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We study a particular supersymmetric realization of the Peccei-Quinn symmetry which provides a
suitable candidate for the curvaton field. The class of models considered also solves the � problem, while
generating the Peccei-Quinn scale dynamically. The curvaton candidate is a pseudo-Nambu-Goldstone
boson corresponding to an angular degree of freedom orthogonal to the axion field. Its order parameter
increases substantially following a phase transition during inflation. This results in a drastic amplification
of the curvaton perturbations. Consequently, the mechanism is able to accommodate low-scale inflation
with Hubble parameter at the TeV scale. Hence, we investigate modular inflation using a string axion field
as the inflaton with inflation scale determined by gravity mediated soft supersymmetry breaking. We find
that modular inflation with the orthogonal axion as curvaton can indeed account for the observations for
natural values of the parameters.
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I. INTRODUCTION

The past decade experienced a plethora of precise cos-
mological observations. These observations have con-
firmed the basic predictions of inflation rendering the
latter an essential extension of the hot big bang model.
Precision cosmology upgraded inflation model building at
the next level, that of the design of complex realistic
models (in contrast to early single-field fine-tuned infla-
tionary models). These models utilize and reflect the rich
content of particle theory. A first such attempt was the
well-known hybrid inflation model [1–3], which couples
the inflaton field with the Higgs field of a grand unified
theory (GUT). In this way, hybrid inflation dispenses with a
number of tuning problems, which plagued most simplistic
single-field inflation models.

In the same spirit, curvaton models [4–6] (see also [7])
use a second field to generate curvature perturbations. This
curvaton field is not an ad hoc degree of freedom intro-
duced by hand, but, instead, it is [8–10] a realistic field
already present in simple extensions of the standard model
(SM). In the context of the curvaton, inflation model
building is substantially liberated [11,12] allowing for
more realistic and less fine-tuned models.

A particular advantage of inflation model building in the
context of the curvaton mechanism is that it is possible to
construct [11,13] models with inflationary energy scale
much lower than the GUT scale. In this spirit, we inves-
tigate, in this paper, the possibility of using a string axion
field as the inflaton.

The nature and origin of the inflaton field are still open
questions in inflation model building. Typically, what is
required is a light field with suppressed interactions with
other fields including those of the SM. By ‘‘light,’’ we
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mean a field whose effective mass is smaller than the
Hubble parameter H� at the time when the cosmological
scales exit the horizon during inflation. This guarantees
that inflation lasts long enough to encompass the cosmo-
logical scales. The interactions of this field have to be
suppressed in order not to lift the flatness of the scalar
potential along the inflationary trajectory.

However, the case of slow-roll inflation (i.e. the case
with inflaton mass� H�) suffers from the fact that, typi-
cally, supergravity (SUGRA) introduces [2,14] corrections
to the inflaton mass of order H� during the inflationary
period. To keep the inflaton mass under control, one may
use as inflaton a pseudo-Nambu-Goldstone boson (PNGB)
field, since the flatness of the potential of such a field is
protected by a global U�1� symmetry. Promising such
candidates are [15] the string axions, which are the imagi-
nary parts of string moduli fields with the flatness of their
potential lifted only by (soft) supersymmetry (SUSY)
breaking. This results in inflaton masses of order H�.
Hence, such modular inflation is of the fast-roll type
[16]. Fast-roll inflation lasts only a limited number of e-
foldings, which, however, can be enough to solve the
horizon and flatness problems.

The inflationary energy scale, in this model, is much
lower than the GUT scale. As a result, the perturbations of
the inflaton field are not sufficiently large to account for the
observations. Consequently, a curvaton field is necessary to
provide the observed curvature perturbation. However,
even the curvaton cannot [17] generically help us to reduce
the inflationary scale to energies low enough for modular
inflation. This is possible only in certain curvaton models
which amplify [13,18] additionally the curvaton perturba-
tions. We describe in detail such a model belonging to a
class of SUSY realizations of the Peccei-Quinn (PQ) sym-
metry [19], which also solves the strong CP and � prob-
lems. We use as curvaton an angular degree of freedom
orthogonal to the QCD axion.
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Our paper is structured as follows. In Sec. II, we present
a brief outline of modular inflation. In Sec. III, we analyze
the amplification mechanism for the curvature perturba-
tions due to a PNGB curvaton with varying order parame-
ter. In Sec. IV, we investigate whether it is possible to
employ in the role of such a PNGB curvaton an angular
degree of freedom orthogonal to the QCD axion (‘‘orthogo-
nal axion’’) in SUSY theories. We show that the simplest
constructions using two PQ superfields cannot work be-
cause the orthogonal axion is not appropriately light during
inflation. In Sec. V, we construct in detail an appropriate
class of PQ models involving three SM singlet superfields,
only two of which carry PQ charges. In Sec. VI, we study
in detail the characteristics of the scalar potential in the
above class of curvaton models. In Sec. VII, we focus on
curvaton physics and derive a number of important con-
straints necessary for the model to be a successful curvaton
model. In Sec. VIII, we quantify our findings in a concrete
example of this class of models. We find that this concrete
model can indeed work for natural values of the model
parameters. Finally, in Sec. IX, we discuss our results and
present our conclusions. Throughout the paper, we use
natural units, where c � @ � 1 and the Newton’s gravita-
tional constant is G � 8�M�2

P with MP ’ 2:44�
1018 GeV being the reduced Planck mass.
II. MODULAR INFLATION

String theory, in general, contains a number of moduli
fields �i, whose tree-level Kähler potential, in 4-
dimensional effective SUGRA, is of the form

K � �M2
P

X
i

ln���i 	��i �=MP
: (1)

Hence, the Kähler potential is flat in the directions of the
imaginary parts of the moduli Im��i�. The same is true for
the F-term scalar potential VF, despite the fact that the
superpotential may receive nonperturbative contributions
(e.g. from gaugino condensation) of the form

�W��i� � �3 exp���i�i=MP�; (2)

since VF turns out to be independent of the phase of �W.
The mass parameter � in Eq. (2) is usually taken to be the
string scale and the �i’s are model-dependent coefficients
of order unity. The Im��i� fields are periodic (by modular
invariance)

Im ��i� � Im��i� 	 2�fi; (3)

where fi �MP. This is why the Im��i� fields are also
called string axions.

In compactified heterotic string theory, these axions
correspond [20], in fact, to the massless modes of the
second-rank antisymmetric tensor field B:

B � b��dx
� ^ dx� 	 bI!

I
���dy

� ^ dy��; (4)
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where x� are the coordinates in the usual 4-dimensional
space, y� the complex coordinates in the compactified
extra-dimensional space, and !I

��� harmonic (1,1) forms
parametrizing the geometry of the compactified space [21].
The usual 4-dimensional components b�� of B correspond
to the so-called model-independent axion, while the extra-
dimensional components bI of B correspond to the so-
called model-dependent axions.

The flatness of the string axion potential is lifted only by
soft SUSY breaking, which tilts the vacuum manifold by
an amount determined by the SUSY-breaking scale. One
can consider [15] that it is this potential that provides the
vacuum energy density necessary for inflation. Assuming
gravity mediated soft SUSY breaking, the inflationary
potential V� at the time when the cosmological scales
exit the horizon is of intermediate scale:

V1=4
� �

�����������������
m3=2MP

q
� 1010:5 GeV (5)

for which H� �m3=2, where m3=2 � 1 TeV stands for the
gravitino mass. The inflationary potential is of the form

V�s� � Vm �
1
2m

2
ss

2 	 
 
 
 ; (6)

where the ellipsis denotes terms which are expected to
stabilize the potential at s�MP with s being the canoni-
cally normalized string axion. Therefore, in the above
formula, we have

Vm � �m3=2MP�
2 and ms �m3=2: (7)

This inflation model results in fast-roll inflation, where

s � si exp�Fs�N� with Fs �
3

2
�
��������������������
1	 4c=9

p
� 1�;

c �
�
ms

H�

�
2
� 1:

(8)

Here, �N is the number of the elapsed e-foldings and si the
initial value of the inflaton field s. From the above, one can
obtain the inflation potential N e-foldings before the end of
inflation as

V�N� ’ Vm�1� e
�2FsN�: (9)

Even though fast-roll, modular inflation keeps the
Hubble parameter H rather rigid. Indeed, it can be easily
shown that

� �
1

2
c2

�
s
MP

�
2
� 1; (10)

because c� 1 and s� MP during inflation with � being
one of the so-called slow-roll parameters defined as

� � �
_H

H2 ; (11)

where the dot denotes derivative with respect to the cosmic
time.
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For modular inflation, the initial conditions for the in-
flaton field are determined by the quantum fluctuations
which send the field off the top of the potential hill.
Hence, we expect that the initial value for the inflaton is

si ’
Hm

2�
; (12)

where Hm ’
�������
Vm

p
=
���
3
p
MP.

Using the above and considering that the final value of s
is close to its vacuum expectation value (VEV) sVEV �MP,
we can estimate, through the use of Eq. (8), the total
number of e-foldings as

Ntot ’
1

Fs
ln
�
MP

m3=2

�
; (13)

where we took into account that

Hm �m3=2: (14)

Inflation at such a low energy scale as in Eq. (7) can
provide the required amplitude for the curvature perturba-
tions only through the use of a special kind of curvaton
field, whose perturbations are amplified during inflation. In
the following, we describe the mechanism for such
amplification.
III. AMPLIFYING THE CURVATON
PERTURBATIONS

We discuss here the case of an axionlike curvaton, i.e. a
PNGB. Examples of such a curvaton can be found in
Refs. [9,10]. However, in contrast to those works, we
consider a PNGB curvaton whose order parameter has
[13,18] a different (larger) expectation value in the vacuum
than during inflation and, in particular, when the cosmo-
logical scales exit the horizon. Thus, the potential for the
real canonically normalized curvaton field � is

V��� � �v ~m��
2

�
1� cos

�
�
v

��
) V�j�j � v� ’

1

2
~m2
��2;

(15)

where v � v�t� is the order parameter of the PNGB (de-
termined by the values of the radial fields in the model)
with t being the cosmic time and ~m� � ~m��v� is the mass
of the curvaton at a given moment. In the true vacuum, we
have v � v0 and ~m� � m� with v0 andm� being the order
parameter and the mass of the PNGB curvaton in the
vacuum, respectively.

Note that, in principle, the PNGB does not need to have
an exact sinusoidal potential. Instead, one could substitute
�1� cos��=v�
 by f��=v�, where f is a periodic function
of period 2� with a global minimum at the origin and
f�0� � 0. Then, generically, the second (approximate)
equality in Eq. (15) continues to be valid if � is close
enough to the global minimum [23].
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A. The amplification factor

In this section, we will demonstrate that the curvaton
perturbations can be amplified by the nontrivial evolution
of its order parameter v if the curvaton is a PNGB. This
mechanism was first presented in Ref. [13] (see also
Ref. [18]).

We begin by using the fact that, on a foliage of spacetime
corresponding to spatially flat hypersurfaces, the curvature
perturbation attributed to each of the universe components
(labeled by the index i) is given by [25]

�i � �H
	
i

_
i
; (16)

where 
i and 	
i are, respectively, the energy density and
its perturbation of the component in question.

The total curvature perturbation ��t�, which is also given
by Eq. (16) with 
i and 	
i replaced, respectively, by the
total energy density of the universe 
 �

P
i
i and its

perturbation 	
, may be calculated as follows. Using the
fact that 	
 �

P
i	
i and the continuity equation _
i �

�3H�
i 	 pi�, where pi is the pressure of the ith compo-
nent of the universe, it is easy to find that

� �
X
i


i 	 pi

	 p

�i; (17)

where p �
P
ipi is the total pressure. Now, since in the

curvaton scenario, all contributions to the curvature per-
turbation other than the curvaton’s are negligible, we find
that

� � ��

�
1	 w�
1	 w

�
dec


�



��������dec
; (18)

where � ’ 2� 10�5 is the curvature perturbation observed
by the cosmic microwave background explorer [26], w�
and w are the curvaton and the overall barotropic parame-
ters, respectively (with wi � pi=
i) and �� is the partial
curvature perturbation of the curvaton. The right-hand side
(RHS) of this equation is evaluated at the time when the
curvaton decays and this is indicated by the subscript
‘‘dec.’’ This decay occurs after the end of inflation in which
case Eq. (18) gives

� ��dec��; (19)

where �dec is the ratio of the curvaton energy density to the
total energy density of the universe at the time of the decay
of the curvaton:

�dec �

�



��������dec
� 1: (20)

From the bound [27] on the possible non-Gaussian com-
ponent of the curvature perturbation from the recent cos-
mic microwave background radiation (CMBR) data
obtained by the Wilkinson microwave anisotropy probe
(WMAP) satellite, one finds [25] that, at 95% confidence
-3
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FIG. 1 (color online). Schematic representation of the ampli-
fication of the PNGB curvaton perturbation when the order
parameter v increases from the value it has when the cosmo-
logical scales exit the horizon v� � "v0 to its vacuum value v0.
V is the potential of a fiducial complex field � parametrizing the
growth of the order parameter such that v=

���
2
p
� j�j. The phase

� of � corresponds to the PNGB degree of freedom � (i.e. � �
�=v). The perturbation in � at horizon crossing has amplitude
	�� �H�, which corresponds to a phase perturbation of mag-
nitude 	� � 	��=v�. As the order parameter grows, 	� remains
constant (the phase perturbation is frozen on superhorizon
scales) but the amplitude of the curvaton perturbation is in-
creased up to 	�� "�1H�.
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level (C.L.),

10�2 & �dec � 1: (21)

The partial curvature perturbation of the curvaton when the
latter oscillates in a quadratic potential [cf. Eq. (15)] is
given [24] by

�� �
2

3

	�
�

��������dec
�
	�
�

��������osc
; (22)

where ‘‘osc’’ denotes the time when the curvaton oscilla-
tions begin.

In this paper, we assume that the Hubble parameter
during inflation is comparable to the (tachyonic) masses
that the radial fields which determine the value of the order
parameter of the PNGB acquire after inflation. This means
that the evolution of the curvaton’s order parameter v
ceases at (or soon after) the end of inflation. Therefore,
at the end of inflation, v! v0 and the mass of the curvaton
assumes its vacuum value m�. Hence, in the following, we
assume that the curvaton mass has already assumed its
vacuum value before the onset of the curvaton oscillations.
Consequently, the curvaton oscillations begin when

Hosc ’
1���
3
p m�: (23)

Before the oscillations begin, the phase corresponding to
the curvaton degree of freedom is overdamped and remains
frozen. More precisely, this means that

�osc ’ ��; 	�osc ’ 	��; (24)

where the subscript star denotes the values of quantities at
the time when the cosmological scales exit the horizon
during inflation,

� �
�
v

(25)

with � 2 ���;�
 and 	� is its perturbation. Hence, for the
curvaton partial perturbation, we find

	�
�

��������osc
�
	�
�

��������osc
’
	�
�

����������
	�
�

���������: (26)

Now, for the perturbation of the curvaton, we have

	�� �
H�
2�

: (27)

We assume that the order parameter of the PNGB during
inflation is smaller compared to its value in the vacuum by
a factor

" �
v�
v0
� 1: (28)

Combining Eqs. (24)–(28), we find that

	�osc ’
H�

2�"
; (29)
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which means that after the end of inflation, when v as-
sumes its vacuum value, the curvaton perturbation is
amplified by a factor "�1 (see Fig. 1). From Eqs. (19)
and (22), we have

�osc �
�dec

�
	�osc: (30)

Using Eq. (29), we can recast the above as

�osc �
H��dec

�"�
: (31)

We may obtain a lower bound on " as follows:

	��
��
� 1) " � "min �

H�
2�v0

; (32)

where we have used Eqs. (26) and (29) and that �osc & v0.

B. The bounds on the inflationary scale

As shown in Ref. [13], in the case when the curvaton
oscillations begin after the order parameter of the PNGB
has attained its vacuum value, we have
-4
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H� ����2=5�
dec

�
H�

minfm�;�infg

�
1=5
��"��4=5

�

�
maxfHdom;��g

HBBN

�
1=5
�M3

PT
2
BBN�

1=5; (33)

or equivalently (using V1=4
� ’

���������������������
31=2H�MP

q
)

V1=4
� ����1=5�

dec

�
H�

minfm�;�infg

�
1=10
��"��2=5

�

�
maxfHdom;��g

HBBN

�
1=10
�M4

PTBBN�
1=5; (34)

where �inf and �� are the decay rates of the inflaton and the
curvaton fields, respectively, Hdom is the Hubble parameter
at the time when the curvaton energy density dominates the
universe (if the curvaton does not decay earlier), and
HBBN � ��=3�

������������������
gBBN=10

p
�T2

BBN=MP� and TBBN � 1 MeV
are, respectively, the Hubble parameter and the cosmic
temperature at the time of big bang nucleosynthesis
(BBN) with gBBN � 10:75 being the effective number of
relativistic degrees of freedom at that time.

Now, we require that the curvaton field decays before
BBN, i.e. �� > HBBN. We also have �inf � H�. Hence,
Eqs. (33) and (34) provide the following bounds:

H� >���2=5�
dec ��"��4=5�M3

PT
2
BBN�

1=5

�

�
"2

�dec

�
2=5
� 107 GeV (35)

and

V1=4
� >���1=5�

dec ��"��2=5�M4
PTBBN�

1=5

�

�
"2

�dec

�
1=5
� 1012 GeV: (36)

Furthermore, we also note that, generically,

�� �
m3
�

M2
P

; (37)

where the equality corresponds to gravitational decay. The
above can be shown [13] to imply that

H� � ��1
dec��"��

2MP

�
m�

H�

��
max

�
1;
m�

�inf

��
1=2
; (38)

which results in the bounds

H� � ��1
dec��"��

2MP

�
m�

H�

�
�

�
"2

�dec

��
m�

H�

�
� 1010 GeV

(39)

and
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V1=4
� � ���1=2�

dec ��"��MP

�
m�

H�

�
1=2

�

�
"2

�dec

�
1=2
�
m�

H�

�
1=2
� 1014 GeV: (40)

These bounds may be relaxed if " is small enough. For a
PNGB curvaton, in particular, we may have m� � H�,
which also relaxes the bounds in Eqs. (39) and (40).
However, in our case, m� �H� (see below). Comparing
the bounds in Eqs. (35) and (36) with those in Eqs. (39) and
(40), respectively, we find that the first set of bounds is
more stringent if

" <
1

���1=2
dec

�
TBBN

MP

�
1=3
�
H�
m�

�
5=6
� 10�3���1=2�

dec

�
H�
m�

�
5=6
:

(41)

Thus, for "� 1, the second set of bounds is typically less
stringent than the first one.

From Eqs. (32) and (36) and after a little algebra, it is
easy to get

V1=4
� �

�
MP

v0

�
2
10�13 GeV) H� �

�
MP

v0

�
4
10�44 GeV;

(42)

which means that, in principle, the larger v0 is the smaller
V1=4
� can become.

C. Scale invariance requirement

The evolution of the order parameter v�t� during infla-
tion is subject to an important constraint which has to do
with preserving the scale invariance of the spectrum of the
curvature perturbations.

The amplitude of the curvature perturbation is deter-
mined by the magnitude of the perturbation in the curvaton
field, which, in this scenario, apart from the scale of H� is
also determined by the amplification factor "�1. The latter
is determined by the value of the order parameter v� when
the curvaton quantum fluctuations exit the horizon during
inflation. A strong variation of v�t� at that time results in a
strong dependence of "�k� on the comoving momentum
scale k, which would reflect itself on the perturbation
spectrum threatening significant departure from scale
invariance.

In Ref. [13], it was shown that, in order for this to be
avoided, the rate of change of the order parameter must be
constrained as ��������

�
_v
v

�
�

��������� H�: (43)

From the above, it is evident that, in order not to violate the
observational constraints regarding the scale invariance of
the curvature perturbation spectrum, the order parameter
must either remain constant or, at most, have a very slow
variation when the cosmological scales exit the horizon
-5
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[28]. However, this cannot remain so indefinitely because
we need v0 � v� to have substantial amplification of the
perturbation (i.e. "� 1). Consequently, v has to increase
dramatically at some point after the exit of the cosmologi-
cal scales from the inflationary horizon. This requirement
is crucial for model building.

In this paper, we will show that the evolution of v begins
at a phase transition during inflation, as presented in
Ref. [18]. Initially, the growth of v is very slow, but later,
near the end of inflation, v grows substantially until it
reaches its vacuum value v0.
IV. CAN WE CONSTRUCT A PQ MODEL WITH A
PNGB CURVATON?

We will now address the question whether we can con-
struct a PQ model [19] which, in addition to the standard
axion, contains another axionlike field with the right prop-
erties to play the role of a PNGB curvaton as discussed in
the previous section. It is well known that, in the SUGRA
extension of the minimal supersymmetric standard model
(MSSM), there exist certain D- and F-flat directions in field
space which can generate intermediate scales

MI � �m3=2M
n
P�

1=�n	1�; (44)

where n is a positive integer. It seems natural to try to
identify MI with the symmetry breaking scale fa of the PQ
symmetry U�1�PQ, such that a � term is generated with
�� fn	1

a =Mn
P �m3=2 [29]. This would simultaneously

resolve the strong CP and � problems of MSSM.
The resolution of the � problem forces us to consider

nonrenormalizable superpotential terms such as


Pn	1h1h2=M
n
P; (45)

where 
 is a dimensionless parameter, P is a SM singlet
superfield and h1, h2 are the electroweak Higgs doublets.
The fact that the PQ symmetry carries QCD anomalies
implies that the combination h1h2 must have a nonzero PQ
charge as one can easily deduce from the Yukawa cou-
plings of the quarks. The field P must then necessarily
carry a nonzero PQ charge. So, if it acquires a VEVof order
MI, the PQ symmetry breaks spontaneously and a � term
of the right magnitude is generated via the superpotential
term in Eq. (45).

However, the field P has no self-couplings due to its
nonzero PQ charge. Moreover, its couplings to the MSSM
fields involve at least two of them since there are no SM
singlets in MSSM. As a consequence, before the electro-
weak symmetry breaking, P has a flat potential. To lift the
flatness of its potential and generate an intermediate VEV
for P of the order ofMI in Eq. (44), we must introduce [30–
32] a second SM singlet superfield Q with nonzero PQ
charge having a coupling of the type

�Pn	3�kQk=Mn
P; (46)
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where � is a dimensionless coupling constant and k is a
positive integer smaller than n	 3. The superpotential
term in Eq. (46) determines the PQ charge of Q.

After soft SUSY breaking, we obtain the following
scalar potential for the spontaneous breaking of the PQ
symmetry:

V � j�j2��n	 3� k�2jQj2 	 k2jPj2

��������P

n	2�kQk�1

Mn
P

��������
2

	m2
PjPj

2 	m2
QjQj

2 	

�
A�

Pn	3�kQk

Mn
P

	 H:c:
�
;

(47)

where m2
P, m2

Q �m
2
3=2 and can have either sign, while A is

a complex parameter with magnitude of order m3=2. For
large enough jAjj�j, this potential possesses nontrivial
(local) minima at

jPj; jQj � �m3=2Mn
P�

1=�n	1� (48)

even if m2
P, m2

Q are positive since the last term in the RHS
of Eq. (47) can be adequately negative. We see that here
the PQ scale fa is generated dynamically and is not in-
serted by hand as in the PQ schemes with renormalizable
interactions.

In order to implement our scenario, we need a valley of
local minima of the potential (with respect to the direction
perpendicular to the valley) which has negative inclination.
Along this valley, the fields jPj and jQj must take values
which are much smaller than their vacuum values. If the
system happens to slowly roll down this valley during the
relevant part of inflation, the order parameter v of the
PNGB remains, during inflation, much smaller than its
vacuum value v0 and our amplification mechanism for
the curvaton perturbations may work. This can be achieved
only if one of the masses-squared m2

P, m2
Q is negative. Let

us assume, for definiteness, thatm2
P < 0 andm2

Q > 0. Note,
however, that the following discussion applies equally well
to the opposite case too, where m2

P > 0 and m2
Q < 0. In the

case under consideration, the scalar potential is [32] un-
bounded below on the P axis (i.e. for Q � 0) unless k � 1
since, for k > 1, all the terms in the RHS of Eq. (47) vanish
on the P axis except the negative mass term of P. So, we
restrict ourselves to the case k � 1.

During inflation, m2
P, m2

Q acquire [2,14,33] SUGRA
corrections of order H2 which are assumed to be positive.
Also, A receives SUGRA corrections of order H. As al-
ready mentioned, the Hubble parameter during inflation is,
in our case, of order m3=2. So, in the initial stages of
inflation, the effective mass-squared of P after SUGRA
corrections, which we will call �m2

P, can be positive. In this
case, the origin in field space becomes a local minimum
and the system may be initially trapped there. As H gradu-
ally decreases during inflation, �m2

P becomes negative and
the system starts slowly rolling down in the P direction.
-6
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For nonzero P, the last term in the RHS of Eq. (47) yields a
linear term in Q (recall that k � 1) and, thus, Q is also
shifted from zero. More precisely, we get

jQj �
jPjn	1

m3=2Mn
P

jPj � jPj: (49)

The last term in the RHS of Eq. (47) then yields

�2j �Ajj�j
jPjn	2jQj
Mn

P

cos
�
�n	 2��P���

2
p
jPj

	
�Q���
2
p
jQj

�
; (50)

where �P and �Q are canonically normalized real fields
corresponding to the phases ofP andQ, respectively, and �A
is the effective A after SUGRA corrections. Note that, in
deriving Eq. (50), the fields P and Q were appropriately
rephased so that the product �A� is negative. This is a
convenient choice since, in this case, the expression in
the above equation is minimized when the argument of
the cosine vanishes. The orthogonal axion direction, which
we would like to use as a PNGB curvaton, corresponds to
the canonically normalized real field

�n	 2�jQj�P 	 jPj�Q�����������������������������������������
�n	 2�2jQj2 	 jPj2

p : (51)

Its mass-squared can be evaluated from the term in
Eq. (50), which, in view of Eq. (49), yields

j �Ajj�jjPjn	2

Mn
PjQj

�m2
3=2: (52)

So, the mass of the orthogonal axion during inflation is of
order m3=2, which is comparable to the inflationary Hubble
parameter. Consequently, this field does not qualify as a
curvaton, because it cannot obtain a superhorizon spectrum
of perturbations. In conclusion, we have seen that our
scenario cannot be realized within extensions of the
MSSM with a PQ symmetry which contain only two SM
singlet superfields.

The addition of a third SM singlet superfield S, however,
can drastically change the situation allowing the imple-
mentation of our mechanism. We could keep the masses-
squared of P and Q positive and include a superpotential
term of the type in Eq. (46) with any value of the integer k
between unity and n	 2. In this case, as already men-
tioned, the potential for P and Q (with S � 0) can possess
nontrivial minima at jPj and jQj given by Eq. (48). Now,
we introduce an extra superpotential term of the type

�qPn	3�p�qQpSq=Mn
P; (53)

where p, q are non-negative integers with p	 q � n	 3
and q � 3. This term determines the PQ charge of S. Of
course, we should keep in mind that all possible terms
involving P, Q, and S that satisfy the global symmetries
(including R symmetries) of the terms in Eqs. (46) and (53)
should be present in the superpotential. We assume that the
term in Eq. (53) is the term of this type with the smallest
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power of S. We take the mass-squared of S negative. Then,
for small values of S, we obtain a valley of minima with
negative inclination at almost constant values of jPj and
jQj given by Eq. (48).

If the system slowly rolls down this valley during in-
flation, the A-term corresponding to the coupling in
Eq. (46) generates a mass term for the canonically normal-
ized field

�n	 3� k�jQj�P 	 kjPj�Q�������������������������������������������������������
�n	 3� k�2jQj2 	 k2jPj2

p (54)

with mass-squared of order m2
3=2. This is easily shown by

repeating the argument which led to Eqs. (51) and (52).
The A-term corresponding to the coupling in Eq. (53)
yields

� 2j �Ajj�qj
jPjn	3�p�qjQjpjSjq

Mn
P

� cos
�
�n	 3� p� q��P���

2
p
jPj

	
p�Q���
2
p
jQj
	

q�S���
2
p
jSj

�
; (55)

where �S is a canonically normalized real scalar field
corresponding to the phase of S and �A�q was taken nega-
tive by rephasing S. This generates a ‘‘mass term’’ for the
canonically normalized field

�n	 3� p� q�jQjjSj�P 	 pjPjjSj�Q 	 qjPjjQj�S�������������������������������������������������������������������������������������������������������������
�n	 3� p� q�2jQj2jSj2 	 p2jPj2jSj2 	 q2jPj2jQj2

p
(56)

with ‘‘mass-squared’’

q2j �Ajj�qjjPjn	3�p�qjQjpjSjq�2

Mn
P

�m2
3=2

�
jSj
jPj

�
q�2

(57)

for jSj � jPj � jQj (we use quotation marks to indicate
that the ‘‘mass term’’ and ‘‘mass-squared’’ do not neces-
sarily correspond to a mass eigenstate). We see that, for
q � 3, this ‘‘mass-squared’’ is suppressed relative to m2

3=2.
Superpotential terms with higher powers of S obviously
give even more suppressed ‘‘masses-squared.’’ So, the
linear combination of �P, �Q, and �S which is orthogonal
to the combination in Eq. (54) and the axion direction has
mass-squared much smaller than m2

3=2 during inflation and
can be used as PNGB curvaton. It is though important to
make sure that at least one of the three terms Sn	3=Mn

P,
Sn	2P=Mn

P, and Sn	2Q=Mn
P is allowed in the superpoten-

tial, since otherwise the potential will be unbounded below
on the S axis. In the next section, we will present a concrete
class of models of this category.
V. PQ MODELS WITH AN AXIONLIKE CURVATON

We consider a class of simple extensions of MSSM
which are based on the SM gauge group GSM, but also
possess two continuous global U�1� symmetries, namely, a
-7
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PQ symmetry U�1�PQ and a R symmetry U�1�R, and a
discrete ZP2 symmetry. In addition to the usual MSSM
left-handed superfields h1, h2 [Higgs SU�2�L doublets], li
[SU�2�L doublet leptons], eci [SU�2�L singlet charged lep-
tons], qi [SU�2�L doublet quarks], and uci , d

c
i [SU�2�L

singlet antiquarks] with i � 1; 2; 3 being the family index,
the models also contain the SM singlet left-handed super-
fields P, Q, and S. The charges of the superfields under
U�1�PQ and U�1�R are

PQ : P��2�; Q�2�; S�0�; h1; h2�n	 1�;

R: P
�
n	 3

2

�
; Q
�
n� 1

2

�
; S
�
n	 1

2

�
; h1; h2�0�

(58)

with the ‘‘matter’’ (quark and lepton) superfields having
PQ � ��n	 1�=2, R � �n	 1��n	 3�=4. The integer n
is taken to be of the form

n � 4l	 1; (59)

where l � 0; 1; 2; . . . is any non-negative integer providing
a numbering of the models in this class (see Sec. VI B), and
the charges are normalized so that they take their abso-
lutely smallest possible integer values. Finally, under the
ZP2 symmetry, P changes sign.

The most general superpotential compatible with these
symmetries is

W � yeij�lih1�ecj 	 yuij�qih2�ucj 	 ydij�qih1�dcj

	 
Pn	1�h1h2�=Mn
P 	

X�n	3�=4

k�0


kSn	3�4k�PQ�2k=Mn
P;

(60)

where yeij, yuij, ydij are the usual Yukawa coupling con-
stants, 
, 
k are complex dimensionless parameters, �XY�
indicates the SU�2�L invariant product �abXaYb with �
denoting the 2� 2 antisymmetric matrix with �12 � 1,
and summation over the family indices is implied. The R
charge of W is �n	 1��n	 3�=2. Baryon number is auto-
matically conserved to all orders in perturbation theory as a
consequence of the R symmetry. The reason is [34] that the
R charge of any combination of three color triplet or
antitriplet superfields exceeds the R charge of W and there
are no superfields with negative R charge to compensate.
Note that the Z2 subgroup of U�1�PQ coincides with the
discrete matter parity symmetry (denoted by Zmp

2 ), which
changes the sign of all matter superfields. It is obvious that
the superpotential in Eq. (60) also conserves lepton num-
ber, which is a consequence of both the R and the PQ
symmetry.

Note that the superpotential in Eq. (60) is of the same
type as the superpotential which has been considered in
Ref. [10]. The main difference is that here the discrete Zn	3

symmetry of Ref. [10] is replaced by a much more power-
ful continuous U�1� R symmetry and, also, that an extra
discrete ZP2 symmetry is added. Moreover, in contrast to
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Ref. [10], we include here all the superpotential terms
which are compatible with the symmetries of the model.
In this sense, the superpotential in Eq. (60) is a completely
natural superpotential. It should be emphasized that con-
tinuous global symmetries such as the U�1�R or the U�1�PQ

symmetry used here, rather than being imposed, can arise
in a natural manner from an underlying superstring theory.
Indeed, as it was pointed out in Ref. [35], discrete symme-
tries (including R symmetries) that typically arise after
compactification could effectively behave as if they are
continuous.

To see that the above superpotential has the most general
form allowed by the symmetries, observe that, due to
matter parity, any term in W must contain an even number
of matter superfields. Actually, we may have either no or
two matter fields since higher combinations carry R charge
larger than that of W. The possible combinations of two
matter fields are of the type ll, ecec, lec, quc, and qdc (from
color conservation) and have the R charge ofW. So, we can
multiply them only by superfields of zero R charge, i.e. h1,
h2, and Q in the case n � 1. However, multiplying ll, ecec

just by Q’s, we cannot compensate their nonzero weak
hypercharge. We need to multiply them at least once by
h1 or h2. Indeed, the weak hypercharge of ll (ecec) is
compensated if we take the combination llh2h2

(ecech1h1h1h1) whose PQ charge is n	 1�3�n	 1��,
which could only be canceled by including P’s, the only
superfields with negative PQ charge. This is though not
allowed by R symmetry. So, the only matter field bilinears
which are allowed are quc, qdc, and lec, which conserve
lepton number. Actually, to cancel all the SM quantum
numbers and the PQ charge, we must take the combina-
tions �qh2�u

c, �qh1�d
c, and �lh1�e

c. No further superfields
can be included in these combinations since, by U�1�PQ, we
could only include the combination PQ, which has though
positive R charge. In conclusion, we see that the only
superpotential terms involving matter superfields which
can be present are the usual Yukawa couplings.

We still have to consider superpotential terms with no
matter superfields. If such terms involve h1, h2, these
superfield must enter through the combination �h1h2�
which is neutral under both SU�2�L and U�1�Y . To cancel
the PQ charge, we must then take Pn	1�h1h2�. To retain the
U�1�R symmetry, we could multiply this only by the com-
bination PQ, which has PQ � 0. However, the R charge of
Pn	1�h1h2� is already equal to the R charge of W and PQ
has positive R charge. So, Pn	1�h1h2� is the only allowed
term which involves Higgs but no matter superfields. We
are left to consider combinations which involve only SM
singlet superfields. The PQ symmetry allows only the
combinations Sp�PQ�q, where p and q are non-negative
integers. The R charge of PQ (S) is n	 1 (�n	 1�=2),
which implies that the term Sn	3 can be present in the
superpotential. Note that the combination PQ has the same
R charge as S2. Consequently, the terms Sn	1�PQ�,
-8
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Sn�1�PQ�2, . . ., �PQ��n	3�=2 are also allowed by U�1�R. The
ZP2 symmetry, however, forbids all the odd powers of PQ
and we arrive at the terms in the sum in the RHS of
Eq. (60).

The PQ symmetry is anomalous (as it should). In par-
ticular, one can show that the QCD instantons break it
explicitly to its ZN subgroup with N � 6�n	 1�. This
subgroup contains the Zmp

2 (matter parity), which thus al-
ways remains unbroken by instanton effects. On the con-
trary, the R symmetry is nonanomalous since the fermionic
components of all the color triplet or antitriplet superfields
(actually, all the matter fermions) have zero R charge. The
soft SUSY-breaking terms (especially, the A-type terms),
however, break U�1�R to its ZM subgroup, where M �
�n	 1��n	 3�=2.
VI. THE SCALAR POTENTIAL

The part of the superpotential in Eq. (60) which is
relevant for the PQ breaking is the sum in the RHS of
this equation. This sum contains at least two terms. For
n � 1, in particular, it consists of just two terms. The
resulting scalar potential after including soft SUSY-
breaking effects is

V � jFPj
2 	 jFQj

2 	 jFSj
2 	 Vsoft; (61)

where

FP �
X�n	3�=4

k�1

2k
k
Sn	3�4k�PQ�2k�1Q

Mn
P

� FQ; (62)

FQ �
X�n	3�=4

k�1

2k
k
Sn	3�4k�PQ�2k�1P

Mn
P

� FP (63)

and

FS �
X�n�1�=4

k�0

�n	 3� 4k�
k
Sn	2�4k�PQ�2k

Mn
P

; (64)

are the F-terms and

Vsoft � m2
PjPj

2 	m2
QjQj

2 	m2
SjSj

2

	

�
A

X�n	3�=4

k�0


k
Sn	3�4k�PQ�2k

Mn
P

	 H:c:
�

(65)

the soft SUSY-breaking terms. Here, the soft SUSY-
breaking masses-squared m2

P, m2
Q, and m2

S are of the order
of the m2

3=2 and can have either sign. Also, for simplicity,
we assumed universal soft SUSY-breaking A-terms with
the magnitude of the complex parameter A being of the
order of m3=2. Note that the sums in the RHS of Eqs. (62)–
(64) contain at least one term. Actually, these sums consists
of just one term for n � 1. On the other hand, the sum in
Eq. (65) contains at least two terms with the minimum
number of terms corresponding to n � 1.
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As jPj, jQj, jSj ! 1, the potential is generally domi-
nated by the positive F-terms and thus V is bounded below
independently of the sign of the soft mass terms. However,
on the P or Q axis, i.e. for Q � S � 0 or P � S � 0,
respectively, the F-terms vanish identically together with
the A-terms and the potential is given by just the mass term
of P or Q, respectively. So, to have V bounded below on
these two axes also, we must restrict the masses-squared of
P and Q to be positive. For simplicity, we will take these
two soft masses-squared to be equal, i.e. we will put

m2
P � m2

Q � m2: (66)

The potential on the S axis (i.e. for P � Q � 0) is

V � �n	 3�2j
0j
2 jSj

2�n	2�

M2n
P

	m2
SjSj

2

	

�
A
0

Sn	3

Mn
P

	 H:c:
�

(67)

with the first term in the RHS of this equation originating
from the F-term FS. We see that, for jSj ! 1, the potential
is dominated by the positive F-term and thus V on the S
axis is bounded below no matter what the sign of the mass-
squared of S is. So, this sign can be chosen at will. For
reasons which will become clear later, however, we take

m2
S < 0: (68)

Therefore, the origin in field space (P � Q � S � 0) is a
saddle point of the potential with positive curvature in the
P and Q directions and negative in the S direction.

Using Eqs. (61)–(65), one can readily show that, form2
P,

m2
Q > 0, the potential V in Eq. (61) has a valley of local

minima with respect to jPj and jQj which lies on the S axis
(i.e. at P � Q � 0). The potential right on the bottom line
of this valley can be found from Eq. (67) by choosing the
phase �S of S so that the sum of the terms in the paren-
theses in the RHS of Eq. (67) is minimized. In this case,
this equation takes the form

V � �n	 3�2j
0j
2 jSj

2�n	2�

M2n
P

	m2
SjSj

2 � 2jAjj
0j
jSjn	3

Mn
P

;

(69)

which has a minimum at

jSjn	1

Mn
P

�
jAj 	

���������������������������������������
jAj2 � 4�n	 2�m2

S

q
2�n	 2��n	 3�j
0j

; (70)

where jSj � �m3=2Mn
P�

1=�n	1�. So, as jSj increases from
zero, the depth of the valley increases (i.e. the valley has
initially negative inclination) until jSj reaches the value in
Eq. (70), where the maximal depth is achieved. As jSj
increases further, the bottom line of the valley rises and,
for jSj ! 1, tends to infinity. We will call this valley,
-9



K. DIMOPOULOS AND G. LAZARIDES PHYSICAL REVIEW D 73, 023525 (2006)
which starts from the trivial saddle point at the origin, the
trivial valley.

A. The nontrivial minima of the potential

The extrema of the full potential V in Eq. (61) are given
by the equations

@V
@P
� F�P

@FP
@P
	 F�Q

@FQ
@P
	 F�S

@FS
@P
	m2P� 	 AFP � 0;

(71)

@V
@Q
� F�P

@FP
@Q
	 F�Q

@FQ
@Q
	 F�S

@FS
@Q
	m2Q� 	 AFQ � 0;

(72)

and

@V
@S
� F�P

@FP
@S
	 F�Q

@FQ
@S
	 F�S

@FS
@S
	m2

SS
� 	 AFS � 0:

(73)

Multiplying Eqs. (71) and (72) by P and Q respectively,
subtracting and using Eqs. (62)–(64), we obtain

�jFj2 	m2��jPj2 � jQj2� � 0; (74)

which implies that jPj � jQj. So, the complex fields P and
Q have exactly the same magnitude in any extremum of the
full potential V. This is actually true also in the extrema of
V with respect to P and Q only for fixed S since we have
not used Eq. (73). In the trivial minimum in Eq. (70) which
lies on the trivial valley, jPj � jQj � 0. However, the
potential V possesses nontrivial minima also, where

jPj � jQj; jSj � �m3=2M
n
P�

1=�n	1�: (75)

It is important to note that the continuous global sym-
metry of the model is not exactly U�1�PQ � U�1�R. The
reason is that there are elements of U�1�R which are indis-
tinguishable from elements of U�1�PQ since they have the
same action on all the superfields of the model. Actually,
the only elements of U�1�R which can, in principle, be
identified with elements of U�1�PQ are the ones belonging
to its ZM subgroup with M � �n	 1��n	 3�=2 gener-
ated by the element

ei��2��=M
 2 U�1�R: (76)

This is so because this ZM is the maximal ordinary (i.e.
non-R) symmetry group contained in U�1�R. One can show
that the element

e�i��8��=�n	1�
 2 U�1�R (77)

has the same action on all the superfields as the element

ei��4��=�n	1�
 2 U�1�PQ (78)

and, thus, the Z�n	1�=2 subgroup of ZM which is generated
by it is identical with the Z�n	1�=2 subgroup of U�1�PQ
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generated by the element in Eq. (78). So, the continuous
global symmetry of the model is actually U�1�PQ �

�U�1�R=Z�n	1�=2�.
As already explained, U�1�R is a symmetry of the model

only in the limit of exact SUSY. In the scalar potential V
which includes the soft SUSY-breaking terms also, it is
explicitly broken to its discrete subgroup ZM. Thus, the
group of global symmetries of V (except ZP2 ) is U�1�PQ �

�ZM=Z�n	1�=2�. The ZM symmetry can be factorized as
follows:

ZM � Zn	3 � Z�n	1�=2; (79)

where Zn	3 is generated by

ei��2��=�n	3�
 2 U�1�R: (80)

So, the global symmetry of V takes the simple form
U�1�PQ � Zn	3 � ZP2 .

In any nontrivial minimum (actually, for any fixed non-
zero values of P,Q and S), this symmetry is spontaneously
broken to the Zmp

2 subgroup of U�1�PQ. In case there was,
after inflation, a phase transition from the origin in field
space (P � Q � S � 0) to a nontrivial minimum, we
would encounter copious production of axionic strings
[36] as well as domain walls. As we perform a full rotation
around such a string, the phase of P or Q changes, respec-
tively, by �2� or 2�. There are two types of walls sepa-
rating vacua which are related either by the group element
in Eq. (80) or the generator of ZP2 . Note that n	 3 walls of
the former type can terminate together on the same line.

As explained in the previous section, after the onset of
instantons at the QCD transition, U�1�PQ is explicitly bro-
ken to ZN with N � 6�n	 1� which is generated by the
element

eif�2��=�6�n	1�
g 2 U�1�PQ: (81)

So, after instantons, the axionic strings become [36]
boundaries of 3�n	 1� axionic walls [37] which separate
vacua related by the group element in Eq. (81). We see that,
if, after inflation, a transition from the origin in field space
to a nontrivial minimum takes place, a rich system of
domain walls is produced leading to a cosmological catas-
trophe. So, it is clear that such a transition should be
avoided in our model.

B. The shifted valley of minima

For jSj � jPj � jQj, the F-terms in Eqs. (62)–(64) can
be approximated as follows:

FP �
n	 3

2

�n	3�=4

�PQ��n	1�=2Q
Mn

P

	
n� 1

2

�n�1�=4

S4�PQ��n�3�=2Q
Mn

P

	 
 
 
 ; (82)
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FQ �
n	 3

2

�n	3�=4

�PQ��n	1�=2P
Mn

P

	
n� 1

2

�n�1�=4

S4�PQ��n�3�=2P
Mn

P

	 
 
 
 ; (83)

FS � 4
�n�1�=4
S3�PQ��n�1�=2

Mn
P

	 
 
 
 ; (84)

while the expression in the brackets in the RHS of Eq. (65)
takes the form�
A
�n	3�=4

�PQ��n	3�=2

Mn
P

	 A
�n�1�=4
S4�PQ��n�1�=2

Mn
P

	 H:c:
�

	 
 
 
 ; (85)

where the ellipses in these equations represent terms of
higher order in S. Note that the second term in the RHS of
Eqs. (82) and (83) exists only for n � 5 (l � 1), while the
second term in Eq. (85) exists for all values of n in Eq. (59).
Using these relations, we can expand, in this regime, the
potential V in Eq. (61):

V �
�n	 3�2

4
j
�n	3�=4j

2 jPQj
n	1�jPj2 	 jQj2�

M2n
P

	m2
PjPj

2 	m2
QjQj

2 � 2jAjj
�n	3�=4j
�jPjjQj��n	3�=2

Mn
P

� cos
�
n	 3

2
��P 	 �Q�

�
	 
 
 


� V�0� 	 
 
 
 ; (86)

where �P and �Q are the phases of the complex scalar fields
P and Q, respectively. Here we assumed, without loss of
generality, that the product A
�n	3�=4 is real and negative,
which can be readily achieved by redefining the phase of
the product of fields PQ.

The leading order part V�0� of the potential V in Eq. (86)
(consisting of the explicitly displayed terms in the RHS of
this equation) is minimized with respect to the phases �P
and �Q for

n	 3

2
��P 	 �Q� � 0 modulo 2�: (87)

Under this restriction on the phases, the extrema of V�0�
with respect to jPj and jQj are given by the conditions

@V�0�
@jPj

�
�n	 3�2

4
j
�n	3�=4j

2��n	 3�jPj2 	 �n	 1�jQj2


�
jPjnjQjn	1

M2n
P

	 2m2
PjPj � 2jAj

�n	 3�

2

� j
�n	3�=4j
jPj�n	1�=2jQj�n	3�=2

Mn
P

� 0 (88)

and
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@V�0�
@jQj

�
�n	 3�2

4
j
�n	3�=4j

2��n	 1�jPj2 	 �n	 3�jQj2


�
jPjn	1jQjn

M2n
P

	 2m2
QjQj � 2jAj

�n	 3�

2

� j
�n	3�=4j
jPj�n	3�=2jQj�n	1�=2

Mn
P

� 0: (89)

Multiplying Eqs. (88) and (89) by jPj and jQj respectively
and subtracting, we obtain

�n	 3�2

4
j
�n	3�=4j

2�jPj2 � jQj2�
jPjn	1jQjn	1

M2n
P

	 �m2
PjPj

2 �m2
QjQj

2� � 0; (90)

which, form2
P � m2

Q � m2 > 0 [see Eq. (66)], implies that
jPj � jQj. Substituting jPj for jQj in any of the Eqs. (88)
and (89), we then obtain jPj � 0 or

�n	 3�2

4
j
�n	3�=4j

2�2n	 4�
jPj2�n	1�

M2n
P

	 2m2

� 2jAj
�n	 3�

2
j
�n	3�=4j

jPjn	1

Mn
P

� 0: (91)

This equation has two real and positive solutions for

jAj2 > 4�n	 2�m2;

which are given by

�
jPjn	1

Mn
P

�
�
� x� �

jAj �
���������������������������������������
jAj2 � 4�n	 2�m2

p
�n	 2��n	 3�j
�n	3�=4j

: (92)

Obviously, x � 0 and x � x	 correspond to (local) min-
ima of V�0�, while x � x� corresponds to a local maximum
(here x � jPjn	1=Mn

P). So, V�0� has a trivial minimum at
jPj � jQj � 0 and a ‘‘shifted’’ minimum at jPj � jQj �
�m3=2Mn

P�
1=�n	1�, which is the absolute minimum for jAj>

�n	 3�m. Note that the presence of the term

�n	3�=4�PQ��n	3�=2=Mn

P in the superpotential of Eq. (60)
is vital to the existence of the shifted minimum. In view of
the ZP2 symmetry, however, this superpotential term can
only exist if �n	 3�=2 is an even positive integer, which
implies the restriction in Eq. (59).

The trivial minimum of V�0� cannot be consistent with
our starting hypothesis that jSj � jPj � jQj and should,
thus, be discarded. However, as we have already shown, it
happens to exist as a minimum of the full potential V in
Eq. (61) with respect to jPj and jQj for all values of jSj and
constitutes the trivial valley of minima.

To see how the shifted minimum of V�0� evolves as jSj
increases from zero, we consider the dominant
S-dependent part of the potential V for jSj � jPj � jQj,
which is given by
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V�1� � m2
SjSj

2 	

�
A
�n�1�=4

S4�PQ��n�1�=2

Mn
P

	
�n� 1��n	 3�

4

�n�1�=4


�
�n	3�=4S

4�P�Q��2

� �jPj2 	 jQj2�
�jPjjQj�n�3

M2n
P

	 H:c:
�
; (93)

where the first term in the brackets corresponds to the
second term in Eq. (85), while the second term in the
brackets originates from the interference of the two explic-
itly displayed terms in the RHS of Eq. (82) plus the
interference of the two explicitly displayed terms in the
RHS of Eq. (83). So, the first term in the brackets exists for
all values of n, while the second only for n � 5. Note that
V�1� contains the next-to-leading and the next-to-next-to-
leading order parts of V in the expansion of Eq. (86), which
are quadratic and quartic in S, respectively. Actually, for
jPj and jQj at the shifted minimum of V�0�, all the terms in
V�0� are of the same order of magnitude, while the first
(mass) term in the RHS of Eq. (93) is suppressed by
�jSj=jPj�2 and the terms in the brackets by �jSj=jPj�4.

The minimization conditions for V with respect to jPj
and jQj coincide to leading order with Eqs. (88) and (89).
The dominant corrections to these conditions for jSj �
jPj � jQj originate from the next-to-next-to-leading order
terms in V�1� and are, thus, suppressed by �jSj=jPj�4. So, for
jSj � jPj � jQj, the shifted minimum of V�0� is also a
minimum of V with respect to jPj and jQj at a practically
S-independent position. As a consequence, for small values
of jSj, we obtain a shifted valley of minima of V at almost
constant values of jPj and jQj. This valley has obviously
negative inclination for nonzero and small values of jSj,
due to the negative mass term of S. It starts from the shifted
saddle point of V which lies at jSj � 0 and jPj, jQj equal to
their values at the shifted minimum of V�0�. Let us note, in
passing, that a shifted valley of minima was first used in
Ref. [38] as an inflationary trajectory in order to avoid the
overproduction of doubly charged [39] magnetic mono-
poles at the end of hybrid inflation in a SUSY Pati-Salam
[40] GUT model.

C. The PNGB curvaton

The dominant S-dependent part of V can be expressed in
terms of the phases of P, Q, and S as follows:

V�1� � m2
SjSj

2 � 2jAjj
�n�1�=4j
jSj4�jPjjQj��n�1�=2

Mn
P

� cos
�
4�S 	

n� 1

2
��P 	 �Q�

�
	
�n� 1��n	 3�

2

� j
�n�1�=4jj
�n	3�=4jjSj4�jPj2 	 jQj2�
�jPjjQj�n�1

M2n
P

� cos�4�S � 2��P 	 �Q��; (94)
023525
where we assumed that A
�n�1�=4 is real and negative,
which can be readily arranged by redefining the phase of
S. Note that all the other A
k’s (except A
�n	3�=4 and
A
�n�1�=4) remain in general complex since there is no
extra field-rephasing freedom left. From the preceding
discussion, we see that, on the shifted valley of minima
of V, the second and third term in the RHS of Eq. (94) are
of the same order of magnitude. For n � 1, the third term
vanishes. Moreover, using Eq. (92), one can show that, for
n � 5, the coefficient of the cosine in the second term is
always greater in absolute value than the coefficient of the
cosine in the third term. Under these circumstances, V�1� is
minimized with respect to the phases �P, �Q, �S of the
fields by taking

4�S 	
n� 1

2
��P 	 �Q� � 0 modulo 2�: (95)

This together with Eq. (87) implies that

4�S � 2��P 	 �Q� � 0 modulo 2�; (96)

which maximizes the third term in the RHS of Eq. (94).
We can define the real canonically normalized fields

corresponding to the phases of P, Q, S as follows:

�P �
���
2
p
jPj�P; �Q �

���
2
p
jQj�Q;

�S �
���
2
p
jSj�S:

(97)

On the shifted valley, the last term in the RHS of Eq. (86)
generates a ‘‘mass-squared’’ for the real canonically nor-
malized field �PQ � ��P 	�Q�=

���
2
p

given by

m2
PQ � jAj

�n	 3�2

2
j
�n	3�=4jx	; (98)

where x	 � �jPjn	1=Mn
P�	 is given by Eq. (92) andm2

PQ is
of order m2

3=2. Also, the second and third term in the RHS
of Eq. (94) generate on this valley ‘‘masses-squared,’’
respectively, for the combinations

�S1 �
4
���
2
p
jPj�S 	 �n� 1�jSj�PQ���������������������������������������������
32jPj2 	 �n� 1�2jSj2

p ;

�S2 �

���
2
p
jPj�S � jSj�PQ��������������������������

2jPj2 	 jSj2
p

(99)

given, respectively, by

m2
S1 � 16jAjj
�n�1�=4jx	

jSj2

jQj2

�
1	
�n� 1�2

32

jSj2

jQj2

�
;

m2
S2 � �8�n� 1��n	 3�j
�n�1�=4jj
�n	3�=4jx

2
	

jSj2

jQj2

�

�
1	

jSj2

2jQj2

�
; (100)
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which are suppressed by jSj2=jQj2 relative to m2
3=2. Note

that the field a � ��P ��Q�=
���
2
p

remains massless to all
orders in perturbation theory since it corresponds to the
axion. So, we obtain a 2-dimensional subspace of massive
fields spanned by �PQ and �S which are orthogonal to the
massless axion direction. The quadratic form obtained by
summing the three ‘‘mass terms’’ corresponding to the
masses-squared in Eqs. (98) and (100) must then be diago-
nalized to find the two mass eigenstates and eigenvalues.
This task is particularly simple in the limit jSj � jPj. To
lowest order in jSj=jPj, the eigenstates coincide with �PQ

and �S, which we will also call � as it will be our PNGB
curvaton (see below). The masses-squared of these fields
on the shifted valley are equal to m2

PQ in Eq. (98) and
~m2
� �

8

n	 2
j
�n�1�=4jx	

jSj2

jPj2
��n	 5�jAj � �n� 1�

�
���������������������������������������
jAj2 � 4�n	 2�m2

q

; (101)
respectively. Obviously, ~m2
� is positive and suppressed by

jSj2=jPj2 relative to m2
PQ, which is of order m2

3=2. So, the
field �S � � is a light PNGB when the system rolls down
the shifted valley of the potential with jSj � jPj, while
�PQ is a massive field. Inclusion of higher order correc-
tions in the potential V along the shifted valley does not
change this situation.

The discrete ZP2 symmetry of the model, under which P
changes sign, is very important for the PNGB nature of�S.
Without this symmetry, the next-to-leading order term in
the RHS of Eqs. (82) and (83) would be proportional to S2

rather than S4, the leading order term in the RHS of
Eq. (84) would be linear in S rather than cubic, and the
next-to-leading order term in Eq. (84) would contain S2

instead of S4. As a consequence, the terms in the dominant
S-dependent part of V for jSj � jPj � jQj which depend
on the phases of the fields would be quadratic in S [com-
pare with Eqs. (93) and (94)] and, thus, the mass of �S on
the shifted valley would be of order m3=2.

D. Cosmological evolution

SUGRA corrections [2,14,33] during inflation will add
to A a term proportional to the Hubble parameter during
inflation, which is of orderm3=2 in our case. To simplify the
discussion, we take these corrections to be universal. Also,
the masses-squared m2

P, m2
Q, and m2

S will acquire correc-
tions proportional to H2. We assume that these corrections
are positive and, for simplicity, we also take them universal
at least for m2

P and m2
Q. So, nothing changes in the above

discussion and formulas after including the SUGRA cor-
rections during inflation except that A, m2, and m2

S must
now be replaced by their effective values
023525
�A � A	 cAH; �m2 � m2 	 cPQH
2;

�m2
S � m2

S 	 cSH
2;

(102)

respectively. Here, cA is a complex parameter of order
unity, while cPQ and cS are real and positive parameters
again of order unity.

The effective parameters �A and �m are of the same order
of magnitude as A and m, i.e. they are of order m3=2. The
mass-squared of S, which is taken negative, receives posi-
tive corrections from SUGRA, which are of the same order
of magnitude as m2

S. We can arrange the parameters so that
the effective mass-squared of S is positive during the initial
stages of inflation. In this case, the shifted saddle point of V
becomes a local minimum of the effective potential and the
system may be initially trapped in this minimum during
inflation. As H decreases gradually during inflation, the
SUGRA corrections become smaller and, at some moment
of time, this minimum may turn into a saddle point. The
system then slowly rolls down the shifted valley which has
a very small slope given by the small effective mass-
squared of S [41]. During this slow roll,�S is an effectively
massless PNGB which can act as curvaton.

After the end of inflation, the system keeps rolling down
the shifted valley and eventually ends up in damped oscil-
lations about a nontrivial minimum of V where all the
fields P, Q, and S acquire nonzero values of order
�m3=2Mn

P�
1=�n	1� and the PQ symmetry is broken. Note

that, if, in the initial stages of inflation, the system hap-
pened to be trapped in the trivial saddle point of the
potential V at P � Q � S � 0 (which, of course, is a local
minimum of the effective potential in this case), it would
later enter into the trivial valley along the S axis rather than
the shifted one. So, it would end up in the minimum of
Eq. (70), where P � Q � 0. This is obviously highly
undesirable since, in this case, the PQ symmetry remains
unbroken and no � term is generated. It is also important
that, in our case, the fields P,Q, and S have nonzero values
during inflation after the time when the cosmological
scales exit the horizon as they lie on the shifted valley.
So, the global symmetry of the model is already broken to
Zmp

2 during the relevant part of inflation. Consequently,
neither domain walls nor axionic strings [36] are generated
as the system settles in a nontrivial minimum of V. Also, no
axionic walls [37] appear at the QCD transition since the
spontaneous breaking of ZN to Zmp

2 takes place before the
relevant part of inflation. Therefore, no cosmological ca-
tastrophe is encountered.
VII. CURVATON PHYSICS

A. The curvaton potential

From Eqs. (61), (84), and (94), we find that the dominant
part of the scalar potential which is relevant to our curvaton
candidate, in the case when jSj � jPj � jQj, is given by
-13
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Vcurv � �m2
SjSj

2 � 2j �Ajj
�n�1�=4j
jSj4�jPjjQj��n�1�=2

Mn
P

� cos
�

4�S 	
n� 1

2
��P 	 �Q�

�
	
�n� 1��n	 3�

2

� j
�n�1�=4jj
�n	3�=4jjSj4�jPj2 	 jQj2�
�jPjjQj�n�1

M2n
P

� cos�4�S � 2��P 	 �Q�
 	 16j
�n�1�=4j
2

�
�jPjjQj�n�1

M2n
P

jSj6 	 
 
 
 ; (103)

where we included the SUGRA corrections during inflation
and the ellipsis denotes terms of higher order in jSj, which
are, therefore, subdominant. In the above, according to
Eq. (102), we have

�m 2
S � cSH2 � jm2

Sj; (104)

where cS �	1 and jm2
Sj �m

2
3=2.

The potential Vcurv is simplified by considering that the
jPj and jQj fields have already assumed their minimum
value on the shifted valley as given by Eq. (92) with A and
m replaced by �A and �m, respectively. Furthermore, we can
set the phases �P and �Q equal to zero since we are only
interested in the curvaton field direction, which practically
corresponds to �S for jSj � jPj. Then, in view also of
Eq. (97), the above potential becomes

Vcurv ’ �m2
SjSj

2 � �
j �Aj2jSj4

jPj2val

cos
�
2
���
2
p �S

jSj

�

	 16j
�n�1�=4j
2 jPj

2�n�1�
val

M2n
P

jSj6 	 
 
 
 ; (105)

where the value jPjval of jPj on the shifted valley is given
by jPjn	1

val =M
n
P � x	 [with x	 from Eq. (92), where A and

m are replaced by �A and �m, respectively] and

� �
��������
�n�1�=4


�n	3�=4

���������1	 Z���n	 5� � �n� 1�Z


�n	 2�2�n	 3�
(106)

with Z being

Z �

����������������������������������������
1� 4�n	 2�

�
�m

j �Aj

�
2

s
: (107)

Note that jPjval is practically constant when the cosmo-
logical scales exit the inflationary horizon since the shifted
valley is almost jSj-independent for jSj � jPj as shown in
Sec. VI B and the Hubble parameter is very slowly varying
[see Eq. (10)].

From Eq. (107), it is evident that 0< Z< 1 and, there-
fore, � is positive [42]. Hence, setting

� ’ �S and v ’
1

2
���
2
p jSj; (108)

we obtain the curvaton potential for v� v0 (the value of v
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in the vacuum) as

V��� ’ 64�j �Aj2
v4

jPj2val

�
1� cos

�
�
v

��
: (109)

Considering that the value of v0 is given by the value jSj0
of jSj in the vacuum, for which jSj0 � jPjval, we find

V��� � �j �Aj2
v4

v2
0

�
1� cos

�
�
v

��
; (110)

where [cf. Eq. (44)]

v0 �MI � �m3=2Mn
P�

1=�n	1�: (111)

Comparing the above with Eq. (15), we see that the mass of
the curvaton is given by

~m� �
����
�
p
j �Aj

�
v
v0

�
; (112)

which agrees with Eq. (101). Therefore, when the cosmo-
logical scales exit the horizon, we have

~m� � "m3=2; (113)

where we used Eq. (28) and considered that j �Aj �m3=2 and
�� 1. Hence, because, in the modular inflation model that
we are considering, we haveH� �m3=2, we find that, since
"� 1, � is, as required, effectively massless when the
cosmological scales exit the horizon during inflation.

The order parameter v for our curvaton field is deter-
mined by the value of jSj, for which the potential in
Eq. (105), when taking �! 0, becomes

V�jSj� ’ �m2
SjSj

2 � �
j �Aj2jSj4

jPj2val

	 �2
Sj

�Aj2
jSj6

jPj4val

	 
 
 
 ;

(114)

where

�S �
��������
�n�1�=4


�n	3�=4

�������� 4�1	 Z�
�n	 2��n	 3�

(115)

and we have used Eq. (92). The minimum of the above
potential occurs at

jSj ’
1

�S

������
2�
3

s
jPjval �MI; (116)

which, after the end of inflation, becomes equal to jSj0 as �A
and �m are replaced by A and m, respectively.

B. The required "

Let us now calculate the value of " required so that our
curvaton scenario works. First, we note that, in our case,
the curvaton assumes a random value at the phase transi-
tion at which, during inflation, the system leaves the shifted
saddle point of the potential and starts slowly rolling down
the shifted valley (see Sec. VI D). This value typically is
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�� v. After the end of inflation and before the onset of the
oscillations, the phase � corresponding to the curvaton
degree of freedom is overdamped and remains frozen.
Hence, we expect that, at the onset of the oscillations, we
have

�osc � �v0; (117)

where, typically, � ’ �S � 1 and we took into account that
the order parameter assumes its vacuum value very soon
after the end of inflation. Combining Eqs. (31) and (117),
we find

"�
�dec

���

�
m3=2

MP

�
n=�n	1�

; (118)

where we also used Eq. (111) and that H� �m3=2. The "
above is always larger than "min, where

"min �

�
m3=2

MP

�
n=�n	1�

; (119)

which is derived from Eq. (32) with H� �m3=2.
Let us now enforce the constraint in Eq. (35), which, for

H� �m3=2, reads

" <
�1=2

dec

��

�
MP

TBBN

�
1=2
�
m3=2

MP

�
5=4
� 10�4�1=2

dec : (120)

From Eqs. (118) and (120), it is easy to find that the above
bound can be satisfied only if n is large enough:

n >
8	 log��1=2

dec=��

7� log��1=2
dec=��

: (121)

In view of Eq. (21), we see that, for �� 1, we have n � 1.
An upper bound on n can be obtained by requiring that

the curvaton decays before BBN. The interaction of �with
ordinary particles is governed by the effective � term in
Eq. (45), which results [10] into the following decay rate of
� into two Higgs particles:

�� �
m3
�

v2
0

: (122)

Demanding that �� � HBBN results in the bound

�� � 10���30n�=�n	1�


�
m�

TeV

�
3

TeV � HBBN � 10�27 TeV

) m� * 10�n�9�=�n	1� TeV; (123)

where we used Eq. (111). The above requirement is always
satisfied if m� * 10 TeV. However, in the opposite case
where m� < 10 TeV, we see that it yields an upper bound
on n:

n �
9	 log�m�=TeV�

1� log�m�=TeV�
; (124)

which, roughly, demands that n � 9 for m� & 1 TeV.
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C. The reheating of the universe

We will now proceed further by first discussing the
reheating of the universe. This requires that we consider
separately the cases when the curvaton decays before or
after it dominates the universe.

1. Curvaton decay before domination (�dec � 1)

During the radiation era and after the onset of curvaton
oscillations, for the curvaton energy density fraction, we
have 
�=
 / a�t� / H�1=2, where a�t� is the scale factor
of the universe. Hence, in this case, we find that

�dec �

�
minfm�;�infg

��

�
1=2
�
�osc

MP

�
2
; (125)

where we have used Eq. (31) and


�



��������osc
�

�
�osc

MP

�
2
; (126)

which is derived from the fact that 
�josc ’
1
2m

2
��

2
osc and


osc ’ m
2
�M

2
P. Using Eq. (122) into Eq. (125) and also

Eqs. (31) and (111), we obtain

"�
g1=2�1=2

dec

��

�
m3=2

MP

�
�1=2���n	2�=�n	1�


: (127)

Here, we have also used that �inf <H� �m3=2 �m� and

�inf � g2m3=2 (128)

with g being the dimensionless coupling constant of the
inflaton to its decay products and the mass of the inflaton
field s taken to be ms & H� �m3=2.

In principle, g can be as low as ms=MP if the inflaton
decays gravitationally. However, since reheating has to
occur before BBN, g has to lie in the range

10�14 � 10
m3=2

MP
< g< 1; (129)

where we used the fact that the reheat temperature Treh, in
this case, is

Treh �
���������������
�infMP

p
� g

�����������������
m3=2MP

q
: (130)

Combining Eqs. (118) and (127), we find the relation

g
�dec

�
1

�2

�
m3=2

MP

�
�n�2�=�n	1�

; (131)

which results in

n ’
30� logg	 2 log��1=2

dec=��

15	 logg� 2 log��1=2
dec=��

: (132)

In view of Eqs. (21) and (129), we see that, for �� 1, the
allowed range for n is

2 � n � 44: (133)
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The lower bound in the above is tighter than the bound in
Eq. (121). In fact, comparing Eqs. (121) and (132), it is
easy to obtain the bound

g�1=2
dec � 106�; (134)

which is easily satisfied provided that the angle � is not
extremely small.

2. Curvaton decay after domination (�dec � 1)

In this case, the curvaton dominates the energy density
of the universe when H � Hdom, where Hdom is given by

Hdom �

�
�osc

MP

�
4

minfm�;�infg: (135)

Now, using Eqs. (117), (122), and (128), it can be shown
that the requirement �� < Hdom results in the bound

g >
1

�2

�
m3=2

MP

�
�n�2�=�n	1�

; (136)

which yields

n >
30� logg� 2 log�
15	 logg	 2 log�

: (137)

This provides a lower bound on g for given n and �,
reminiscent of Eq. (132) with �dec � 1. For �� 1, the
above bound implies

n � 2: (138)

This time the hot big bang begins after the decay of the
curvaton, which suggests that the reheat temperature is
now given by

TREH �
�������������
��MP

p
�m3=2

�
m3=2

MP

�
�1=2���n�1�=�n	1�


: (139)

It can be easily checked that the above is higher that TBBN

when n � 9, in agreement with Eq. (124).

D. Avoiding axion overproduction

There is a stringent upper bound on the PQ scale orig-
inating from the requirement that the generated axions do
not overclose the universe. The typical mass of the axion is
[43]

ma � 10�5

�
1012 GeV

fa

�
eV; (140)

where, for the PQ scale (axion decay constant), we have
fa � v0 [44]. The above mass implies that the onset of
axion oscillations takes place when the energy density of
the universe is


1=4
axosc �

�������������
maMP

p
� 102

�
1012GeV

v0

�
1=2

GeV; (141)

where the subscript ‘‘axosc’’ indicates the time at which
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axion oscillations begin. In contrast, the energy density of
the universe when the curvaton decays is


1=4
dec �

�������������
��MP

p
� 10

�
1012 GeV

v0

�
GeV; (142)

where we have used Eq. (122) and also that m� �m3=2.
Now, from Eq. (111), we have

v0 �
�����������������
m3=2MP

q
; (143)

which suggests that, in all cases,


dec < 
axosc: (144)

Hence, the axion oscillations always start before the cur-
vaton decays. Thus, at the onset of the axion oscillations,
the ratio of the axion energy density to the energy density
of the universe is


a




��������axosc
��2

a

�
v0

MP

�
2
� �2

a

�
m3=2

MP

�
2=�n	1�

; (145)

where we have considered that the amplitude of the axion
field at the onset of its oscillations is ��afa with �a being
the initial misalignment angle.

Let us first investigate the case when the curvaton decays
before it dominates the universe. In this case, the axion
oscillates in a radiation background until the time teq of
equal matter and radiation energy densities, denoted here-
after by the subscript ‘‘eq.’’ Since the energy density of the
oscillating axion scales like pressureless matter with the
expansion of the universe, we have that, until teq,


a


 / a; (146)

where the scale factor of the universe a / 1=T. In view of
the above, the requirement that axions do not overclose the
universe translates into requiring that


a




��������eq
� 1; (147)

since, by definition, 
eq � 
m, where 
m is the energy
density of matter. From Eqs. (145)–(147), we obtain the
bound

�a �

�
1012 GeV

v0

�
3=4
; (148)

where we used that Teq � 2:8� 10�9 GeV. Hence, an
initial misalignment angle of order unity is possible only
if v0 � 1012 GeV. In view of Eq. (111), this, in turn, is
possible only if n � 1.

Thus, if n > 1 and we insist on �a � 1, the only way that
axion overproduction can be avoided is by considering that
the curvaton does dominate the universe before decaying.
In this case, reheating due to curvaton decay dilutes the
axion energy density because of a dramatic production of
entropy. The entropy ratio at curvaton decay is easily
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estimated as

Safter

Sbefore
�

�

�

�

�
3=4

REH
�

�
Hdom

��

�
1=2

�
g�2v3

0

m3=2M
2
P

� g�2

�
MP

m3=2

�
�n�2�=�n	1�

; (149)

where the subscript ‘‘REH’’ denotes the time of the curva-
ton decay, 
� is the energy density of the background
radiation due to the decay of the inflaton, and we have
used Eqs. (111), (122), (128), and (135) considering also
that �osc � �v0. The exact calculation multiplies [46] the
result by a factor of 1:83g1=4

? � 1, where g? � 10–102 is
the effective number of relativistic degrees of freedom. As
expected, the entropy production depends on the value of
the coupling constant g. Hence, avoiding axion overpro-
duction, which could overclose the universe, is expected to
set another lower bound on g, more stringent than the one
in Eq. (136) [47].

The fact that the case of curvaton domination requires a
larger value of g [cf. Eq. (136)] is to be expected because
larger g implies that the inflaton decays earlier and, there-
fore, the energy density fraction 
�=
 grows substantially,
allowing the curvaton to dominate the universe before its
decay. The higher g is the more dominant the curvaton will
be at its decay and, hence, the more diluted the axion
energy density will become after the decay of the curvaton.

A crucial further requirement for the dilution of the
axion energy density is [30,48–50] that the entropy release
occurs after the onset of axion oscillations. Hence, the
requirement is


axosc � T4
REH: (150)
E. The evolution of the order parameter

Let us now concentrate on the evolution of the order
parameter v, which has to be such as to achieve the
required value for ". The order parameter is determined
by the rolling jSj. When the cosmological scales exit the
horizon, the field jSj has to be slowly rolling because we
need the order parameter to vary slowly enough not to
destabilize the approximate scale invariance of the pertur-
bation spectrum [cf. Sec. III C]. Therefore, the Klein-
Gordon equation for jSj takes the form

3Hj _Sj 	 �m2
SjSj ’ 0: (151)

Using Eq. (104), the rate of growth of the order parameter
in this case can be easily found to be

_v
v
�
j _Sj
jSj
�

1

3
cS

�
jm2

Sj

cSH2 � 1
�
H: (152)

The amplification factor "�1 can be found as follows.
Using Eq. (9), we can write jSj as a function of the number
N of the remaining e-foldings of inflation. Starting from
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Eq. (151) and after a little algebra, we obtain

3

cS

d lnjSj
dN

�
e�2FsNx � e�2FsN

1� e�2FsN
; (153)

where Nx corresponds to the phase transition which
changes the sign of �m2

S. Here, we used the fact that, by
definition,

jm2
Sj � cSH2

x ’ cSH2
m�1� e�2FsNx�; (154)

where Hx � H�Nx� and Hm �
�������
Vm

p
=
���
3
p
MP with Vm being

the scale of the inflaton potential as given in Eq. (7).
Integrating Eq. (153), we get

6

cS
ln
�
jSj�
jSjx

�
� �1� e�2FsNx�F�1

s ln
�
e2FsNx � 1

e2FsN� � 1

�

� 2�Nx � N��; (155)

where jSj� � jSj�N�� and jSjx � jSj�Nx�.
Now, it is straightforward to check that, if 2FsN� � 1,

the RHS of the above equation tends to zero, which yields
jSj� � jSjx. This is also understood by observing that, in
this case, H2�N� ’ H2

m�1� e
�2FsN� � H2

m, which means
that 	�H2�=H2 � 2Fs	Ne

�2FsN � 1, where 	�H2� �
H2

x �H
2
� and 	N � Nx � N� > 0. Thus, in the e-folding

interval 	N, the effective mass-squared of S hardly
changes: �m2

S�N�� � �m2
S�Nx� � 0, i.e. the mass is very close

to zero. This implies that jSj remains frozen and, thus,
jSj� � jSjx. Moreover, the displacement of jSj from the
origin at the phase transition is determined by its quantum
fluctuations, which means that

jSjx �
Hx

2�
: (156)

For 2FsN� � 1, Hx � H��� Hm� and, thus, jSj� �
H�=2�. So, under these circumstances, we have, for the
amplification factor, " � "min, which is defined in
Sec. III A.

It is easily seen that, generally,

" �
jSj�
jSj0
�
jSj�
H�

H�
v0
) jSj� �

"
"min

H�: (157)

Note that, since the required " is always much bigger than
"min, as we saw from Eqs. (118) and (119), jSj� � H�.
Furthermore, it is obvious from the above discussion that,
for " > "min, we need to have

Fs &
1

2Nx
: (158)

Finally, when 2FsNx � 1, Eq. (155) reduces to

3

cS
ln
�
jSj�
jSjx

�
’ Nx

�
ln
�
Nx

N�

�
� 1

�
	 N�: (159)

In view of Eq. (152), the requirement in Eq. (43) takes
the form
-17
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cS
3
�H2

x �H2
�� � H2

� ; (160)

where we took into account Eq. (154). This inequality can
be recast as

cS
3
e�2FsN�

�
1� e�2Fs�Nx�N��

1� e�2FsN�

�
� 1: (161)

When 2FsNx � 1, the above reduces to

cS
3

Nx � N�
N�

� 1: (162)

This means that, in this case, the cosmological scales must
exit the horizon not much later than the phase transition
which changes the sign of �m2

S.
Another issue to be addressed concerns the requirement

that jSj does slow roll at the time when the cosmological
scales exit the horizon, in contrast to the case when the
slope of the potential is so small that the motion of jSj is
dominated by its quantum fluctuations. Indeed, since
j �m2

S�H��j � H2
� , jSj is effectively massless and, hence, it

obtains a superhorizon spectrum of perturbations of order
H�=2�, much like �. In order for its quantum fluctuations
not to dominate its motion, jSj has to be outside the
quantum diffusion zone. The condition for this to occur is�������� @V@jSj

���������� 2j �m2
S�H��jjSj� � H3

� : (163)

Using Eqs. (104) and (154) and working as before, the
above constraint is recast as

ln
�
jSj�
jSjx

�
� 2FsN� � ln

�
cS
�

�
	 ln

�
1� e�2FsN�

1� e�2Fs�Nx�N��

�

	
1

2
ln
�
1� e�2FsN�

1� e�2FsNx

�
; (164)

where we have also used Eq. (156). If 2FsNx � 1, the
above equation becomes

ln
�
jSj�
jSjx

�
	 ln

�
cS
�

�
	 ln

�
N1=2

x �Nx � N��

N3=2
�

�
� 0: (165)
0.4

0.6

0.80

0.20.4

0.6

FIG. 2 (color online). Plot of the scalar potential V�jSj; jPj�
which is defined in Eqs. (61)–(65) in units of M14

I =M
10
P with

respect to jSj and jPj, which are measured in units of MI. Here,
we have taken n � 5 and MI � �mM

5
P�

1=6. We have also chosen
m2
P � m2

Q � �m
2
S � m2, A � �9m, 
0 � 
1 � 
2 � 1, jPj �

jQj, and �S � �P � �Q � 0 so that the potential is minimized
according to Eqs. (87) and (95). The shifted valley is clearly
visible. It starts at the value jPj � 0:814MI when jSj � 0 and
arcs down towards the jSj axis, passing through the nontrivial
minimum at jSj0 � 0:683MI and jPj0 � 0:772MI. The trivial
valley at jPj � 0 can also be discerned.
VIII. A CONCRETE EXAMPLE: n � 5 AND � � 1

From the bounds on n in Eqs. (124), (133), and (138) and
also in view of Eq. (59), we see that not many choices for n
are allowed. In fact, we can only accept the cases corre-
sponding to l � 1; 2 (i.e. n � 5; 9) with the latter choice
being marginal as far as the BBN constraint in Eq. (124) is
concerned. Hence, to illustrate the above, we present an
example taking n � 5 [i.e. l � 1 in Eq. (59)] and consid-
ering that the orthogonal axion assumes a random value
after the phase transition, i.e. �� 1.

The bound in Eq. (124) suggests that this case is accept-
able provided that
023525
m� * 220 GeV: (166)

The superpotential for the SM singlet superfields is com-
prised only of the terms [cf. Eq. (60)]

Wsinglet � �
0S
8 	 
1S

4�PQ�2 	 
2�PQ�
4
=M5

P: (167)

The resulting scalar potential is shown in Fig. 2.
Using Eq. (118), we obtain the value of the amplification

factor necessary for the model to work:

"� 10�8:5�dec: (168)

Now, let us assume, at first, that �dec < 1, i.e. the curvaton
decays before domination. Then, Eq. (127) gives

"� 10�4:75g1=2�1=2
dec ; (169)

which means that

g� 10�7:5�dec: (170)

This value lies well within the range given in Eq. (129).
With these values, it is straightforward to show that all

the relevant constraints are satisfied. For example, the
constraint in Eq. (33), in the case when �dec < 1, becomes

g�dec � �"��2
�
MP

m3=2

�
�n	2�=�n	1�

; (171)

which, for n � 5 and the value of g found above, can be
easily checked to hold true. According to Eq. (130), the
-18
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universe reheats at temperature

Treh � 103�dec GeV; (172)

which is far from challenging the gravitino bound.
However, the PQ symmetry breaking scale is found from

Eq. (111) to be

v0 � 1015:5 GeV: (173)

Such a high PQ scale results in axion overproduction
unless the original axion misalignment angle �a is much
less than unity. Indeed, in this case, Eq. (148) suggests that

�a � 10�3 (174)

should be enough to avoid axion overproduction. The
above constraint is much less stringent than the constraint
on the present value of �a from CP violation in strong
interactions (coming from experimental bounds on the
electric dipole moment of the neutron): �a < 10�9, but it
still undermines the motivation for the PQ symmetry,
which is meant to explain how we can get the present value
of �a so small starting with a natural value of the initial
�a � 1. This is why it is preferable to consider the case
when the curvaton decays after domination, where the
axion energy density can be efficiently diluted by the
entropy production from the curvaton decay.

When the curvaton decays after domination, we have
�dec � 1. Then, Eq. (168) becomes

"� 10�8:5: (175)

Also, from Eq. (136), we obtain the bound

g > 10�7:5: (176)

As a result of the above, the reheat temperature after the
end of inflation is found, from Eq. (130), to be

Treh � g
�����������������
m3=2MP

q
> 103 GeV: (177)

Satisfying the gravitino bound (Treh � 109 GeV) sets a
weak upper bound on g: g � 0:03. However, this bound
is relaxed by the dilution of the gravitinos due to the
entropy production by the curvaton decay. Indeed, in this
case, according to Eq. (139), the hot big bang begins at the
temperature

TREH � 10 MeV; (178)

which is close to the BBN bound, but does not violate it.
Now, from Eq. (149), we find the entropy production

ratio to be

Safter

Sbefore
� 107:5g: (179)

The relic abundance of axions can be calculated by apply-
ing the formulas of Ref. [43], where we take the QCD scale
�QCD � 200 MeV and ignore the uncertainties for sim-
plicity. Comparing this relic abundance with the best-fit
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value of the cold dark matter (CDM) abundance in the
universe from the measurements of WMAP [51], we find
that, for v0 as large as the one shown in Eq. (173), the
entropy of the universe must be increased by a factor of
order 105 at least. In the present model, this is actually an
overestimate since, as it turns out, the axions are generated,
in the viable cases, after the domination of the oscillating
curvaton field. Axion production in a universe dominated
by a coherently oscillating scalar field has been studied in
Ref. [49]. In such a universe, axion oscillations begin at a
smaller temperature than in a radiation dominated uni-
verse. Consequently, the initial ratio of the axion number
density to the photon number density is smaller. This then
implies that, in this case, less entropy production is re-
quired. Taking this effect carefully into account, we obtain
the bound

g > 10�4:5; (180)

which is more stringent than the bound in Eq. (176), as
expected. A large coupling between the inflaton field and
its decay products can be realized if the VEV of the s
modulus corresponds to a point of enhanced symmetry.
Note that, in this case, there is no moduli problem because
s decays much earlier than BBN.

Moreover, we have to make sure that the entropy pro-
duction occurs after the onset of the axion oscillations. The
latter, according to Eq. (141), occurs at energy density
given by


1=4
axosc � 1 GeV; (181)

where we used Eq. (173). Comparing the above equation
with Eq. (178), we see that the requirement in Eq. (150) is
satisfied. Thus, we conclude that axion overproduction can
be avoided, due to entropy release at curvaton decay.

It should be noted, however, that this mechanism of
diluting the axions by the entropy produced when the
curvaton decays after dominating the universe may lead
[30] to a cosmological disaster. Generally, a sizable frac-
tion of the curvaton’s decay products consists of sparticles,
which eventually turn into stable lightest sparticles (LSPs)
in models (such as ours) with an unbroken matter parity
symmetry. The freeze-out temperature of the LSPs is typi-
cally much higher than the reheat temperature in Eq. (178).
Actually, it is even higher than the energy density scale
corresponding to the onset of axion oscillations [see
Eq. (181)]. Consequently, the LSPs freeze-out immediately
after their production and can, subsequently, overclose the
universe leading to a cosmological catastrophe.

In the present model, the PNGB curvaton can decay into
a pair of squarks, sleptons, charginos, or neutralinos with a
decay width which can be comparable to the width of its
main decay channel to a pair of Higgs particles [see
Eq. (122)]. We should, however, observe that our curvaton,
being a SM singlet, couples to the charginos and neutrali-
nos only via their Higgsino component. Taking � to be
-19
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much greater than the soft masses of the bino and wino,
which is often encountered in various realizations of
MSSM, we can ensure that the lighter charginos and neu-
tralinos are predominantly gauginos. We can further
choose all the squark, slepton, and heavier chargino and
neutralino masses to exceed half the curvaton mass [see
Eq. (166)] so that all the curvaton decay channels involving
these particles are kinematically blocked. Thus, the only
decay channels allowed are to a pair of lighter charginos or
neutralinos. The corresponding rates can be easily sup-
pressed by reducing the Higgsino component of these
sparticles. Indeed, assuming that their Higgsino compo-
nents are about 1%, we obtain a suppression factor of order
10�8. In view of the fact that these sparticles have compa-
rable masses to the Higgs particles, we then conclude that
only a fraction of about 10�8 of the energy density of the
universe soon after the curvaton decay consists of LSPs.
This fraction is enhanced by a factor of about 107 until the
time teq of equal matter and radiation energy densities
when the cosmic temperature Teq � 10�9 GeV and re-
mains essentially constant thereafter. So, the cosmological
disaster from the possible overproduction of LSPs at the
curvaton decay can be avoided. Moreover, the LSPs can
contribute to the CDM in the universe.

Using Eq. (119) with n � 5, we find

"min � 10�12:5: (182)

Therefore, Eqs. (157) and (175) suggest that

jSj� � 104H�: (183)

The above can, in principle, be used in Eqs. (155) and (164)
to constrain the parameters of the underlying model (e.g.
Fs).

A useful quantity to calculate in order to evaluate
Eqs. (155) and (164) is the number of e-foldings which
corresponds to the cosmological scales N�. The cosmo-
logical scales range from a few times the size of the
horizon today �H�1

0 down to scales �10�6H�1
0 corre-

sponding to masses of order 106M� with M� being the
solar mass. Typically, this spans about 13 e-foldings of
inflation. For the estimate of N�, we will choose a scale
roughly in the middle of this range. More precisely, we will
take the scale that reenters the horizon at the time when
structure formation begins, i.e. at the time teq of equal
matter and radiation energy densities. Then it is straight-
forward to obtain

exp�N��

H1=3
� t1=2

eq
�

�
���inf

Hdom

�
1=6
�
�m3

�M4
P�

1=6

v0
; (184)

where we have used Eqs. (122) and (135) with �osc � v0.
Note that, remarkably, the above is independent from g.
Putting H� �m� �m3=2, we obtain

N� ’ 38; (185)
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where we have also taken Eq. (173) into account. The
number of e-foldings that corresponds to the decoupling
of matter and radiation (when the CMBR is emitted) is
roughly N� 	 1:5, while the one which corresponds to the
present horizon is about N� 	 9.

Using the above, let us attempt to investigate first the
case when

2FsNx � 1: (186)

Substituting Eq. (159) in Eq. (162), we obtain

�22:1� lnNx

N�
��Nx

N�
� 1�

76�Nx

N�
�lnNx

N�
� 1� 	 1


� 1; (187)

where we also used Eqs. (156), (183), and (185), and the
fact that H2 ’ H2

m�1� e
�2FsN�, which, in this case, is �

2FsNH2
m. In order to find how small the left-hand side

(LHS) of this inequality should actually be, we must ob-
serve that the contribution to the spectral index of density
perturbations ns originating from the evolution of v during
inflation is �2H�1

� � _v=v��, which is negative. Moreover,
one can easily check that, in the present example, all the
other contributions [52] to the spectral tilt for the curvaton
are negligible. This is due to the fact that "� 1 [see
Eq. (175)] and, as it turns out, also c� 1 (see below).
Using Eq. (152), one can further show that, under these
circumstances, dns=d lnk is very small and, thus, no run-
ning of the spectral index is predicted in our model. For
fixed ns, the recent results of WMAP imply [51] that ns �
0:96� 0:02. Therefore, at 95% C.L., ns � 0:92. It is then
obvious that the LHS of the inequality in Eq. (187) should
not exceed about 0:04. This requirement is met provided
that

Nx

N�
* 500; (188)

which, in view of Eq. (185), implies that

Nx * 1:9� 104: (189)

From Eq. (159), we then obtain that

cS & 2:4� 10�4: (190)

It can be checked that, with these values, the requirement in
Eq. (165) is well satisfied. From Eqs. (186) and (189), one
obtains

Fs � 2:63� 10�5 ) c� 7:89� 10�5; (191)

where we also used Eq. (8). Such a small c implies that
modular inflation is not really of the fast-roll type and may
last for a large number of e-foldings. Indeed, according to
Eq. (13), Ntot � 106. In view of Eqs. (8) and (154),
Eqs. (190) and (191) suggest that

jmSj & 1:55� 10�2H� and ms � 8:88� 10�3H�
(192)
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with H� & 4:47� 10�2Hm. The above values for c and cS
are plausible (requiring only mildly tuned masses) but not
very pleasing, since we would prefer c� cS � 1. (Note
that larger values of Nx result in more severe tuning of c
and cS.) The small values obtained may be due to the
condition in Eq. (186), which we imposed to simplify the
problem.

Therefore, let us consider, now, that

2FsN� � 1 and 2FsNx � 1: (193)

In this limit, Eq. (161) takes the form

�
22:1	 ln�2FsN��

76 ln�2FsN��
� 1: (194)

We find that the LHS of this inequality remains smaller
than 0:04 provided that 2FsN� & 0:004, which yields

Fs & 5:26� 10�5 ) c & 1:58� 10�4: (195)

This is less fine-tuned than the values in Eq. (191). In order
to estimate the lower bound on Nx corresponding to the
upper limit on Fs, we approximate Eq. (161) for 2FsN� �
1, but any value of 2FsNx:

�22:1� ln�1�e
�2FsNx

2FsN�
�
�1� e�2FsNx�

76��1� e�2FsNx� ln�e
2FsNx�1
2FsN�

� � 2FsNx

� 1: (196)

For 2FsN� ’ 0:004, the LHS of this inequality is kept
smaller than 0:04 even if 2FsNx becomes as low as 4,
which yields

Nx * 3:8� 104: (197)

Saturating the bounds in Eqs. (195) and (19), i.e. taking

Fs ’ 5:26� 10�5�c ’ 1:58� 10�4� and

Nx ’ 3:8� 104;
(198)

we find from Eq. (155) that

cS ’ 4:92� 10�4; (199)

which is a little more natural than the values in Eq. (190). It
can be checked that, with the values in Eq. (198), the
requirement in Eq. (164) is well satisfied. Using Eq. (13),
it is easy to see that, in this case, the total number of e-
foldings of inflation is

Ntot ’ 6:6� 105: (200)

In view of Eqs. (8) and (154), Eq. (198) suggests that

jmSj ’ 2:22� 10�2H� and ms ’ 1:26� 10�2H�
(201)

with H� ’ 6:32� 10�2Hm, which are not very different
from the upper bounds in Eq. (192). After some investiga-
tion, it can be realized that not much improvement can be
made on the results.
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In conclusion, we see that, in the n � 5 case with �� 1,
our model can work, typically, for values

cS; c & O�10�4� (202)

or, equivalently, for masses

jmSj; ms & O�10�2�H�; (203)

where H� �m3=2 � 1 TeV. Such values are quite natural
and imply only a mild tuning on the masses of the rolling
field jSj and the inflaton modulus. This is necessary be-
cause the effective mass j �mSj should remain small enough
during the relevant part of inflation for jSj to be slowly
rolling and the constraint in Eq. (43) to be satisfied. The
condition for this is that cS or, equivalently, jmSj be small
[53]. Yet, a substantial variation of jSj from the phase
transition until the time when the cosmological scales
exit the horizon is necessary for obtaining the required
value of the amplification factor "�1 (recall that the re-
quired " is always much bigger than "min). This is achieved
with a small mass for the inflaton modulus, which leads to a
large number of e-foldings. So, modular inflation cannot be
of the fast-roll type in this case. The above findings are
similar to the ones in Ref. [18], despite the fact that there
the example studied considered the case when the curvaton
decayed before domination with n � 2. This suggests that
the above results are quite robust.

One may wonder why, since both the inflaton s and the
field jSj turn out to be light when the cosmological scales
exit the inflationary horizon, we cannot use those fields to
generate the observed curvature perturbation. The reason is
that, in contrast to the PNGB curvaton, the perturbations of
those fields are not amplified. Hence, their contribution to
the overall curvature perturbation is insignificant. Indeed,
for the inflaton, we have

�s ’
1

5
���
3
p
�

V3=2
�

jV 0j�M
3
P

’
3

5�

�
H�
ms

�
3 ms

MP
eFsN� ; (204)

where the prime denotes derivative with respect to the
inflaton s and we have used Eqs. (6) and (8). For the above
discussed values in Eqs. (185), (198), and (201) and for
H� �m3=2 � 1 TeV, Eq. (204) gives �s � 10�12, which is
much smaller than the observed value � ’ 2� 10�5.
Similarly, for jSj, we have

�jSj ’
2

3

	j �Sj

j �Sj

����������
H�
v0
� "��; (205)

where j �Sj � jjSj � jSj0j, 	j �Sj the perturbation in j �Sj and
we have used the fact that jSj0 � v0 � jSj� with jSj� given
by Eq. (183). For the values discussed above, �jSj �
10�13 � � , where we considered that � � ��.

IX. DISCUSSION AND CONCLUSIONS

In this paper, we have studied modular inflation, which
uses a string axion as the inflaton field. The inflationary
-21
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scale (� 1010:5 GeV) is determined by the scale of gravity
mediated soft SUSY breaking. Such low-scale inflation,
even though it can still solve the flatness and horizon
problems of the standard hot big bang cosmology, cannot
generate the observed curvature perturbation (necessary to
explain the CMBR anisotropy and structure formation)
from the quantum fluctuations of the inflaton field.
However, we have shown that this type of modular inflation
can generate the appropriate amplitude of superhorizon
curvature perturbation to account for the observations
through the use of a suitable curvaton field.

The curvaton field that we have used is a PNGB which is
an angular degree of freedom orthogonal to the QCD axion
field (that we called the orthogonal axion) in a class of
SUSY PQ models. We considered models that generate the
PQ scale dynamically (by using flaton fields), while they
also solve the � problem of MSSM. In these models, one
needs more than one SM singlet superfields to break the
global U�1�PQ symmetry (with the exception of its matter
parity subgroup). Hence, apart from the axion, there is at
least one other angular degree of freedom (the orthogonal
axion) which may be kept appropriately light during in-
flation and can be responsible for the curvature perturba-
tion in the universe. This could be achieved if the potential
possesses a valley of minima with a negative inclination
and the system happens to slowly roll down this valley
during the relevant part of inflation with some of the SM
singlet fields acquiring values much smaller than their
vacuum values. Under these circumstances, the orthogonal
axion may be kept light during inflation and its perturba-
tion from inflation may be later amplified as the SM
singlets acquire their vacuum values accounting for the
observed curvature perturbation in the universe.

Following this promising idea, we have attempted to
construct appropriate curvaton models using two SM sin-
glet superfields P and Q, charged under the PQ symmetry.
However, we have shown that it is not possible to construct
suitable curvaton models by using only two SM singlet
superfields, because, in this case, the orthogonal axion
mode cannot avoid being massive during the relevant
part of inflation. Hence, we studied PQ models which
involve a third superfield S and specified the general con-
ditions under which these models can contain a suitable
PNGB curvaton. Actually, we have shown that they possess
a shifted valley of minima at almost constant values of jPj
and jQj of the order of their vacuum values. The value of
jSj, however, which parametrizes the valley, can be kept
much smaller than its vacuum value during the relevant
part of inflation. Also, there exists an orthogonal axion
which remains light during inflation and can serve as
curvaton.

For definiteness, we considered a concrete class of mod-
els of this category where the superfield S has vanishing
PQ charge (see also Ref. [10]). These models are simple
extensions of MSSM based on the SM gauge group and
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possessing, besides the global anomalous PQ symmetry, a
global U�1� R symmetry and a discrete Z2 symmetry. The
superpotential of the models includes all the terms satisfy-
ing these symmetries. The baryon and lepton numbers are
automatically conserved to all orders in perturbation theory
as a consequence of the R (and the PQ) symmetry.

To study the cosmology, we have also taken into account
that the SM singlet fields in these models (P, Q, and S) are
expected to receive SUGRA corrections to their soft
SUSY-breaking masses-squared (as well as their soft
SUSY-breaking trilinear A-terms) of order set by the
Hubble parameter. We consider the corrections to the
masses-squared to be positive in all cases. Since our in-
flation model has H� of order the electroweak scale, which
is also the scale of the soft masses, these SUGRA correc-
tions do not seriously affect the physics with the exception
of the S field, whose soft mass-squared is taken to be
negative. This is intentional in order to facilitate a phase
transition during inflation which sends jSj rolling away
from the origin along the shifted valley and reaching its
true minimum by the end of inflation (cf. Ref. [18]). As a
result, the order parameter of our PNGB curvaton field
increases substantially after the cosmological scales exit
the inflationary horizon. This amplifies the curvaton per-
turbation according to the mechanism presented in
Ref. [13] and the observed value of the curvature pertur-
bation in the universe can be achieved despite the low
inflation energy scale.

We have investigated in detail the above scenario and
showed that the requirements for a successful curvaton put
important constraints both on the choice of model and also
on the model parameters. Indeed, we have shown that only
a few members of our class of PQ models are eligible for
successful curvaton. We then have concentrated on a par-
ticular such model and, using natural values for the model
parameters, we have studied analytically its performance
as curvaton model. We found that the model can indeed
work successfully in the context of modular inflation with
only a mild tuning of the inflaton’s mass and the mass of S:
jmSj; ms & 0:01H�. The bound on jmSj comes from the
requirement that jSj be slowly rolling when the cosmologi-
cal scales exit the horizon, otherwise the scale invariance
of the spectrum of curvature perturbations will be destabi-
lized. The bound on ms, on the other hand, originates from
the large variation of jSj between the phase transition and
the exit of the cosmological scales from the horizon, which
is necessary for obtaining the correct amplification of the
curvaton perturbation. This bound implies that modular
inflation cannot be of the fast-roll type and may last for a
large number of e-foldings.

In this model, the PQ scale turns out to be quite large (it
is comparable to the scale of grand unification). It is
actually well above the standard cosmological bound
from the requirement that the universe is not overclosed
by axion overproduction. However, overclosure of the
-22
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universe can be avoided, in this model, by diluting the
primordial axions through the entropy release by the decay
of the curvaton field. For this to be effective, the inflaton
modulus has to decay early enough so that the curvaton
may well dominate the radiation background. Con-
sequently, we need a comparatively large decay coupling
constant for the inflaton, which is possible if the VEVof the
inflaton corresponds to an enhanced symmetry point.

After the curvaton decays, the hot big bang begins. This
occurs not long before BBN. So, baryogenesis has to take
place soon after the time of the curvaton decay at the latest.
Moreover, it is clear that, in the present case where the
curvaton decays after dominating the energy density of the
universe, baryons must be generated through the decay of
the curvaton (or of some of its decay products), since
otherwise there will be [25] an unacceptably large baryon
isocurvature perturbation. It is also obvious that leptogen-
esis [54] (or electroweak baryogenesis) cannot work here
since the reheat temperature is very low for the nonpertur-
bative electroweak sphaleron effects to operate. Therefore,
almost the only viable option is that the observed baryon
asymmetry of the universe is directly generated by the
decay of the curvaton (or of its decay products). One
023525
possibility is that the curvaton has suitable baryon (and
lepton) number violating decay channels via nonrenorma-
lizable Lagrangian operators of higher order with decay
widths comparable to its main decay width to Higgs par-
ticles. This, of course, requires an appropriate extension of
our model, which, as it stands, has exact baryon (and
lepton) number conservation. It may be possible [55] to
obtain the required Lagrangian operators by embedding
our model in a larger scheme with (large) extra dimensions.
This baryogenesis issue deserves further study, which we
postpone for the future.

The curvaton model analyzed in this paper can be con-
sidered to accommodate [56] low-scale inflationary models
other than modular inflation of the type considered here.
However, modular inflation due to string axions is one of
the better theoretically motivated low-scale inflation mod-
els in the literature.
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