the present work, we restrict our attention to the
simplest nontrivial cases with only the two terms p = 1
and 2 in the YM hierarchy. However, we have obtained
some numerical results also for a P = 3 hierarchy with
B1 = 1, which will be briefly mentioned. For d = 5, the
solutions we found have some special features which will
be discussed separately.

Both regular and black hole solutions of the EYM-
hierarchy equations appear to exist for any value of A.
Given («, d, A), AAdS solutions may exist for a discrete
set of shooting parameters b and w; respectively. We
follow the usual approach and, by using a standard ordi-
nary differential equation solver, we evaluate the initial
conditions at » = 107 (or r;, + 1073) for global tolerance
10~ 4, adjusting for shooting parameters and integrating
towards r — oo, and looking for AAdS solutions with a
finite mass.

Similar to the p = 1, d = 4 asymptotically flat case, it
can be proven that for all AAdS (or A = 0) solutions, w(r)
is confined within the strip |w(r)| < 1. This can be proven
as follows: we suppose the existence of solutions with
w(r) > 1 for some interval of r. Therefore, w must develop
a maximum for some ry, w'(ry) = 0 and w(ry) > 1 with
w'(ry) < 0. However, the Egs. (24) imply that in the region
w > 1 the only extremum can be a minimum. Therefore,
the condition |w(r)| <1 is always fulfilled. As a general
feature, all solutions discussed in the rest of this section
present only one node in the gauge function w(r). Similar
to the A = 0 case, we could not find multinode solutions.’

The absence of multinode solutions in this F(2) + F(4)
model with A = 0, in the relevant dimensions 5 < d = 8
is analytically explained in [18]. We expect that the rele-
vant fixed point analysis yields qualitatively similar results
also for | A| > 0. This is borne out by our numerical results.

For any regular solution, the metric functions m(r) and
o(r) always increase monotonically with growing r from
m(0) = 0 and o(0) = o at the origin to m(o) = M and
o(00) = 1, respectively. The gauge function always inter-
polates between w(0) = 1 and w(co) = —1 without any
local extrema. For black hole configurations, the behavior
of the functions m(r), o(r), and w(r) is similar to that for
regular solutions. The gauge potential w(r) starts from
some finite value 0 < w(r;,) <1 at the horizon and mono-
tonically approaches —1 at infinity. The metric functions
m(r) and o(r) increase also monotonically with r. In the
asymptotic region, the geometry corresponds to a
Schwarzschild-AdS solution. However, although these so-
lutions are static and have vanishing YM charges
(w?(c0) = 1), they are different from the Schwarzschild-
AdS black hole, and therefore are not fully characterized
by the mass parameter M.

SMultinode solutions exist if the lowest order YM term is
F(2p) with p = 2, in the appropriate dimensions [18] d.

PHYSICAL REVIEW D 73, 024006 (2006)

1. Regular solutions d = 5

As a? — 0, the YM equations present a nontrivial, finite
energy solution in a fixed AdS background. This nongra-
vitating configuration approaches in the A = 0 limit the
YM instanton in four dimensional flat space [39].

When «? increases, this solution gets deformed by
gravity and the mass M decreases. At the same time,
both the value ¢(0) and the minimal value N,, of the
function N(r) decrease, as indicated in Fig. 3. This branch
of solutions exists up to a maximal value «,, of the
parameter «, which is smaller than the corresponding value
in the asymptotically flat case [14]. For example, we find
numerically a2, = 0.3445 for A = —0.2 while the cor-
responding value for A = —0.01 is a2, =~ 0.5322.
(Without a cosmological term, this branch extends up to
. = 0.5648.)

Similar to the EYM theory with A = 0 [14], we found
always another branch of solutions on the interval a? €

[ 1) @ha] With @) depending again on the value of A
(e.g. agr(l) ~ (0.2876 for A = —0.2). On this second
branch of solutions, both ¢(0) and N,, continue to decrease
but stay finite. However, a third branch of solutions exists
for a® € [@ ), %], on which the two quantities de-
crease further. A fourth branch of solutions has also been
found, with a corresponding a5 close to a7, . Further

branches of solutions, exhibiting more oscillations very
likely exist but their study is a difficult numerical problem.
Along this succession of branches, the main observation is
that the value o(0) decreases much faster than that of N,, as
illustrated in Fig. 3. Also, the mass parameters do not
increase significantly along these secondary branches.
However, the shooting parameter b increases to very large
values. The pattern strongly suggests that after a finite (or
more likely infinite) number of oscillations of ¢(0), the

0.8 -

0.6

0.4

0.2

02

.04 F

06 I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 3. The value N,, of the minimum of the metric function
N(r), the mass parameter M as well as the value of the metric
function o at the origin, ¢(0), are shown for d = 5 solutions as
functions of a2 and several values of A.
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0.75 - m(r)

0.5 |

0.25 -

-0.25 -

-0.5 -

-0.75 |-

d=6 ’=0.1 A=-0.01

logy(r)

FIG. 4. The profiles of the functions m(r), o(r), and w(r) are
plotted as functions of radius for typical d = 6 regular solutions
in a EYM theory with p = 1, 2 terms and a?=0.1,A = -0.0l.
Here and in Fig. 14 the continuous line corresponds to an upper
branch solution, the dotted line denoting lower branch profiles.

solution terminates into a singular solution with o(0) = 0
and a finite value of N(0).

This is the behavior observed in [14] for the EYM theory
with A = 0. The inclusion of a negative cosmological
constant does not seem to qualitatively change the proper-
ties of the system, but leads to different values of the
critical parameters. As in the A = 0 case, the dominant
term at the gravity decoupling limit @ — 0 is the F(2)
term, the energy being given by the action of the usual
instanton [39], while as @ — «,, the dominant term is
F(4). The mechanism for this effect is explained in [18]
(for A = 0) and is supported by our numerical results here.
The typical d =5 globally regular solutions look very
similar to the d = 6, 8 profiles presented in Figs. 4 and 5.

o(r)

d=8 ¢>=0.0005

I .
-1 -0.5 0 0.5 1

FIG. 5. Typical globally regular solutions of d = 8 EYM the-
ory with a® = 0.0005 and p = 1,2 terms are plotted as func-
tions of radius for several values of A.

L L L L TR L L
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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2. Regular solutions d > 5

The solutions in this case resemble again the A =0
situation. In the presence of suitable higher order term in
the hierarchy, the YM equations admit finite energy solu-
tions in a fixed AdS; A p = 1, AdS, exact solution was
found in [40], its higher order generalization (specifically
for p =2, AdSg) for d >4 being discussed in [41].
According to the standard arguments, this AdS soliton
can be generalized in the presence of gravity, provided
that the dimensionless coupling constant a is small
enough. Therefore the gravitating solutions exist up to a
maximal value «a,,,, of the gravitational coupling constant.
This value a,,,, for a given d depends on the value of A.
For example in d=06, an(A=0) =0.12675;
Amax (A = —1) = 0.070422; in 8 dimensions we find
amax(A =0) =0.002193  while @, (A =—-5)=
6.69 X 1074,

When « increases, the mass of the gravitating solutions
decreases while the function N(r) develops a local mini-
mum N,, which becomes deeper while gravity becomes
stronger and the value o(0) decreases from one. At the
same time, the value of the shooting parameter b increases
with . Our numerical analysis for d = 10 indicates that a
second branch of regular solutions always exists, starting at
max- Along this second branch the values o(0) and N,
decrease monotonically with «, while b and M still in-
crease. The mass of a second branch solution is always
larger than the corresponding mass (for the same value of
«) on the first branch. For d > 6, the numerical analysis
suggests that this second branch persists up to a? =~ 0 and
that in this limit o-(0) approaches a very small value. As far
as our numerical analysis indicates, the value N,, tends to a
finite value in this limit so that there occurs no horizon.
Therefore, two regular solutions seems always to exist for
any o < ay.

The case d = 6 is special, since the numerical procedure
fails to give reliable results for second branch solutions,
starting with some «,, whose value is A-dependent [for
example we found a, (A = —1) = 0.0435 while a (A =
0) = 0.0573]. The quantity o(0) reaches a very small value
as @ — a,. The minimal value of N(r) remains finite so
that no horizon is approached. We expect that a different
parametrization of the metric and variables would allow us
to continue this second branch to @ — 0 in this case, too.

The behaviors just described qualitatively duplicate
those of the A = 0 case [13], and are analyzed in [18].
Likewise, the solutions are dominated by the F(2) terms in
the gravity decoupling limit &« — 0, while at the other end
(on the second mass-branch) it is the F(4) terms that
dominate.

Typical d = 6, 8 solutions are presented in Figs. 4 and 5,
respectively. In Figs. 5—-8 we plot some relevant quantities
for d = 6, 7, 8 and several values of A. One can see that the
qualitative behavior of the functions m, o, w does not
change by changing the value of A.
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1

0.14

0.14

FIG. 6. The value N,, of the minimum of the metric function
N(r) and the value of the metric function o at the origin o(0) (a),
and, the parameters M and b (b), are shown for d = 6 solutions
as functions of a2 and several values of A.

The results we found by including the p = 3 term in the
YM-hierarchy for d =9, 10 follows the same pattern.
Although the picture gets more complicated by the exis-
tence of one more coupling parameters, two branches of
solution are always found to exist. We noticed also the
existence of a maximal value of a which is (A, 8;)
dependent.

3. Black hole solutions d = 5

According to the standard arguments, one can expect to
find black hole generalizations for any regular configura-
tions, at least for small values of the horizon radius r,. For
completeness we discuss here the basic features of the
AAdS black hole solutions.

Again, the case d = 5 is special. The properties of these
AAdS solutions are rather similar to the five dimensional
asymptotically flat black hole configurations discussed in
[14]. First, black hole solutions seem to exist for all values
of a for which regular solutions could be constructed.

PHYSICAL REVIEW D 73, 024006 (2006)
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FIG. 7. The value N,, of the minimum of the metric function
N(r) and the value of the metric function o at the origin o (0) (a),
and, the parameters M and b (b), are shown for d = 7 solutions
as functions of & and several values of A.

Also, solutions exist only for a limited region of the
(r, @) space.

The typical behavior of solutions as a function of ry, is
presented in Fig. 9, for a small value of & compared to the
maximal value a,,, of the regular solutions, in which case
we notice the existence of only one r, = 0 regular con-
figuration. Starting from this regular solution and increas-
ing the event horizon radius, we find a first branch of
solutions which extends to a maximal value 7(p,y). AS
seen in Figs. 9 and 10, the value of 7,y depends on A, a.
The Hawking temperature decreases on this branch, while
the mass parameter increases; however, the variation of
mass and o (r;,) is relatively small. Extending backwards in
ry, we find a second branch of solutions for r, < 7jma)-
This second branch stops at some critical value ryy),
where the numerical iteration fails to converge. The value
of o(r;) on this branch decreases drastically, as shown in
Fig. 9. Also, the Hawking temperature after initially in-
creasing, strongly decreases for values near ry(y), ap-

024006-11



EUGEN RADU AND D.H. TCHRAKIAN

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

0.8 |

I I
0 0.0005 0.001 0.0015 0.002 0.0025

0.0025

FIG. 8. The value N,, of the minimum of the metric function
N(r) and the value of the metric function o at the origin o(0) (a),
and the parameters M and b (b), are shown for d = 8 solutions as
functions of a? and several values of A.

proaching a very small value, while the increase of the total
mass is still very small. Similar to the A = 0 case [14],
higher branches of solutions on which the value o(r,)
continues to decrease further to zero are likely to exist.
However, the extension of these branches in r;, will be very
small, which makes their study difficult. An approach to
this problem with different parametrization appears to be
necessary.

However we find, that the global picture is changed by
considering large enough values of «. In this case, more
than one regular configuration exists for a given value of a.
This situation is illustrated in Fig. 10, for solutions with
a* = 0.5. Two regular solutions exist for this particular
value of & and we find two black hole branches connecting
these r;, = 0 configurations. Again, the mass of the second
branch solutions is always larger than the corresponding
mass on the first branch.

Preliminary numerical results indicate an even more
complicated picture for solutions with a near a,,. In
this case the configurations combine features of both types

2
d=5 a"=0.02
0 1 ! 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Ty

0.98 1 I I I
0O 01 02 03 04 05

d=5 0>=0.02

0 I I I I
0 0.1 0.2 0.3 0.4 0.5

Th

FIG. 9. In (a) we plot the value of the gauge field function at
the horizon w(r;,) and o(r;,), the value of the metric function o at
the horizon (the magnified profiles of o(r,) are displayed in the
window, to help distinguish these from the profiles of w(r;)). In
(b), the mass parameter M and the Hawking temperature Ty are
presented. All profiles as functions of the event horizon radius r,
for the p = 1,2 black hole solutions in five dimensions with
a? = 0.02 and several values of A.

of solutions discussed above. Several branches of black
hole solutions are found for the same «. These branches
start from regular configurations and are possibly
disconnected.

4. Black hole solutions d > 5

Although predicted in [14], no discussion of the A = 0,
d > 5 black holes is presented in literature.

Again, black hole counterparts appear to exist for any
regular solution. However, solutions with the right asymp-
totics are found for a limited region of the (r;,, @) space
only. We plot in Figs. 11-13 some results we found for d =
6, 7 and d = 8. Starting for a given oy < ap,, fromar, =
0 first branch regular solution, we found the existence of a
branch of black hole solutions extending up to a maximal
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FIG. 10. The value of the gauge field function at the horizon
w(r,) and o(r,), the value of the metric function o at the
horizon, (a), as well as the mass parameter M and the
Hawking temperature 7 (b) are shown as functions of the event
horizon radius r;, for the p = 1,2 black hole solutions in five
dimensions with @? = 0.5 and several values of A.

value of the event horizon radius r, = r**. When r,
increases, the mass and the Hawking temperature increase
while the value o(r;,) decreases from its value at the
regular solution. A second branch of black hole solutions
seems to appear always at r;**, extending backwards to a
zero event horizon radius. This limiting solution corre-
sponds to the second branch of the regular solution at
this value of @ = . Like in those d = 5 cases where
there are two regular solutions for a given «, say ay, here
too these two regular solutions are the r;, — 0 limits of the
corresponding black hole “loop,” connecting the two regu-
lar solutions. Along this second branch the values o(r;,) of
the metric function o on the event horizon decrease mono-
tonically with r;,, while the Hawking temperature strongly
increases. The mass of the solution of the second branch is
larger than the corresponding one on the first branch, as
illustrated by Figs. 10—12. It is interesting to note here,
from the point of view of numerics, that a black hole loop

PHYSICAL REVIEW D 73, 024006 (2006)

d=6

0.5

FIG. 11. The value of the gauge field function at the horizon
w(r,) and o(r,), the value of the metric function o at the
horizon, as well as the mass parameter M and the Hawking
temperature Ty are shown as functions of the event horizon
radius ry, for the p = 1, 2 black hole solutions in six dimensions
with a? = 0.066 and several values of A.

corresponding to the two r, — 0 limits of two regular
solutions, say at «, can be constructed numerically even
when the numerical process for the higher mass branch of
the regular solutions for this « runs into difficulties.

The introduction of a negative cosmological constant
does not appear to change this picture qualitatively.
However, we notice a smaller value of r** with increasing
|A| and a larger value of M for the same «.

In Fig. 14, we present the profiles of the metric functions
N and o and gauge function w(r) for the same values of

35 : ‘
M+1 d=7

Tyxdn

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Th

FIG. 12. The value of the gauge field function at the horizon
w(r,) and o(r,), the value of the metric function o at the
horizon, as well as the mass parameter M and the Hawking
temperature Ty are shown as functions of the event horizon
radius r;, for the p = 1, 2 black hole solutions in seven dimen-
sions with a? = 0.011 and several values of A.
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FIG. 13. The value of the gauge field function at the horizon
w(r,) and o(ry), the value of the metric function o at the
horizon, as well as the mass parameter M are shown as functions
of the event horizon radius r, for the p = 1,2 black hole
solutions in eight dimensions with @ = 0.002 and several
values of A.

d=6 0>=0.05
r,=0.4 A=-0.01 -

logyo(r)

FIG. 14. The profiles of the functions m(r), a(r), and w(r) are
plotted as functions of the radius for typical d = 6 black hole
solutions in a EYM theory with p = 1,2 terms and a’ =
0.05, A = —0.01.

a?, A on the first and second branch for some d = 6
solutions. The dependence of these functions on the value
of A is illustrated in Fig. 15 for several d = 7 black hole
solutions.

IV. A COMPUTATION OF MASS AND ACTION

A. The counterterm method

It is well known that the generalization of Komar’s
formula for AAdS spacetimes is not straightforward and
requires the further subtraction of a background configu-
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d=7 0*=0.001 r,=0.28
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FIG. 15. Typical black hole solutions of p = 1,2 EYM theory
in seven dimensions with a> = 0.001, r;, = 0.28 are plotted as
functions of the radius for several values of A.

ration in order to render a finite result for the mass. This
problem was addressed for the first time in the 1980s, with
different approaches (see for instance Refs. [42,43]).
Another formalism to define conserved charges in AAdS
spacetimes was proposed in [44] and uses conformal tech-
niques to construct conserved quantities yielding the re-
sults obtained by Hamiltonian methods. Other more recent
approaches to the same problem are presented in Ref. [45].

As expected, these different methods yield the same
total mass for the spherically symmetric AAdS configura-
tions considered in Sec. III

(d—=2)Qy-,

M Apm 837G M, (38)
where Q,_, = 27@~D/2/T'((d — 1)/2) is the area of a unit
(d — 2)-dimensional sphere, and M is defined in the second
member of (29).

A procedure leading (for odd dimensions) to a different
result has been proposed by Balasubramanian and Kraus
[20]. This technique was inspired by AdS/CFT correspon-
dence and consists in adding suitable counterterms I to
the action of the theory in order to ensure the finiteness of
the boundary stress tensor derived by the quasilocal energy
definition [46]. These counterterms are built up with cur-
vature invariants of a boundary dM (which is sent to
infinity after the integration) and thus obviously they do
not alter the bulk equations of motion. Unlike background
subtraction, the counterterm approach does no require the
identification of a reference spacetime. Given the potential
relevance of the EYM solutions in an AdS/CFT context,
we present here a computation of the boundary stress
tensor and of the total mass, by using the counterterm
prescription.

The following counterterms are sufficient to cancel di-
vergences in a pure gravity theory for d = 9, with several
exceptions (see e.g. [47])
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_ d—2, (0(d—4)
It = =326 |om dlx F[ ¢ 2(d—3) R
30(d — 6) d—

2(d — 5)(d — 3)? <RABRAB 4(d - 2) R2>

RRABR 4

650(d — 8) 3d+2
(d —2)*(d — 4)(d — 6) (4(d -1
d(d +2)
C16(d— 1)
d
CAd-1)

R3 — 2RABRCPR 4501,

_ % _y,RVAR + VCRABVCTRABH
(39

Here R 45cp, R ap are the Riemann and Ricci tensors, R
is the Ricci scalar for the boundary metric 4 and O (x) is the
step function, which is equal to 1 for x = 0 and zero
otherwise; A, B, ... indicate the intrinsic coordinates of
the boundary.

Using these counterterms one can construct a nondiver-
gent boundary stress tensor, which is given by the variation
of the total action at the boundary with respect to h,p. Its
explicit expression, restricting for simplicity to d <7, is

2 €
hyp + - 3EAB>7
(40)

1
Tan = g (Ko = K =

where K,z = —3(Vang + Vpny,) is the extrinsic curva-
ture defined in terms of the normal n, to the boundary, K is
its trace, and E,p is the Einstein tensor of the intrinsic
metric /45. (The corresponding form of (40) ford = 7, 8 is
given e.g. in [48]).

The result we find in this way for T, is given by

Ty L VR o BT e
A 87Ge Z 2fr(+1) O2p.d-1
1

where u, = 6/, and p is an integer. We can use this
approach to assign a mass-energy to an AAdS geometry
by writing the boundary metric in an ADM form
hapdx*dx® = —N3di* + 0 ,,(dx* + N&di)(dx? + N5 dr)
(42)

and the definition of the energy in this context is
E= / d? 1x\/oNse. 43)
M)

Here € = u*u"T,, is the proper energy density while u*
is a timelike unit normal to 3.

If there are matter fields on M, additional counterterms
may be needed to regulate the action. This is the case of
F(2) theory, discussed in Appendix B. The counterterm
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action depends in this case not only on the boundary metric
but also on the boundary value of the gauge field.

However, we find that for P > 1 EYM solutions with
A<0in d =5,6,7,8 dimensions, the prescription (39)
removes all divergences. The use of higher order terms in
the YM curvature, namely F(2p) forms with p > 1 intro-
duced in Sec. III, results in this regularizing of the masses.
The crucial point here is that these solutions approach
asymptotically a Schwarzschild-AdS background, and the
YM asymptotic parameter w; appears only in the next to
leading order of the T4 expression.

The mass-energy of solutions computed in this way is

_d-2)Qs

M+ E 44
S7G 0 (44)

where, for3<d <9

d—-2)Qy (3

5
— iy T pA
E, T < ~ 085, — 3¢ 5d,7>. 45)

The additional term E, appearing in E for d = 5, (7) is the
mass of pure global AdSs ;) and is usually interpreted as
the energy dual to the Casimir energy of the CFT defined
on a four (six) dimensional Einstein universe [20].

The metric restricted to the boundary h,p diverges due
to an infinite conformal factor r?>/€2. The background
metric upon which the dual field theory resides is

02
YAB = hm hAB (46)
r—co0 2
For the asymptotically AdS, solutions considered here, the
(d — 1) dimensional boundary is the Einstein universe,
with the line element

yapdxtdxB = —d? + 2403 . 47)

In light of the AdS/CFT correspondence,
Balasubramanian and Kraus have interpreted Eq. (40) as

(TABy = % %, where (748) is the expectation value of

the CFT stress tensor. Then, the divergences which appear
are simply the standard ultraviolet divergences of a quan-
tum field theory and we can cancel them by adding local
counterterms to the action. Corresponding to the boundary
metric (47), the stress-energy tensor 745 for the dual theory
can be calculated using the following relation [49]

=Yy E(Tpe) = rlg{}o V=hh*BTg. (48)

B. Action and entropy

The above approach can be used to compute the
Euclidean action and to prove in a rigorous way that the
entropy of the EYM black hole solutions is one quarter of
the event horizon area, as expected. Here we start by
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constructing the path integral [21]
zZ= f D[g]D[V]e Y] (49)

by integrating over all metrics and matter fields between
some given initial and final hypersurfaces, ¥ correspond-
ing here to the SU(2) potentials. By analytically continuing
the time coordinate t— i7, the path integral formally
converges, and in the leading order one obtains

Z=~e la (50)

where [ is the classical action evaluated on the equations
of motion of the gravity/matter system. The physical in-
terpretation of this formalism is that the class of regular
stationary metrics forms an ensemble of thermodynamic
systems at equilibrium temperature 7 (see e.g. [S0]). Z has
the interpretation of partition function and we can define
the free energy of the system F = — 3~ !logZ. Therefore

logZ = —BF = S — BE, (51)
or
S=PBE—1, (52)

straightforwardly follows.

To compute I, we make use of the Einstein equations,
replacing the R — 2A volume term with 2R} — 167GT!.
For our purely magnetic ansatz, the term 77 exactly cancels
the matter field Lagrangian in the bulk action. The diver-
gent contribution given by the surface integral term at
infinity in R} is also canceled by I f.c. + I and for 3 <
d <9 we arrive at the simple finite expression

Q, rd=2 3 5
cl - ﬁ877_dG2<M_7+§‘€25d,5 _E€45d'7>' (53)
Replacing /; now in (52) (where E is the mass-energy
computed in Sec. IVA), we find

S =1Qq0ri % (54)

which is one quarter of the event horizon area, as expected.

From the AdS/CFT correspondence, we expect the non-
Abelian hairy black holes to be described by some thermal
states in a dual theory formulated in a Einstein universe
background. The spherically symmetric solitons will cor-
respond to zero-temperature states in the same theory. The
existence of these hairy configurations suggest that there
should be some observables in the dual CFT that encode
the hair information.

V. CONCLUSIONS

Motivated by recent results in EYM theory in four
dimensional AAdS spacetime, we studied higher dimen-
sional spherically symmetric solutions with non-Abelian
fields in the presence of a negative cosmological constant.
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Since the mass-energy of the AAdS configurations plays a
central role in its application to the AdS/CFT correspon-
dence, we emphasized this aspect of the solutions we
found. The mass-energy of the usual EYM solutions
(both asymptotically flat and AAdS), defined according
to the standard prescription, always diverges in spacetime
dimensions d > 4. One of the tasks performed in this work
was a demonstration of this fact in the AAdS case. The
main properties of these higher dimensional F(2) solutions
resemble the d = 4 case, a continuum of solutions with
arbitrary asymptotic values of the gauge function w(r)
being found.

Then we focused on two possible approaches of dealing
with the divergences of the mass and action. One of these
involved the regularization of the mass-energy using a
counterterm mechanism. In this approach, it turns out
that the counterterm action depends not only on the bound-
ary metric, but also on the boundary values of the gauge
fields. However, the masses of the solutions defined in this
way may take negative values, leading us to the second
approach.

The other, which formed the main thrust of the work,
was to augment the action density of the system with
higher order curvature terms, consisting of 2 p-form curva-
tures F(2p). These terms were added to the usual YM
system constructed from F(2). It resulted in EYM solutions
supporting finite mass-energy in all spacetime dimensions
5=d=2p.

Concerning the construction of regular finite energy
classical AAdS solutions in higher dimensions, we re-
stricted ourselves to systems consisting exclusively of
gravitational and non-Abelian gauge fields. The salient
features of the resulting solutions are captured in this
framework, the addition of other (string theory inspired)
matter terms are being deferred to later work. With the
asymptotically flat versions of the higher-p EYM systems
having been studied in [13,14,18], our task here involved
the introduction of a negative cosmological constant. The
most succinct way of listing our conclusions is:

(1) The qualitative properties of the regular AAdS so-
Iutions in spacetime dimensions d = 5,6,7, 8 are
the same as the corresponding asymptotically flat
ones, namely

(1) A one parameter family of solutions parame-
trized by the (dimensionless) gravitational
coupling constant « start at & = 0 (the grav-
ity decoupling limit) and exist up to a maxi-
mum «,,, after which a decreases again
and ends at critical value.

(2) For d = 6,7, 8 the value of « in the second,
not that of gravity decoupling, endpoint be-
comes very small and stops. In the d = 8 case
it actually vanishes. For d = 5 the value of «
in the second endpoint reaches a finite critical
value, where it does not stop, but oscillates
around this critical value.

024006-16



No HAIR CONJECTURE, NON-ABELIAN ...

(3) Aslong as the physically important F(2) term
is present in the YM sector, there exist no
multinode solutions.

(ii) Black hole counterparts appear to exist for any
regular solution. The qualitative properties of the
AAAdS black hole solutions are similar to the asymp-
totically flat case:

(1) Different from the four dimensional theory,
the event horizon radius presents a maximal
value. This maximal value is a function of the
gravitational coupling constant «.

(2) For d = 6,7, 8 the black hole solutions form
a loop connecting the two regular solutions
with the same value of . The solutions of the
five dimensional theory are somehow special,
presenting a complicated branch structure
which depends on «.

Axially symmetric generalizations of these solutions are

likely to exist. We expect them to share the basic properties
of the spherically symmetric configurations.

ACKNOWLEDGMENTS

We are indebted to Dieter Maison for advice and dis-
cussions. ER thanks Cristian Stelea for useful remarks on
Sec. II. This work was carried out in the framework of
Enterprise—Ireland Basic Science Research Project SC/
2003/390.

APPENDIX A: A NONEXISTENCE PROOF FOR
p = 1,d >S5 FINITE MASS SOLUTIONS WITH
A=0

Following the notation used in [11], we introduce a new

variable
z = 2logr, (Al

and rewrite the basic Eqgs. (8) and (9) in the form

dm _ 71 @=5)1/2( 4N dw\? + (d—3) (w2 — 1)
4 dz ’

dz 2
(A2)

d*w (d — 5N m €t

NZ—— + + _ —(d=3)z/2° 4 ~_
dz2 < 2 (=3 PR
_me 2 _ 2d_W=(d_3) 2 _
Y@= - 1) ) = )

(A3)

where the metric function o has been eliminated by using
(10). The function N is given by (6), namely, as N = 1 —
2o =31 2(2) + €7/ €2

To devise a proof for the nonexistence of finite mass
solutions of the above system, it is convenient to introduce
the function
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| _sdw\2 (d—3)
E=— - — 2_12
2N<dz> TR

(A4)

which, from (A2) and (A3) satisfies the equation

dE dw\2(T; __ e m (g
= (25 [Ze2E+ - 4+ Z(d — 3)e @ 3Y2),
dz <dZ><Ke €2 K( Je

(A5)

The relations in Appendix B of Ref. [11] are recovered for
d = 5, where a nonexistence proof is presented for parti-
clelike solutions with finite mass (the extension to the
black hole case is considered in [51]). Therefore, in what
follows we will take d > 5 only.

The approximate form of the function FE at the origin (or
event horizon) and infinity is found by taking P =1 in
relations (26), (27), and (29) given in Sec. III and replacing
in (A4). It is obvious that E(r,) <0, since N(r;,) = 0; at
the same time, the corresponding expression as » — 0 (i.e.
77— —OO) is

E = ;1‘(5 —d)b*e* + ..., (A6)
and we find £ — —0 in this limit.

Also, the relations (26) and (27) give m(r = 0) >0,
m(rj,) > 0, which, together with the Eq. (A2) implies that
the mass function m(r) is positive definite.

Besides, by replacing in (A4) the asymptotic expressions
(29) as r — oo it follows that

Wi =3? ap
802

1
+ gw%(d —3)d—5e @I+,

E

(A7)

i.e. E— +0 as z — oo, for finite mass solutions.
Therefore, if the solution is regular everywhere, E must
vanish at some finite point z;, and dE/dz = 0 there, with
E > 0 for z > z (when there are several positive roots of
E, we take the largest one). However, another point should
exist z; > zo such that dE/dz = 0 i.e. the function E
should present a positive maximum for some value of z.
Now we integrate the Eq. (A5) between z; and z; and find

r(dw\2 (T _ et
E(z)=—f‘(—) <—e B+l
! n\dz) \ k €2

+ 2 d - 3)e—<d—3>z/2>dz <0, (A8)
K

which contradicts E(z;) > 0. Therefore E(z) should vanish
identically and one finds no d > 5 finite mass, spherically
symmetric EYM configurations in a F(2) theory. Note that
this argument does not exclude the existence of configura-
tion with a diverging mass functions as r — 0.
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APPENDIX B: A MATTER COUNTERTERM
PROPOSAL

In this section we comment on the issue of mass defini-
tion of AAdS solutions in a F(2)* (i.e. p = 1) theory, if we
do not exercise the option of employing higher order YM
curvature terms. As proven in Sec. II, although the space-
time is still AAdS, the mass function m(r) of these solu-
tions generically diverges as ¢~ (or as logr for d = 5).
AAdS solutions with a diverging ADM mass have been
considered recently by some authors, mainly for a scalar
field in the bulk (see e.g. [52—57]. In this case it might be
possible to relax the standard asymptotic conditions with-
out loosing the original symmetries, but modifying the
charges in order to take into account the presence of matter
fields.

Similar to the case of scalar field, for d > 5 it is still
possible to obtain a finite mass of EYM solutions in a F?
theory by allowing I, to depend not only on the boundary
metric /4, but also on the gauge field strength tensor. This
means that the quasilocal stress-energy tensor (40) also
acquires a contribution coming from the matter fields.

We find that by adding a counterterm of the form

1
I(m) = —

d? ' xN—htF g FAP
T @) Ja T

(BI)
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to the expression (39), the divergence disappears. This
yields a supplementary contribution to (40)

1 1
TAB = — % mhAB trFCDFCD.

(B2)

The mass of the d > 5 solutions computed in this way is

_(d—=2)Q4,
87G

E My + E, (B3)

where M, is the constant appearing in the asymptotic
expansion (16). It can also be proven that this prescription
leads to a finite action and the entropy-area relation is
satisfied. However, as seen in Fig. 2, the parameter M|, of
the p = 1 solutions takes negative values, pointing to some
pathological properties.

It would be nice to have a rigorous derivation of the
matter counterterm expression, possibly along the lines of
Ref. [58]. Also, there remains the issue of the d =5
solutions, whose logarithmic divergences require a differ-
ent approach.
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