
PHYSICAL REVIEW D 73, 023523 (2006)
Fluctuations of the luminosity distance
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We derive an expression for the luminosity distance in a perturbed Friedmann universe. We define the
correlation function and the power spectrum of the luminosity distance fluctuations and express them in
terms of the initial spectrum of the Bardeen potential. We present semianalytical results for the case of a
pure CDM (cold dark matter) universe. We argue that the luminosity distance power spectrum represents a
new observational tool which can be used to determine cosmological parameters. In addition, our results
shed some light into the debate whether second order small scale fluctuations can mimic an accelerating
universe.
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I. INTRODUCTION

Some years ago, to the biggest surprise for the physics
community, measurements of luminosity distances to far
away type Ia supernovae have indicated that the Universe
presently undergoes a phase of accelerated expansion [1].
If the Universe is homogeneous and isotropic, i.e. a
Friedmann-Lemaı̂tre universe, this means that the energy
density is dominated by some exotic ‘‘dark energy’’ which
obeys an equation of state of the form P<��=3. The best
known dark energy candidate is vacuum energy or, equiv-
alently, a cosmological constant. This discovery has lately
been supported by several other combined data sets, like
the cosmic microwave background (CMB) anisotropies
combined with either large scale structure or measure-
ments of the Hubble parameter [2].

On the other hand, since quite some time, it is known
that locally measured cosmological parameters like H0 or
the deceleration parameter q0 might not be the ones of the
underlying Friedmann universe, but they might be dressed
by local fluctuations [3]. Therefore, it is of great impor-
tance to derive a general formula of the luminosity distance
in a universe with perturbations. To some extent, this has
been done in several papers before [4,5]. But the formula
which we derive here is new. We shall comment on the
relations later on.

Lately, it has even been argued that second order pertur-
bations might be responsible for the observed acceleration
and that no cosmological constant or dark energy is
needed [6,7]. This claim is very surprising, as it seems to
require that backreaction leads to big perturbations out to
very large scales, contrary to what is observed in the
CMB. This proposal has thus promptly initiated a heated
debate [8].

On the one hand, the present work is a contribution in
this context. We calculate the measurable luminosity dis-
tance in a perturbed Friedmann universe and determine its
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fluctuations (within linear perturbation theory). We show
that these remain smaller than 1 and therefore higher order
perturbations are probably not relevant. The main point of
our procedure is that we use only measurable quantities
and not some abstract averaged expansion rate to deter-
mine the deceleration parameter. We actually calculate the
luminosity distance dL�n; z� where n defines the direction
of the observed supernova and z its redshift. We then
determine the power spectrum C‘�z; z0� defined by

dL�n; z� �
X
‘m

a‘m�z�Y‘m�n�; (1)

C‘�z; z0� � ha‘m�z�a�‘m�z
0�i: (2)

Here the h�i denotes a statistical average. Like for the
cosmic microwave background, statistical isotropy implies
that the C‘’s are independent of m.

We then analyze whether the deviations of the angular
diameter distance from its background value can be suffi-
cient to fake an accelerating universe.

Aside from this problem, the new variable which is
defined and calculated in this paper might in principle
present an interesting and novel observational tool to de-
termine cosmological parameters. And this is actually the
main point of our work. We hope to initiate a new obser-
vational effort, the measurement of the luminosity distance
power spectrum, with this paper. A detailed numerical
calculation of the dL power spectrum and the implementa-
tion of a parameter search algorithm are postponed to
future work. Here we simply show that for large redshifts,
z � 0:4 and sufficiently high multipoles, ‘ > 10 the lens-
ing effect dominates. However, at smaller redshift and
especially at low ‘’s other terms can become important,
most notably the Doppler term due to the peculiar motion
of the supernova.

The paper is organized as follows: In Sec. II we derive a
general formula for the luminosity distance valid in
(nearly) arbitrary geometries. In Sec. III we apply the
formula to a perturbed Friedmann universe. In Sec. IV
we derive general expressions for the dL power spectrum
-1 © 2006 The American Physical Society
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in terms of the Bardeen potentials. We then evaluate our
expressions in terms of relatively crude approximations
and some numerical calculations for a simple �M � 1
CDM model in Sec. V. In Sec. VI we discuss our results
and conclude.

Notation.—We denote 4-vectors by arbitrary letters,
sometimes with and sometimes without Greek indices, k �
�k��. Three-dimensional vectors are denoted bold face or
with Latin indices, y � �yi�. We use the metric signature
��;�;�;��. The covariant derivative of the 4-vector k
in direction of the 4-vector n is often denoted by rnk 	
�n�k�;��.
II. THE LUMINOSITY DISTANCE IN
INHOMOGENEOUS GEOMETRIES

We consider an inhomogeneous and anisotropic uni-
verse with geometry ds2 � g��dx

�dx�. We place a stan-
dard candle emitting with total luminosity L (energy per
unit proper time) at spacetime position S. Its four-velocity
is uS. An observer at spacetime position O with four-
velocity uO (see Fig. 1) receives the energy flux F (energy
per unit proper time and per surface). The luminosity
distance between the source at S and the observer at O is
defined by

dL�S;O� �

����������
L

4�F

s
: (3)

The observer measures the flux F and ‘‘knows’’ the intrin-
sic luminosity L of the standard candle. Furthermore, she
determines the source redshift z and direction n and
O

S dΩS

dAO

FIG. 1. A light beam emitted at the source event S ending on
the observer O. At the source position, the plane normal to the
source four-velocity is indicated.
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thereby obtains the function dL�n; z�, which we now
want to express in terms of the spacetime geometry.

Be d�S the infinitesimal solid angle around the source
and dA�x� the infinitesimal surface element on the surface
normal to the photon beam at the position x along the
photon trajectory from S to O, then

d2
L�S;O� �

dAO
d�S

�1� z�2 � j detJ�O; S�j�1� z�2: (4)

Here J is the so-called Jacobi map mapping initial direc-
tions ���S around the source into vectors �x�O transversal to
the photon beam at the observer position [9],

�x�O � J �
��O; S����S : (5)

The factor 1� z � !S=!O is the redshift of the source.
There is a factor 1� z due to the redshift of the emitted
energy and a second factor due to the time dilatation in F /
dEO=d�O with respect to L � dES=d�S. If k denotes the
4-vector of the photon momentum and uS and uO are the
source and observer 4-velocities, respectively, we have

�!S 	 �k � uS� � g���S�k��S�u�S�S�; (6)

and

�!O 	 �k � uO� � g���O�k
��O�u�O�O�: (7)

If we have a standard candle source of which we know
L and we measure F, we can therefore determine
j detJ�O; S�j1=2!S=!O, which contains information about
the spacetime geometry. Of course it also depends on the
source and observer velocities. The Jacobi map J �

��O; S�
maps direction vectors normal to the photons direction and
normal to uS at S into vectors normal to the photon direc-
tion and uO at O. It depends on the source velocity uS and
on the curvature tensor along the photon geodesic from S to
O. As we shall see, it does not depend on the observer
velocity uO.

Even though in the form (5), J is given by the 4
 4
matrix J �

��O; S�, we have to take into account that the
vectors �x�O as well as ���S live in the two-dimensional
subspace normal to uO, respectively, uS and normal to the
photon direction at O and S. The latter are given by

nO �
1

!O
�k�O� � �k�O� � uO�uO�; (8)

and

nS �
1

!S
�k�S� � �k�S� � uS�uS�: (9)

The photon direction vectors nS and nO are normalized
spacelike vectors pointing into the photon direction in the
reference frame of the source at S and of the observer at O,
respectively. Denoting the projectors onto the subspaces
normal to uS; nS and uO; nO by PS and PO we have

�PS�
�
� � ��� � u

�
S uS� � n

�
S nS�; (10)
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and

�PO��� � ��� � u
�
OuO� � n

�
OnO�: (11)

The true Jacobi map is J�O; S� � POJPS understood as a
two-dimensional linear map. For convenience we shall
write it as a four-dimensional application and determine
its determinant as the product of the two nonvanishing
eigen values.

To determine the Jacobi map we now derive a differen-
tial equation for the evolution of the difference vector
�x��	� in a given direction ���S along the photon trajec-
tory. The final value �x��	O� then depends linearly on the
initial conditions ���S . For this we denote the photon
trajectory by f��	; 0� and parameterize neighboring light-
like geodesics by f��	; �y�. The 4-vector

k���y� �
@f��	; �y�

@	

is the tangent of neighboring photons at �y and

�x� �
@f�

@yi
�yi

connects the geodesics f��	; 0� and f��	; �y�. Since the
‘‘beam’’ f��	; y� describes photons which are all emitted
at the same event S they have the same phase (eikonal) S.
With k� � �r�S we therefore have

0 � r�xS 	 �x�r�S � ��x
�k�: (12)

In order for the 4-vectors �x��y� to sweep a surface normal
to uO at the observer event O at 	 � 	O, we also need
��x�	O� � uO� � 0. This is a priori not true. However, we
can reparameterize f by

	! �	 � 	� h�y� and y ! �y � g�y�: (13)

Under this reparameterization �x transforms as �x� !
�x� � �x� � k��h. It is easy to see that g�
�x��x
 �
g�
�x

��x
, hence the length of the vector �x is invariant
under this reparameterization. Since uO is timelike,
�k�	O� � uO� � 0 and we can hence choose a parameteri-
zation such that ��x�	O� � uO� � 0.

The directions ��� are given by

��� �
1

!S
�rk�x�� �

1

!S
�r�xk��: (14)

The last equality requires a brief calculation which can be
found, e.g. in [9]. To convince oneself that the above
definition of ��� is suitable, one easily verifies (see [9])
that ���S is normal to the source velocity uS and the photon
direction nS and that it is normalized.

To find the differential equation for �x�	� we use the
relations

R�
��k

 � �r�r� �r�r��k

�;

�rk�x�

 � k�r��x


 � �x�r�k

 � �r�xk�


:
(15)
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Furthermore,

R�
��k

k��x� � k��x��r�r� �r�r��k

�

� �x�rk�r�k
�� � k�r�x�r�k

��

� rk��x
�r�k

�� � �rk�x
���r�k

��

� r�x�k
�r�k

�� � �r�xk
���r�k

��

� rk��x�r�k��

� rk�k�r��x�� � rk�!S����: (16)

From the third to the fourth line we have used that rk�x �
r�xk and rkk � 0. We therefore obtain the system of
equations

rk�!S��
�� � R�
��k


k��x�; (17)

rk��x
�� � !S��

�: (18)

With the definition of the covariant derivative this finally
gives

d��x��
d	

� �����k��x� �!S���

	 C�� �	��x� �!S���; (19)

d�!S��
��

d	
� R�
��k


k��x� � ����k
�!S��

�

	 A�� �	��x
� � C�� �	�!S��

�; (20)

where we have set

C�
�	� � ����
k
� and A�
�	� � R���
k

�k�: (21)

We now define

~Z �
�x�

!S���

� �
: (22)

This (8-component) vector then satisfies the equation

d ~Z�	�
d	

� B�	� ~Z�	�; (23)

with

B�	� �
C�
�	� ��

A�
�	� C�
�	�

 !
: (24)

The initial conditions are �x��	S� � 0 since all photons
start from the same source event and �k������	S� �
�u�S����	S�� � 0 as we have seen above. The solution of
Eq. (23) therefore provides a linear relation between the
initial condition ����	S� and �x��	�,

�x��	� � J �

�	���


�	S�: (25)

With J �	O� we can then easily determine the true Jacobi
map J�O; S� � POJ �	O�PS.
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III. THE LUMINOSITY DISTANCE IN A
PERTURBED FRIEDMANN UNIVERSE

A. Conformally related luminosity distances

We consider two geometries related by

d~s2 � ~g��dx�dx� � a2�x�g��dx�dx� � a2�x�ds2: (26)

We want to relate the angular diameter distances of the two
metrics. If ~k is a lightlike geodesic for the metric d~s2 with
affine parameter ~	, then k � a2 ~k is a lightlike geodesic for
ds2 with affine parameter 	 determined by

d~	
d	
� a2:

Furthermore, be ~u� � dx�
d~� the 4-velocity of an observer

with metric d~s2 and be ~� its proper time such that
~g��~u�~u� � �1, then u� � dx�

d� is the corresponding
4-vector of the observer with respect to the metric ds2

with proper time � if d~�
d� � a. In other words

~u � �
dx�

d~�
�
dx�

d�
d�
d~�
� a�1u�: (27)

The redshift of a photon emitted at S and observed at O
determined with respect to the two metrics is therefore
related by

1� ~z �
~!S

~!O
�
�~g��~k�~u��S
�~g��~k�~u��O

�
aO�g��k�u��S
aS�g��k�u��O

�
aO
aS
�1� z�: (28)

To determine the relation between the Jacobi maps
J�
 �

�x�O
��
S

we just have to remember that angles are not

affected by conformal transformations, but distances scale
with the conformal factor a. Therefore
023523
~J�S;O� �
�~x�O
��
S

� aO
�x�O
��
S

� aOJ�S;O�; (29)

det~J�S;O� � a2
O detJ�S;O�: (30)

For the angular distance relation we finally obtain

~dL � �1� ~z�
�������������������������
j det~J�S;O�j

q
�
a2
O

aS
�1� z�

�������������������������
j detJ�S;O�j

q
�
a2
O

aS
dL: (31)

This relation is very useful in Friedmann cosmology.
The Friedmann metric is given by

d~s2 � a2��d�2 � �ijdx
idxj� � a2ds2; (32)

where � is the metric of a 3-space with constant curvature
K. The luminosity distance of a photon emitted at confor-
mal time �S and observed at �O with respect to the metric
ds2 is simply �O � �S �

R
�O
�S
d�. The Friedmann equa-

tion for a universe containing matter, radiation, curvature,
and a cosmological constant reads�

_a
a

�
2
� H2

0��ma
�1 ��rada

�2 ��K ���a
2�; (33)

where we have normalized aO � 1 and we have introduced
the density parameters �m � �m��O�=�c��O�, �rad �
�rad��O�=�c��O�, �K � �K=H

2
0 , and �� � �=�3H2

0�.
After the variable transformation to z� 1 � 1=a, dz �

�da=a2 we obtain

d� �
H�1

0 dz����������������������������������������������������������������������������������������������������
�rad�1� z�

4 ��m�z� 1�3 ��K�z� 1�2 ���

p :

This leads to the well-known expression for the luminosity
distance to an object emitting at redshift zS observed today
at zO � 0,
dL�zS�
Friedman �

�0 � �S
aS

�
1� zS
H0

Z zS�1

1

dx����������������������������������������������������������������
�radx

4 ��mx
3 ��Kx

2 ���

p : (34)
Comparing this expression with the measured luminosity
distance from supernovae type Ia at different redshifts has
led to the claim that the cosmological constant be non-
vanishing [1].

B. The Jacobi map in a perturbed Friedmann universe

We now consider a Friedmann universe with scalar
perturbations. In longitudinal (or Newtonian) gauge the
metric is given by

~g��dx
�dx� � a2���1� 2��d�2 � �1� 2���ijdx

idxj�:

(35)

For perfect fluids the metric perturbations � and � are
equal. We assume in the sequel � � �. Furthermore, we
consider a spatially flat universe (K � 0), so that �ij � �ij.

We now determine the luminosity distance for the metric

ds2 � ��1� 2��d�2 � �1� 2���ijdx
idxj: (36)
We then relate this to the physical luminosity distance via
the relation (31).

We assume that the galaxy containing the supernova as
well as the one containing the observer are moving with the
cosmic fluid. To first order in the perturbations, the four-
velocity of the cosmic fluid is given by
-4
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�u�� � �1��; vi�; (37)

where vi is the peculiar velocity field.

1. Redshift

The photon geodesic is obtained by integrating the
geodesic equation to first order. Since the background is
Minkowski, the background photon momentum is constant
and we may normalize the affine parameter such that �k0 �
1 and �ki � ni with

P3
1 n

ini � 1. Here overbars denote
background quantities. For the perturbed 4-velocity of
the photon we may still assume k0

S � 1. The geodesic
equation then gives (to first order)

k0�	O� � k0�	S� � k0�	O� � 1 � �2
Z 	O

	S
d	r��	� � n

� �2�jOS � 2
Z 	O

	S
d	 _�;

and

ki�	O� � ki�	S� � 2ni��O ��S� � 2
Z 	O

	S
d	@i��	�:

The redshift of a photon emitted at spacetime position S
and observed at O then becomes

1� z �
�g��k�u��S
�g��k

�u��O
� 1� ��� v � n�OS � 2

Z 	O

	S
d	 _�:

(38)
2. The perturbed Jacobi map

To determine the Jacobi map we have to solve the
system (23) to first order. We first determine the maps
C�
 and A�
 which make up the matrix BNM. According
to Eq. (21), C�
 � ���
�k

�. Since ��
� is already first
order, we may insert the zeroth order expression for k�

leading to

C0
0 � ��0; C0

i � �@i�� _�ni;

Ci0 � �@i��
_�ni; Cij � �0�ij � @j�n

i � @i�nj:

(39)

Here we denote the derivative along the geodesic with a
prime and the derivative with respect to conformal time by
an over-dot, d

d	 	
0 and @

@� 	 _. The matrix A is given by
A�
 � R���
k

�k�. Again, since R���
 is of first order, we
may insert the zeroth order expression for the photon
velocity. Note that A�
, unlike C�
, is symmetric.
Computing the Riemann tensor of our perturbed metric
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we obtain

A0
0 � 2 ���

d2�

d	2 � 2
d _�

d	
;

A0
i � 2@i _��

d@i�
d	

�
d _�

d	
ni;

Ai0 � �A
0
i ;

Aij � �
d2�

d	2 �
i
j � 2@j@i��

d@j�

d	
ni �

d@i�
d	

nj:

(40)

The Christoffel symbols and the Ricci tensor of the
perturbed metric are given in Appendix A. Spatial indices
i or j are raised and lowered with the flat metric �ij.
Therefore, no special attention is paid to their position.

To solve it, we now split the system (23) into its zeroth
and first order components,

~Z � ~Z�0� � ~Z�1� and B � �B� B�1�: (41)

To zeroth order, the photons move along straight lines and
the energy is not redshifted so that we simply obtain
� ����	� � ���S , �!�	� � !S, and � �x��	� � �	�
	S�!S� ���S . For the Jacobi map this implies �J �


 � �	O �
	S�!S�

�

. The projector onto the tangent space normal to

the observer velocity and the photon direction is simply
�PS � �PO � �P, where

�P 0
0 �

�P0
i �

�Pi0 � 0; �Pij � �ij � n
inj: (42)

The zeroth order two-dimensional Jacobi map is therefore
given by �J�
 � � �P �J �P��


�J 0
0 �

�J0
i � �Ji0 � 0; �Jij � �	O � 	S�!S��

i
j � n

inj�:

(43)

The two-dimensional determinant of the Jacobi map is
therefore det �J � �	O � 	S�2!2

S, leading to the flat space
luminosity distance dL � 	O � 	S � �O � �S. For the
last equality we have used that �n0 � d�

d	 � 1. In an unper-
turbed Friedmann universe this reproduces (34).

Since C and A are already first order, the first order
differential equation becomes

d
d	

�x��1��	� � C��1�
 �	�� �x
�	� � �!S�����1��	�;

d
d	
�!S�����1��	� � A��1�
 �	�� �x
�	� � C��1�
 �	� �!S� ��
�	�:

(44)

Making use of the background solution we obtain

������1��	� �
Z 	

	1

d	0�A�
�	
0��	0 � 	S� � C�
�	

0��� ��
S

� ����S �
�1�; (45)
-5
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�x��1��	� �

"Z 	

	S
d	0C�
�	

0��	0 � 	S�

�
Z 	

	S
d	0

Z 	0

	S
d	00�A�
�	

00��	00 � 	S�

� C�
�	
00��

#
�!S� ��
S � �	� 	S��!S���S �

�1�:

(46)

The first order contribution to the unprojected Jacobi map
then becomes

!�1
S J ��1�


 �	O� �
Z 	O

	S
d	C�
�	��	� 	S�

�
Z 	O

	S
d	

Z 	

	S
d	0�A�
�	

0��	0 � 	S�

� C�
�	
0��: (47)

We want to calculate

J�1� � �POJPS�
�1� � �POJ

�1� �PS � P
�1�
O

�J �PS � �PO �JP�1�S :

(48)
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A short calculation, inserting our results for C and A gives
� �POJ �1� �PS�ij � U � ��ij � n
inj� �Wi

j � n
inkWkj

� njnkWi
k � n

injnknlWkl; (49)
with
U � �2�S�	O � 	S� � 2
Z 	O

	S
d	��	� and

Wij � �2
Z 	O

	S
d	

Z 	

	S
d	0@i@j��	

0��	0 � 	S�:
(50)
Implicit summation over repeated (spatial) indices is as-
sumed and ni � ni, Wi

j � Wij � Wij.
Calculating also the first order contributions to the pro-

jections we finally obtain
J0
0 � 0; J0

i � !S�	O � 	S��viO � n
inkvkO�; Ji0 � !S�	O � 	S���viS � n

inkvkS�;

Jij � !S�	O � 	S�

( 
1� 2�S �

2

	O � 	S

Z 	O

	S
d	��	�

!
�ij

� ninj

 
�1� 2�S �

2

	O � 	S

Z 	0

	S
d	��	� � n�vO � vS� � 2

Z 	O

	S
d	r��	�n� 2n � k�1�S

!
� nivO j � njviS

� 2
Z 	O

	S
d	@j��	�n

i � nik�1�Sj � njk
�1�i
S �

2

	O � 	S

Z 	0

	S
d	

Z 	

	S
d	0�	0 � 	S��@i@j�� n

ink@j@k�� n
jnk@i@k�

� ninjnknl@k@l���	
0�

)
: (51)

Like in the unperturbed case, the two eigen values of the Jacobi map are equal. This is due to the fact that the shear
contribution to the Jacobi map still vanishes in first order. A short computation gives the eigen values �,

� � !S�	O � 	S�

(
1� 2�S �

2

	O � 	S

Z 	O

	S
d	��	� �

1

	O � 	S

Z 	O

	S
d	

Z 	

	S
d	0�	0 � 	S��r

2��	0� � @i@j��	
0�ninj�

)
:

(52)

The luminosity distance of the perturbed Minkowski spacetime is given by dL � �!S=!O��. Inserting the above
expressions and taking into account the perturbation of the emission frequency, !S � ��g��k

�u��S � �!S �!
�1�
S , we

obtain

dL � ��O � �S�

(
1��O � n � �vO � 2vS� �

2

�O � �S

Z �O

�S
d��� 2

Z �0

�S
d�r� � n

�
2

�O � �S

Z �0

�S
d�

Z �

�S
d�0r� � n�

1

�O � �S

Z �0

�S
d�

Z �

�S
d�0��0 � �S��r2�� ninj@i@j��

)
: (53)
-6



FLUCTUATIONS OF THE LUMINOSITY DISTANCE PHYSICAL REVIEW D 73, 023523 (2006)
Here we have also transformed the parameter 	 into the
conformal time � via the relation

d�
d	
� n0�	� � 1� 2

Z 	

	S
d	0r� � n:

Now � is parametrizing the unperturbed photon geodesic
and we interpret the potential as a function of �, ���� �
���;x����. We use the notation _� 	 @��, so that d�

d� �
_�� n � r�. We now also take into account expansion,

which gives ~dL �
a2
O
aS
dL.
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Furthermore, we relate the peculiar velocities to the
Bardeen potential via the first order perturbations of
Einstein’s equations. Setting �~u�� � a�1�1��; vi� gives
[10],

vi��� � �
1

4�Ga2��� p�

�
_a
a
@i�� @i _�

�
: (54)

With this we find the following result for the luminosity
distance in an perturbed Friedmann universe
~dL��S;n� �
a2
O

aS
��O � �S�

(
1��O � vO � n�

2

�O � �S

Z �O

�S
d��

� 2n �

"Z �O

�S
d�r��

1

�O � �S

Z �O

�S
d�

Z �

�S
d�0r��

1

4�Ga2
S��� p���S�

�Hr��r _����S�

#

�
1

�O � �S

Z �O

�S
d�

Z �

�S
d�0��0 � �S��r

2�� ninj@i@j��

)
; (55)

where we have introduced H 	 _a=a � a�1 da
d� 	 Ha. In what follows, we further simplify the formulas by normalizing

the scale factor to aO 	 1:
Here we have used the linear perturbation theory solution for the source velocity vS. One might argue that the

supernovae are highly nonlinear objects inside galaxies and do not move with the velocity obtained from linear
perturbation theory. However, we shall be interested in distances and angles which are sufficiently large so that the
nonlinear contributions to the supernova velocities are uncorrelated and therefore considering only the linear part of it in
the correlation function is sufficient.

Equation (55) is the luminosity distance of a source in direction�n at conformal time �S. However, this quantity is not
directly measurable. What we do measure instead is the redshift of the source zS � �zS � �zS, where �zS � 1 � 1=a��S�.
Now

~d L��S;n� � ~dL����zS�;n� 	 ~dL��zS;n� � ~dL�zS;n� �
d
d�zS

~dL�zS;n��zS: (56)

Furthermore,

d
d �zS

~dL�zS;n� � �1� zS��1 ~dL �H�1
S � first order and

�~zS � �1� zS��zS � �1� zS�
�

�S ��O � 2
Z �O

�S
d�n � r�� �vO � vS� � n

�
: (57)

Inserting this in Eq. (55) leads to

~dL�zS;n� � �1� zS�

(
��O � �S� �

1

H S
��O � vO � n� � ��O � �S �H�1

S ��S

� 2
Z �O

�S
d��� 2n �

"
�

1

H S

Z �O

�S
d�r��

Z �O

�S
d�

Z �

�S
d�0r�

�
�O � �S �H�1

S

8�Ga2
S��� p���S�

�Hr��r _����S�

#
�
Z �O

�S
d�

Z �

�S
d�0��0 � �S��r2�� @i@j�ninj�

)
: (58)

After several integrations by part, one can also derive the following expression for the luminosity distance, which also can
be found elsewhere [4,7], where it has been derived using the evolution equations of the expansion and the shear
-7
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~dL�zS;n� � �1� zS���O��S�

(
1�

1

��O��S�H S
vO �n�

�
1�

1

��O��S�H S

�
vS �n

�

�
2�

1

��O��S�H S

�
�S�

�
1�

1

��O��S�H S

�
�O

�
2

��O��S�

Z �O

�S
d���

2

��O��S�H S

Z �O

�S
d� _��2

Z �O

�S
d�
����S�
��O��S�

_��
Z �O

�S
d�
����S���O���
��O��S�

��

�
Z �O

�S
d�
����S���O���
��O��S�

r2�

)
: (59)
FIG. 2 (color online). We show the dipole amplitude in a pure
CDM universe in units of the CMB dipole as a function of z for
z0 � 0:1, 0.5, 1, 2, and 4 from top to bottom.
A detailed derivation of this result starting from Eq. (58) is
given in Appendix B. In this equation the first line, apart
from the background contribution, contains the terms due
to peculiar motion of the observer and emitter (Doppler
terms). The second line can be identified as ‘‘gravitational
redshift.’’ This is, however, not entirely correct since this
term does not vanish even if �S � �O. The third line
collects integrated effects proportional to line of sight
integrals of � and its time derivative, and the fourth and
last line represent the lensing term with r2� / ��. This
term has been discussed in the literature before [11]. An
equivalent of the above formula also can be found in [12].

Equations (58) and (59) are the final expressions for the
luminosity distance in a perturbed Friedmann universe, as
a function of the measured source redshift zS and its
direction �n. In the next section we determine the lumi-
nosity distance power spectrum which is, in principle, an
observable quantity.

IV. THE LUMINOSITY DISTANCE POWER
SPECTRUM

We now want to determine the power spectrum of the
perturbed luminosity distance, as defined in the introduc-
tion. For notational simplicity, we drop the~and use dL to
denote the luminosity distance in a perturbed Friedman
universe. From Eqs. (1) and (2) and the addition theorem
for spherical harmonics, one obtains the correlation func-
tion

�d L�zS��1 �dL�zS0 ��1hdL�zS;n�dL�zS0n0�i

�
X
‘

2‘� 1

4�
C‘�zS; zS0 �P‘�n � n0�; (60)

where P‘ is the Legendre polynomial of order ‘.

A. The dipole

Let us first briefly look at the dipole coming from the
peculiar motion of the observer, the term containing the
scalar product n � vO. The power spectrum of this term is
given by
023523
hd�v�L �zS;n�d
�v�
L �zS0 ;n

0�i �
�zS � 1��zS0 � 1�

3H SH S0
hv2

Oi�n � n0�:

(61)

We assume that, like for the anisotropies in the cosmic
microwave background, this term completely dominates
the dipole. The luminosity distance dipole therefore has the
same direction as the CMB dipole. To determine its am-
plitude we insert �dL��S� � �zS � 1���O � �S�. We then
obtain

C1 �

�
4�
9
hv2

Oi

�
H�1

S H�1
S0

��O � �S���O � �S0 �
: (62)

The CMB dipole is given by the expression in square
brackets. In a pure CDM universe with H � 2=� and
�O=�S �

��������������
zS � 1
p

we obtain for the amplitude of the
luminosity distance dipole
-8



FIG. 3. We show the dipole amplitude in units of the CMB
dipole as a function of z � z0 in a pure CDM universe.
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C1�z; z0� � CCMB
1

1

4�
������������
z� 1
p

� 1��
�������������
z0 � 1
p

� 1�
: (63)

In Fig. 2 the relative amplitude of C1 as a function of z for
different values of z0 is shown. In Fig. 3 we plot C1�z; z�. It
seems to be most promising to measure the dipole at
relatively low redshift. But, of course, the redshift must
be sufficiently high such that the peculiar velocities of the
supernovae themselves are not strongly correlated with
023523
each other or with our peculiar motion. Hence the distance
of a supernova at z or z0 should be sufficient for linear
perturbation theory to apply. This is safely achieved for
z; z0 * 0:1. At z � z0 � 0:1 we have C1�0:1; 0:1� ’ 105

CCMB

1 , hence an enhancement of about a factor 100 with
respect to the CMB dipole. This factor is even somewhat
larger, in a �-dominated cosmology. Through its depen-
dence on H �z�, measuring the amplitude of this dipole
alone can already lead to new observational constraints on
the expansion history of the Universe.

B. The higher multipoles

We now want to express the higher C‘’s in terms of the
power spectrum for the Bardeen potential. We define the
Fourier transform

���;k� �
Z
d3xe�ikx���;x�: (64)

We split the deterministic time evolution into a ‘‘transfer
function’’ Tk���, such that ���;k� � Tk�����k�. We
normalize the transfer function such that limk!0Tk��0� �
1. The power spectrum P� of ��k� is defined by

k3h��k����k0�i � �2��3�3�k� k0�P��k�: (65)

The �3 function is a consequence of statistical homoge-
neity. We need to determine the correlation function of �
for the positions x � xO � n��O � �� and x0 �
xO � n0��O � �0�. In terms of the power spectrum the
correlation function of � and of its derivatives as they
enter in Eq. (58) can be written as (for details see
Appendices C and D)
h���;x����0;x0�i �
X
‘

2‘� 1

4�
C���‘ �z; z

0�P‘�n � n0� with

C���‘ �z; z
0� �

2

�

Z dk
k
Tk���Tk��

0�P��k�j‘�k��O � ���j‘�k��O � �
0��; (66)

hn � r���;x����0;x0�i �
X
‘

2‘� 1

4�
C�nd��
‘ �z; z0�P‘�n � n0� with

C�nd��
‘ �z; z0� � �

2

�

Z
dkTk���Tk��0�P��k�j0‘�k��O � ���j‘�k��O � �

0��; (67)

hninj@i@j���;x����0;x0�i �
X
‘

2‘� 1

4�
C�nndd��
‘ �z; z0�P‘�n � n0� with

C�nndd��
‘ �z; z0� �

2

�

Z
dkkTk���Tk��

0�P��k�j
00
‘ �k��O � ���j‘�k��O � �

0��; (68)

hr2���;x����0;x0�i �
X
‘

2‘� 1

4�
C�dd��
‘ �z; z0�P‘�n � n0� with

C�dd��
‘ �z; z0� �

�2

�

Z
dkkTk���Tk��0�P��k�j‘�k��O � ���j‘�k��O � �0��; (69)
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hn � r���;x�n0 � r���0;x0�i �
X
‘

2‘� 1

4�
C�nd�nd�
‘ �z; z0�P‘�n � n0� with

C�nd�nd�
‘ �z; z0� �

2

�

Z
dkkTk���Tk��0�P��k�j0‘�k��O � ���j

0
‘�k��O � �

0��; (70)

hn � r���;x�r2���0;x0�i �
X
‘

2‘� 1

4�
C�nd�dd�
‘ �z; z0�P‘�n � n0� with

C�nd�dd�
‘ �z; z0� �

2

�

Z
dkk2Tk���Tk��0�P��k�j0‘�k��O � ���j‘�k��O � �

0��; (71)

hn � r���;x�ninj@i@j���0;x0�i �
X
‘

2‘� 1

4�
C�nd�ndnd�
‘ �z; z0�P‘�n � n0� with

C�nd�ndnd�
‘ �z; z0� � �

2

�

Z
dkk2Tk���Tk��0�P��k�j0‘�k��O � ���j

00
‘ �k��O � �

0��; (72)

hninj@i@j���;x�n0in0j@i@j���0;x0�i �
X
‘

2‘� 1

4�
C�nndd�nndd�
‘ �z; z0�P‘�n � n0� with

C�nndd�nndd�
‘ �z; z0� �

2

�

Z
dkk3Tk���Tk��0�P��k�j00‘ �k��O � ���j

00
‘ �k��O � �

0��; (73)

hninj@i@j���;x�r2���0;x0�i �
X
‘

2‘� 1

4�
C�ndnd�dd�
‘ �z; z0�P‘�n � n0� with

C�ndnd�dd�
‘ �z; z0� � �

2

�

Z
dkk3Tk���Tk��0�P��k�j00‘ �k��O � ���j‘�k��O � �

0��;

hr2���;x�r2���0;x0�i �
X
‘

2‘� 1

4�
C�dd�dd�
‘ �z; z0�P‘�n � n0� with

C�dd�dd�
‘ �z; z0� �

2

�

Z
dkk3Tk���Tk��

0�P��k�j‘�k��O � ���j‘�k��O � �
0��: (74)
Using these definitions we can write the correlation
function of the luminosity distance as

hdL�zS;n�dL�zS0 ;n0�i
�dL�zS� �dL�zS0 �

�
X
‘

2‘� 1

4�
P‘�nn0�


 �C�1�‘ � C
�2�
‘ � C

�3�
‘

� C�4�‘ � C
�5�
‘ �; (75)

where C�i�‘ collects all the contributions to C‘ which con-
tain integrals of the form

R
dkki�2 . . . The detailed expres-

sions for the C�i�‘ ’s are given in Appendix D. Here we just
note that the term C�5�‘ represents the lensing contribution.
As we shall see, it dominates for sufficiently high redshift
and sufficiently large ‘. Another important contribution is
C�3�‘ which contains the peculiar velocity of the emitter, the
Doppler term. (It also includes other contributions which
are, however, always subdominant.)

The results of this section allow the determination of the
luminosity distance for a given initial spectrum P��k� and
given transfer function Tk���. The transfer function, the
conformal time ��z�, as well as the conformal Hubble
parameter H �z� depend crucially on the cosmological
023523
parameters. In a forthcoming paper [13] we will present
a code to determine the luminosity distance power spec-
trum numerically and discuss its dependence on cosmo-
logical parameters. In this work, where we mainly want to
present the method, we approximately calculate the power
spectrum for a simple case to gain some intuition about the
order of magnitude of the different terms.

V. RESULTS FOR A PURE CDM UNIVERSE

In this section we approximate the luminosity distance
power spectrum semianalytically for the simple case of a
cold dark matter (CDM) universe without cosmological
constant, �m � 1, �� � 0. We assume a scale-invariant
spectrum of initial fluctuations,

P��k� � A�k�0�
n�1 � A; n � 1: (76)

The amplitude A is known from the Wilkinson Microwave
Anisotropy Probe (WMAP) experiment, A ’ 10�10 [2].

In the radiation-dominated past of the universe, the
Bardeen potential is constant on super horizon scales,
k� < 1, and oscillates and decays like 1=a2 / 1=�2

on subhorizon scales. During matter domination, the
-10



FIG. 4 (color online). The contribution of the redshift term
‘�‘� 1�C�1�‘ �z; z�=�2�� for z � 0:1, 0.5, 1, 2, and 4 (from top to
bottom).

FIG. 5 (color online). The contribution C�2�‘ . We choose the
same line styles like in Fig. 4. The contributions for z � 0:1, 0.5,
and 1 are negative while those for z � 2, 4 pass through 0 at low
‘, visible as a spike. This may well be due to our approximative
treatment.
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Bardeen potential is constant [10]. To take this gross
behavior into account, we approximate the transfer func-
tion during the matter era by

Tk���Tk��
0� � T2

k ’
1

1� 
�k�eq�
4 ; (77)

where �eq denotes the value of conformal time at matter
and radiation equality. Comparing this rather crude ap-
proximation with the numerical one, which can be found
e.g. in Dodelson’s book [14], we find 
 ’ 3
 10�4. In
addition, there is a log correction which comes from the
logarithmic growth of matter perturbations during the ra-
diation era. We shall take it into account only for the
dominant term C�5�‘ . Furthermore, we use that during the
matter-dominated era 4�Ga2��� p� � 3

2 � _a=a�2 � 3
2 


�2=��2 � 6=�2.
To determine the power spectrum, we have to perform

integrals over time of the form

I�f� �
Z �

�S
d�0f��0�j‘�k��0 � �

0��

�
1

k

Z xS

x
dx0f��0 � x0=k�j‘�x0�; (78)

where we have introduced x � k��0 � ��. The spherical
Bessel function of order ‘ is peaked at x ’ ‘. For values
much smaller than ‘ it is suppressed like �x=‘�‘ and for
values much larger that ‘ it oscillates and decays like 1=x.
In our crude approximation, we neglect contributions to
this integral from outside the first peak and approximate
the integral over the first peak by the value of f at x � ‘
multiplied by the area under the peak. This gives

I�f� ’
1

k
I‘f

�
�0 �

‘
k

�
�
�
k�

‘
�0 � �S

�
�
�

‘
�0 � �

� k
�
;

(79)

where I‘ is the area under the first peak of the Bessel
function j‘ and � denotes the Heaviside function, ��x� �
0, if x 
 0 and ��x� � 1, if x > 0. Numerically we have
found I2

‘ ’ 1:58=‘. Most of the resulting integrals over k
can either be obtained analytically in terms of hyper-
geometric functions [15] or they can be approximated by
the same method. Finally, one k integral contributing to the
Doppler term C�3�‘ has to be performed numerically. More
details are given in Appendix E.

We have tested our approximations by comparing them
with the numerical result and have found that we nearly
always overestimate the numerical result, but never by
more than a factor of 2. The approximations are quite
bad at low ‘ 
 5, but become reasonable later. A fully
numerical evaluation as we shall perform it in [13] will
probably give a somewhat smaller result but not by more
that a factor of 2 to 4. Here, we are not so much interested
in numerical accuracy as in qualitative features of the
different contributions to the power spectrum.
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In Figs. 4–9 we show ‘�‘� 1�C�i�‘ �z; z� for different
values of z. For ‘ * 10, the lensing contribution C�5�‘ al-
ways dominates if z > 0:2. It is interesting to note that the
-11



FIG. 8 (color online). The contribution ‘�‘� 1�C�4�‘ �z; z�=�2��
for z � 4, 2, 1, 0.5, and 0.1 (from top to bottom).

FIG. 6 (color online). The contribution ‘�‘�
1�C�3�‘ �z; z�=�2��, without the numerical part, for z � 4, 2, 1,
0.5, and 0.1 (from top to bottom). Note that here we have chosen
linear as opposed to a log representation.
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different contributions do not scale in the same way with ‘.
Only C�1� and C�2� are scale invariant with

‘�‘� 1�C�1�‘ ’ 10�10; (80)

‘�‘� 1�C�2�‘ ’ �10�10: (81)
FIG. 7 (color online). The Doppler contribution of ‘�‘�
1�C�3�‘ �z; z�=�2�� which has been determined numerically for
z � 0:1, 0.5, 1, 2, and 4 (from top to bottom). Our numerical
code is stable only for ‘ & 80 and we therefore plot only this
part of the curve.

023523
The other contributions grow up to a redshift dependent
maximum (minimum) from where they decay. They may
become scale invariant at higher ‘, but until ‘ � 300 the
scale-invariant piece is only clearly visible for z � 0:1.
Higher values of z have their maximum contribution at
higher ‘ and have not decayed into a scale-invariant be-
havior until ‘ � 300. The lensing contribution C�5� even
just grows. For z � 0:1 it does seem to reach a scale-
invariant plateau; for z � 0:5 it seems just to reach the
FIG. 9 (color online). The lensing contribution ‘�‘�
1�C�5�‘ �z; z�=�2�� for z � 4, 2, 1, 0.5, and 0.1 (from top to
bottom). For clarity, we have again chosen a log representation
in this graph.
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FIG. 10 (color online). The total ‘�‘� 1�C‘�z; z�=�2�� is
shown for z � 4, 2, 1, 0.5, and 0.1 (from top to bottom). Note
that for z > 0:1 it reproduces simply C�5�‘ . For z � 0:1 the
contribution of the Doppler part of ‘�‘� 1�C�3�‘ �z; z�=�2�� is
important, which we have computed only for ‘ & 80. For clarity,
we have again chosen a log representation in this graph.

FIG. 11 (color online). The different contributions to ‘�‘�
1�C‘�z; z�=�2�� for z � 0:1 are shown. For this low redshift they
are all of the same order of magnitude. For low ‘’s our approx-
imations are not trustable, they even lead to negative values for
Ctot
‘ for ‘ 
 3.
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turns over around ‘ � 300. For values z > 0:5 shown in
Fig. 9, the spectrum is simply growing and has not yet
reached the turn over until ‘ � 300.

The most surprising result is the high amplitude of the
lensing term C�5�. Let us discuss this term in more detail.
After performing the time integrals as outlined above, an
integral

R
dkk�1T2

k from ‘=��0 � �S� to infinity is left. If
we neglect the log in the transfer function, this amounts to

Z 1
l

�O��S

dk
k
T2
k ’

8><>:
log� �0��S

‘
1=4�eq
� if ‘

�0��S
< 1


1=4�eq

��0��S�4

4‘4
�4
eq

else:

Together with the factor I2
‘ 
 ‘

2 from the time integrations,
we obtain a ‘�1 behavior of ‘�‘� 1�C�5�‘ at large ‘, which
is not seen in Fig. 9. However, when taking into account
also the log correction, the correct amplitude and scaling
with ‘ can be estimated in this way (for more details see
Appendix D).

This dominant term comes actually from the second
derivatives of �, hence from the Riemann tensor which
describes the tidal force field, i.e. geodesic deviations.

If the k integral would not be decaying, ‘�‘� 1�C�5�‘
would be growing like �‘3. But the integrand becomes
small for fluctuations with a wave number smaller than
about keq 	 1=�
1=4�eq�. Therefore ‘�‘� 1�C�5�‘ has a
(broad) maximum ‘max ’ keq��0 � �S�. Hence ‘max is in-
creasing with the source redshift. For zS ’ 1, hence �0 �

�S ’ 0:3�0 ’ 30�eq we find ‘max ’ 250. The general ex-
pression for a matter-dominated universe is

‘max�zS� ’ 760


��������������
zS � 1
p

� 1��������������
zS � 1
p : (82)

Our first important finding is that the tidal force field,
represented by C�5�‘ totally dominates the final result for
redshifts zS * zS0 * 0:2. In a numerical treatment, where
we want to reach a 1% level accuracy, it is sufficient to
consider only C�5�‘ for redshifts zS * zS0 * 0:5. Secondly,
naı̈vely one would expect a result of the order of h�2i ’
A ’ 10�10, but we found nearly 10�5 for supernovae with
redshift zS � 2. This comes from the fact that in the time
integral for C�5�, the fluctuation is multiplied by the con-
formal distance �� �S. A small angular deviation at �
builds up to a large deviation at �S if the distance is large.
Furthermore, we deal with an integrated effect where even
if the deviation from each fluctuation is similar, more small
fluctuations pile up on the way from the supernovae into
the telescope. Even if these are uncorrelated, we still gain a
factor

����
N
p

by piling them up. These arguments are some-
what simplistic, but they explain why the term with most
time integrals and with the factor ��� �S� dominates.
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FIG. 12 (color online). The contribution ‘�‘�
1�C�5�‘ �z; z

0�=�2�� is shown as a function of z with z0 fixed to z0 �
0:5 and ‘ � 200, 100, 50, 10, and 2 (from top to bottom). Above
‘ ’ 50, the ‘ dependence of the result becomes weak as ex-
pected. For z > 0:1 this represents actually also the total con-
tribution to C‘.

FIG. 14 (color online). The contribution ‘�‘�
1�C�5�‘ �z; z

0�=�2�� is shown for z0 � 0:5 and z � 4, 2, 1, 0.5,
and 0.1 (from top to bottom). Again, for z � 0:1 this result is
equivalent to the full C‘.
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In Fig. 10 we show the sum

‘�‘� 1�

"X
i

C�i�‘ �z; z�

#
1

2�
:

FIG. 13 (color online). Like Fig. 12, but for z0 � 1.
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For z > 0:1, the total results are indistinguishable fromC�5�‘
alone. Only for z � 0:1 all terms contribute, especially the
numerical part of C�3�‘ dominates. We plot this line only
until ‘ � 80 since we have no reliable results on the
numerical contribution to C�3�‘ for higher values of ‘. The
different contributions to C‘ for z � z0 � 0:1 are shown in
more detail in Fig. 11.

It is also interesting to study the behavior of C‘�z; z0� for
fixed z0 as a function of z and for fixed z � z0 as a function
of ‘. We show this behavior in Figs. 12–14. Somewhat
surprisingly C‘�z; z0� shows no peak at z � z0. It is there-
fore not problematic to include relatively large bins �z in a
study of C‘�z; z�.

VI. CONCLUSIONS AND OUTLOOK

In this work we have determined the correlation function
of the luminosity distance fluctuations. We have found that
at redshifts z � 0:2, the result is dominated entirely by the
‘‘lensing term’’ hj��j2i which is proportional to the den-
sity fluctuation. Geometrically it comes from the term
Aji � Rj��ik

�k� i.e. the Riemann tensor. Hence this con-
tribution is due to the tidal force field. We have seen that it
is dominated by fluctuations of the size 	 ’ �eq which
enter the horizon at matter radiation equality. These fluc-
tuations have not been damped during the radiation era, but
they are the smallest and therefore the most numerous
which have not suffered damping. Their effect can there-
fore add up most along the path of the photon.
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We have found that within linear perturbation theory, the
dL-power spectrum is nearly 5 orders of magnitude larger
than the CMB anisotropy power spectrum. But neverthe-
less, the fluctuations obtained within linear theory are still
much smaller than 1. We also have seen that small scale
fluctuations do not significantly contribute to the C‘’s for
low ‘’s. i.e. on large scales. This indicates that they cannot
change the observed dL�z� by factors of order unity, which
would be needed to mimic accelerated expansion in a
matter-dominated universe. Also the variance, i.e., the
typical deviation of a given luminosity distance dL�n; z�
from the mean, which is dominated by small scale fluctua-
tions (the lensing contribution) is

d L�z��2hdL�n; z�2i �
1

4�

X
‘

�2‘� 1�C‘ ’ 10�5 � 1:
Our findings thus indicate that the explanation of acceler-
ated expansion put forward in [6] is probably not realized.
Of course we have not taken into account the change of the
transfer function due to nonlinearities. To determine this
effect more precisely we would have to take into account
the nonlinearities, especially in the integral for C�5�‘ .

We suggest that the newly derived luminosity distance
power spectrum given by the C‘�zS; zS0 � can be used as a
new observational tool to determine cosmological parame-
ters. For 1% accuracy of the fluctuations at zS * 0:5, only
C�5�‘ has to be taken into account and therefore the numeri-
cal complexity of the problem seems to be quite moderate.
In a future paper [13] we shall investigate the possibilities
to measure C‘�zS; zS0 � with the supernovae searches which
are presently under way or in planning.

ACKNOWLEDGMENTS

We thank Martin Kunz, Dominik Schwarz, and Lam Hui
for useful and stimulating discussions. We thank Marc-
Olivier Bettler for his help with a figure. We are grateful to
the Swiss National Science foundation for financial
support.
APPENDIX A: CHRISTOFFEL SYMBOLS AND
THE RIEMANN TENSOR OF SCALAR

PERTURBATIONS IN NONEXPANDING
SPACETIME

Here we write down the Christoffel symbols and
Riemann tensor for the metric

g��dx�dx� � ��1� 2��d�2 � �1� 2���ijdxidxj
to first order in the gravitational potential �:
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�0
00 �

_�; (A1)

�0
0i � @i�; (A2)

�i00 � @i�; (A3)

�j0i � ��
j
i

_�; (A4)

�0
ij � ��ij _�; (A5)

�ijm � ��
i
j@m�� �im@j�� �jm@

i�; (A6)

R0
00j � 0; (A7)

R0
0ij � 0; (A8)

R0
i0j � �rirj�� �ij

��; (A9)

R0
ijm � �ijrm�� �imrj _�; (A10)

Ri00j � �r
irj�� �ij ��; (A11)

Ri0jm � �ijrm _�� �imrj _�; (A12)

Rij0m � ��
i
mrj _�� �jmr

i _�; (A13)

Rijmn � ���
i
nrjrm � �

i
mrjrn � �jmr

irn

� �jnrirm��: (A14)

Hereri denotes the covariant derivative with respect to the
metric �ij.
APPENDIX B: THE DERIVATION OF EQ. (59)

We first reintroduce the velocity of the source vS and we
collect all terms which contain spatial derivatives of the
form ni@i� at the end. This brings (58) into the form (we
dismiss the tilde in this appendix)
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dL�zS;n� � �1� zS�

(
��O � �S� �

1

H S
��O � vO � n� � ��O � �S �H�1

S ��S � ��O � �S �H�1
S �vS � n

� 2
Z �O

�S
d���

Z �O

�S
d�

Z �

�S
d�0��0 � �S�r2��

2

H S

Z �O

�S
d�n � r�� 2

Z �O

�S
d�

Z �

�S
d�0n � r�

�
Z �O

�S
d�

Z �

�S
d�0��0 � �S�ninj@i@j�

)
: (B1)

Now we use

d�

d�
� _�� n � r�

to convert all derivatives of the form n � r� into time derivatives. This leads to

dL�zS;n� � �1� zS�
�
��O � �S� �

1

H S
��O � vO � n� � ��2��O � �S� �H�1

S ��S � ��O � �S �H�1
S �vS � n

� ��O � �S��O � 2
Z �O

�S
d���

Z �O

�S
d�

Z �

�S
d�0��0 � �S�r

2��
2

H S

Z �O

�S
d� _�

� 2
Z �O

�S
d���� �S� _��

Z �O

�S
d�

Z �

�S
d�0��0 � �S� ��

�
: (B2)
Via integration by parts we can now convert the double
integrals over time into single integrals. For this we use
that for a regular function f��� integrating by partsR
�O
�S
d���� �S�2f��� givesZ �O

�S
d�

Z �

�S
d�0��0 � �S�f��

0�

�
Z �O

�S
d���� �S���O � ��f���:

Using this in the two double integrals above we obtain
Eq. (59).
APPENDIX C: THE POWER SPECTRUM

We use the Fourier transform convention

��k� �
Z
d3xe�ik�x��x�; (C1)

��x� �
1

�2��3
Z
d3keik�x��k�: (C2)

The time evolution of the Bardeen potential is given by the
transfer function, ��k; �� � Tk�����k�, which is normal-
ized such that ��k; �0� ! ��k� for k! 0. Since the
Bardeen potential is constant on very large scales, this
identifies ��k� also with the Bardeen potential right after
inflation. The correlation function


��jx� yj� 	 h��x���y�i

depends only on the distance jx� yj, so that we obtain
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h��k; �����k0; �0�i � Tk���Tk0 ��
0�
Z
d3xd3y
��jx� yj�


 e�ik�x�ik
0�y

� Tk���Tk0 ��0�k�3P��k��2��3


 �3�k� k0�; (C3)

where we have introduced the power spectrum

P��k� � k3
Z
d3z
��z�e�ik�z: (C4)

It is easy to verify that this definition is consistent with the
one given in Eq. (65).

Standard inflationary scenarios give P� ’ A�k�0�
n�1

with n ’ 1. From WMAP and other measurements of
CMB anisotropies we have A� 10�10. We first want to
determine the correlation of the Bardeen potential at posi-
tions x � xO � n��O � �� and x0 � xO � n0��O � �0�.
With the above we have

h���;x����0;x0�i �
1

�2��6
Z
d3kd3k0Tk���


 Tk0 ��0�h��k����k0�ie�ik�n��O���


 e�ik
0�n0��O��0�: (C5)

Using the identity (see e.g. [15])

eik�n��O��� �
X
‘

�2‘� 1�i‘j‘�k��O � ���P‘�k̂ � n�

(C6)

and Eq. (C3) we obtain
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h���;x����0;x0�i �
1

�2��3
X
‘‘0
�2‘� 1��2‘0 � 1�i‘�‘

0
Z dk

k
Tk���Tk��

0�

"
P��k�j‘�k��O � ���j‘0 �k��O � �

0��



Z
d�k̂P‘�k̂ � n�P‘0 �k̂ � n0�

#

�
1

2�2

X
‘

�2‘� 1�P‘�n � n0�
Z dk

k
Tk���Tk��0�P��k�j‘�k��O � ���j‘�k��O � �0��

�
X
‘

2‘� 1

4�
C���‘ �z; z

0�P‘�n � n0�; (C7)
where we have used Eq. (66) for the last equals sign. Here
k̂ is the unit vector in direction k and d�k̂ denotes the
integral over the sphere of k directions.

In the same way one derives Eqs. (67) to (74). Each
factor in � k can be written as a derivative with respect to
�O � � of the exponential and therefore replaces
j‘�k��O � ��� by �kj0‘�k��O � ���. The Laplacian sim-
ply corresponds to a factor �k2.

APPENDIX D: DETAILS FOR THE POWER
SPECTRUM

In this appendix we write down in detail the expressions
for the C�i�‘ ’s used in this paper.

As mentioned in Sec. IV the power spectrum of the
luminosity distance can be split in five different parts
containing k integrals of different powers:
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C�1�‘ contains the integrals of the form
R dk

k , represents
the redshift and parts of the integrated contributions.
C�2�‘ contains the integrals of the form

R
dk, represents

the correlation of the Doppler term with the terms in C�1�.
C�3�‘ contains the integrals of the form

R
dk � k, repre-

sents the Doppler term and some (subdominant) integrated
terms.
C�4�‘ contains the integrals of the form

R
dk � k2, is

dominated by the correlation of the Doppler term with
the lensing contribution.
C�5�‘ contains the integrals of the form

R
dk � k3, repre-

sents the lensing term.
From Eqs. (66) to (74) and the expression (58) for the

luminosity distance we obtain the following expressions
for the C�i�‘ ’s
C�1�‘ �
2

�

Z dk
k
P��k�

"
2

�O � �S

Z �0

�S
d�Tk���j‘�k��0 � ��� �

�
1�

1

H S��O � �S�

�
Tk��S�j‘�k��O � �S��

#




"
2

�O � �S0

Z �0

�S0
d�Tk���j‘�k��0 � ��� �

�
1�

1

H S0 ��O � �S0 �

�
Tk��S0 �j‘�k��O � �S0 ��

#
; (D1)
C�2�‘ � �
4

�

Z
dkP��k�

"
1

3H S

�
1�

1

H S��O � �S�

�
�Tk��S� �H�1

S
_Tk��S��j0‘�k��0 � �S��

�
1

H S��O � �S�

Z �0

�S
d�Tk���j

0
‘�k��0 � ��� �

1

�0 � �S

Z �0

�S
d�

Z �

�S
d�0Tk��

0�j0‘�k��0 � �
0��

#




"
2

�0 � �S0

Z �0

�S0
d�Tk���j‘�k��0 � ��� �

�
1�

1

H S0 ��O � �S0 �

�
Tk��S0 �j‘�k��0 � �S0 ��

#
� �S , �S0 ; (D2)
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C�3�‘ �
8

�

Z
dkkP��k�

"
1

3H S

�
1�

1

H S��O � �S�

�
�Tk��S� �H�1

S
_Tk��S��j

0
‘�k��0 � �S��

�
1

H S��o � �S�

Z �0

�S
d�Tk���j0‘�k��0 � ��� �

1

�0 � �S

Z �0

�S
d�

Z �

�S
d�0Tk��0�j0‘�k��0 � �0��

#




"
1

3H S0

�
1�

1

H S0 ��O � �S0 �

�
�Tk��S0 � �H�1

S0
_Tk��S0 ��j

0
‘�k��0 � �S0 ��

�
1

HS0 ��O � �S0 �

Z �0

�S0
d�Tk���j0‘�k��0 � ��� �

1

�0 � �S0

Z �0

�S0
d�

Z �

�S0
d�0Tk��0�j0‘�k��0 � �0��

#

�
2

���O � �S�

Z
dkkP��k�

Z �0

�S
d�

Z �

�S
d�0��0 � �S�Tk��

0��j‘�k��0 � �
0�� � j00‘ �k��0 � �

0���




"
2

�O � �S0

Z �0

�S0
d�Tk���j‘�k��0 � ��� �

�
1�

1

HS0 ��O � �S0 �

�
Tk��S0 �j‘�k��O � �S0 ��

#
� �S , �S0 ; (D3)

C�4�‘ � �
4

�
1

�O � �S0

Z
dkk2P��k�

"
1

3H S

�
1�

1

H S��O � �S�
��Tk��S� �H�1

S
_Tk��S��j

0
‘�k��0 � �S��

�
1

H S��O � �S�

Z �0

�S
d�Tk���j0‘�k��0 � ��� �

1

�0 � �S

Z �0

�S
d�

Z �

�S
d�0Tk��0�j0‘�k��0 � �0��

#



Z �0

�S0
d�

Z �

�S0
d�0��0 � �S0 �Tk��0��j‘�k��0 � �0�� � j00‘ �k��0 � �0��� � �S , �S0 ; (D4)

C�5�‘ �
2

�
1

��O � �S���O � �S0 �

Z
dkk3P��k�

�Z �0

�S
d�

Z �

�S
d�0��0 � �S�Tk��0��j‘�k��0 � �0�� � j00‘ �k��0 � �0���

�




�Z �0

�S0
d�

Z �

�S0
d�0��0 � �S0 �Tk��0��j‘�k��0 � �0�� � j00‘ �k��0 � �0���

�
: (D5)
APPENDIX E: INTEGRALS AND
APPROXIMATIONS

Here we make full use of the relatively crude approxi-
mation (79)Z x2

x1

dxf�x�j‘�x� ’ I‘f�‘���x2 � ‘���‘� x1�; (E1)

where � denotes the Heaviside function, ��x� � 1 if x > 0
and ��x� � 0 else. Hence we neglect contributions to the
integral which do not come from the region of the first peak
of the Bessel function. This procedure is very useful to
estimate the result, but cannot be trusted better than within
a factor of about 2. We have tested it with numerical
examples [16]. A more detailed numerical treatment will
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be presented elsewhere [13]. Furthermore, we assume a
scale-invariant spectrum with P� � A ’ 10�10. We also
use the fact that in a matter-dominated universe the transfer
function does not depend on time and can be taken outside
the time integrals.

We define bS �
�S
�O
� 1��������

1�zS
p , xS � k��0 � �S�, and

�S � 
�
beq

1�bS
�4. Note that xS0 �

1�bS0
1�bS

xS. In terms of these
variables, the transfer function becomes

T2�xS� �
1

1� �Sx4
S

; (E2)

except for the C�5�‘ , where we have to take into account the
log correction.
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1. C�1�‘

C�1�‘ �zS; zS0 � �
2A

��1� bS0 �

(
�2� bS��2� bS0 �

4�1� bS�

Z 1
0

dxS
xS

T2�xS�j‘�xS�j‘�x0S� � 4�1� bS�
Z 1

0

dxS
x3
S

T2�xS�

 Z xS

0
dxj‘�x�

!




 Z xS0

0
dxj‘�x�

!
� �2� bS0 �

Z 1
0

dxS
x2
S

T2�xS�

 Z xS

0
dxj‘�x�

!
� j‘�xS0 � � bS , bS0

)
: (E3)
For the first term, the integral converges without the transfer function; we may therefore neglect it and perform the
integral analytically. For the second and third terms, we use the approximation (E1). Assuming that zS < zS0 (if not, we
reverse zS and zS0 in the formula), we obtain
C�1�‘ �zS; zS0 � �
2A
�

�
4I2
‘

1� bS
1� bS0

Z 1
‘

dxS
x3
S

1

1� �Sx
4
S

�
I2
‘

‘2

2� bS
1� bS0

1

1� ‘4�S
�

����
�
p

16

��‘�
��‘� 3=2�

�2� bS��2� bS0 �



�1� bS�‘�1�1� bS0 �‘�1

�2� bS � bS0 �
2‘ F

�
‘; ‘� 1; 2‘� 2;

4�1� bS��1� bS0 �

�2� bS � bS0 �2

��
: (E4)
Here F denotes the hyper-geometric function and � is the � function. We use the notation and normalization of [15].

2. C�2�‘

C�2�‘ �zS; zS0 � �
�2A

��1� bS0 �

(
�
�2� 3bS��2� bS0 �

2�1� bS�

Z 1
0

dxS
xS

T2�xS�j‘�xS�j‘�x0S�

�
bS�2� 3bS��2� bS0 �

12�1� bS�
2

Z 1
0
dxST

2�xS�j
0
l�xS�j‘�xS0 � � 4�1� bS�

Z 1
0

dxS
x3
S

T2�xS�

 Z xS

0
dxj‘�x�

!




 Z xS0

0
dxj‘�x�

!
� �6� 7bS0 �

Z 1
0

dxS
x2
S

T2�xS�

 Z xS

0
dxj‘�x�

!
� j‘�xS0 �

�
bS0 �2� 3bS0 �

3�1� bS�

Z 1
0

dxS
xS

T2�xS�

 Z xS

0
dxj‘�x�

!
� j0l�xS0 �

)
� bS , bS0 : (E5)
Here again, the terms which contain only an integral over xS can be calculated analytically when we neglect the decay of
the transfer function. For the other terms we use the approximation (E1)
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C�2�‘ �zS; zS0 � �
�2A

��1� bS��1� bS0 �

(
�8I2

‘�1� bS�
2
Z 1
‘

dxS
x3
S

1

1� �Sx
4
S

�
I2
‘

‘2

1

1� �S‘
4

�
�6� 7bS��1� bS�

�
4bS�2� 3bS�

3

�S‘4

1� �S‘4

�
�

I‘
‘2�2‘� 1�

bS�2� 3bS�
3

1

1� �S‘4
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Here, it is not possible to neglect the transfer function in the third integral, because for zS � zS0 the integral does not
converge without T2�xS�. We therefore have to calculate the third (the Doppler term) term numerically:
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The last term in this sum is determined by numerical integration over xS.
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The first term is dominated on a large scale and we may thus set T 	 1 so that it can be integrated analytically. For the
other terms we use again the approximation (E1) for the integrals dx or dx0. The biggest contribution then comes from the
last term where we have to perform two double integrals dxdx0, which result in I2

‘�2� ‘
2 � ‘xS��2� ‘2 � ‘xS0 � / ‘3. In
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this term, which becomes large for large ‘ or large xS, we take into account the log correction to the transfer function for
better accuracy. From the expression in Ref. [14] and our definitions we find:
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1� ���Sx4
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2�1� 7:8�10�4

1�bS
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: (E12)

Using our approximation (E1), we obtain
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FIG. 15 (color online). The approximation for ‘�‘�
1�C�5�‘ �z; z

0�=�2�� given in Eq. (E15) (dashed line) is compared
with our numerical result (solid line) for z � 2.
where

�̂ S � 

� beq

1� bS

�
4 1

ln2�1� 7:8�10�4‘
1�bS

�
: (E14)

The remaining integral represents by far the largest con-
tribution to C�5�‘ . For sources with equal redshifts zS �
zS0 � z, the spectrum C�5�‘ �z; z� grows until �̂s‘4 � 1 and
decays for larger ‘. Neglecting the log correction we have
�S � �
1=4 beq

1�bS
�4 	 ‘�4

max. Hence C�5�‘ grows roughly until
‘max and decays afterwards. With beq � ��eq=�O� ’ 0:01
we obtain

‘max ’ 760

��������������
zS � 1
p

� 1��������������
1� zS
p :

For a crude order of magnitude estimate, we first neglect
the log corrections. For ‘� ‘max the integral is dominated
by the region xS < ‘max and we may simply integrate until
xS ’ ‘max, neglecting the x4

S decay of the transfer function.
In the opposite region, if ‘� ‘max, we may neglect the 1 in
the denominator of the integral. An interpolation between
this two asymptotic regimes gives

C�5�‘ �zS; zS� ’
2AI2

‘‘
2

�

8<: ln�‘max

‘ � �
1
4 if ‘ < ‘max

1
4 �
‘max

‘ �
4 if ‘ > ‘max:

(E15)

Since I2
‘ / 1=‘ we see that ‘�‘� 1�C�5�‘ grows like ‘3 for

small ‘’s and it decays like 1=‘ for large ‘’s. The broad

maximum is reached roughly at ‘max ’ 760
��������
1�zS
p

�1��������
zS�1
p �

760�1� bS� and is of the order of �A=��‘3
max. This ap-

proximation is, however, surprisingly bad. We therefore
take into account the log in the transfer function by simply
replacing �S by �̂S, where ‘ in the expression for �̂S
denotes the lower boundary of the integral. The expression
023523
for ‘max then becomes ‘ dependent,

‘max ’

��������������������������������������������������������������
ln�1� 7:8
 10�4‘=�1� bS��

p

1=4beq

�1� bS�: (E16)

For ‘ < 1:3
 103�1� bS� 	 ‘S the log can be expanded
and ‘max=‘ behaves like ‘�1=2 leading to a linear growth of
‘�‘� 1�C�5�‘ . Only above ‘S it levels off. For zS � 2, the
asymptotic regime, where ‘�‘� 1�C�5�‘ decays like 1=‘ is
actually only reached at ‘� 2000, where our approxima-
tions (and linear perturbation theory) no longer hold.
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In Fig. 15 we plot the approximation given in Eq. (E15)
with ‘max given in (E16) for zS � zS0 � 2 and hence ‘S ’
540. Actually, to have a better fit with the numerical
023523
integral we choose a slightly modified value, namely,
~‘max � 0:75‘max.
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