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The non-Abelian Einstein-Born-Infeld-dilaton theory, which rules the dynamics of tensor-scalar
gravitation coupled to a su�2�-valued gauge field ruled by Born-Infeld Lagrangian, is studied in a
cosmological framework. The microscopic energy exchange between the gauge field and the dilaton
which results from a nonuniversality of the coupling to gravity modifies the usual behavior of tensor-scalar
theories coupled to matter fluids. General cosmological evolutions are derived for different couplings to
gravitation and a comparison to universal coupling is highlighted. Evidences of cosmic acceleration are
presented when the evolution is interpreted in the Jordan physical frame of a matter respecting the weak
equivalence principle. The importance for the mechanism of cosmic acceleration of the dynamics of the
Born-Infeld gauge field, the attraction role of the matter fluid, and the nonuniversality of the gravitational
couplings are briefly outlined.
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I. INTRODUCTION

In the description of the very beginning of the universe,
well before the big bang nucleosynthesis, field theoretical
models are to be considered instead of the usual hydro-
dynamical description of matter. Those kinds of models,
inspired by high-energy physics, have led to numerous
progress in modern cosmology, trying to solve various
problems from cosmic acceleration or the flatness problem
to the magnitude of the cosmological constant or the ex-
istence of topological defects. The motivation of this paper
lies in two questions, among many others, that raise from
the description of the very first moments by high-energy
physics.

First is the question whether large-scale massless gauge
fields can play any interesting role in cosmology. Indeed,
such fields could have existed in the early universe before
the phase transitions of spontaneous symmetry breaking
but, if they were ruled by usual Yang-Mills (YM) confor-
mally invariant dynamics, their primeval excitations have
probably been swept away by inflation. This point moti-
vated some authors to study the impact of the Born-Infeld
(BI)-type modification of gauge dynamics, suggested by
string theory, on cosmology (see [1]). The BI Lagrangian
breaks down the scale invariance of the gauge fields be-
yond some critical energy, and therefore it is not obvious to
conclude directly on the becoming of such gauge fields
during and after an inflation period. Furthermore, it was
proved in [1] that such gauge fields of BI-type cannot
provide any cosmic acceleration on their own although
they can mimic a fluid of negative pressure. Before going
further on this question, it is therefore of first importance to
study more deeply in a cosmological context the interac-
tion between gauge and scalar fields as suggested in mod-
els inspired by high-energy physics. The second question is
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to see what happens to a possible scalar sector of gravita-
tion during the cosmological evolution. Indeed, string
theories predict the existence of the dilaton [2], a Lorentz
scalar partner to the tensor Einstein graviton as a low-
energy limit of bosonic actions. This large theoretical
framework provides a physical background for tensor-
scalar modification [3] of general relativity, in which gravi-
tation is mediated by a long-range scalar field acting in
complement of the usual spin 2 gravity fields. Although
this question has been widely studied when dilaton—or
more generally tensor-scalar theories—is coupled to mat-
ter during radiation and matter dominated era, the case of a
microscopic field model which would not be coupled
universally to gravity, as suggested in string theory, has
been less considered. In particular, how the interaction
between scalar and gauge fields modifies their respective
dynamics and the resulting cosmological evolution will be
the main subject of the present paper.

But before going any further, let us locate the present
work in the existing literature. In this paper, we will
focus on cosmological solutions of the Einstein-Born-
Infeld-dilaton (EBID) equations for flat spacetimes.
Cosmologies with large-scale massless homogeneous and
isotropic gauge fields with gauge group SU�2� and ruled by
usual YM dynamics have been studied for a long time [4–
8]. The gravitational instability of flat spacetimes filled
with such gauge fields was studied in [9]. Generalization
to higher gauge groups have also been studied [10,11] in
the case of flat and closed cosmologies. The Einstein-Born-
Infeld cosmology with non-Abelian gauge fields deriving
from gauge group SU�2� has been studied thoroughly in [1]
for flat, closed, and open spacetimes for any value of the
cosmological constant. The minimal coupling of large-
scale cosmological gauge fields and scalar multiplets has
been studied in [12,13]. The Einstein-Yang-Mills-dilaton
(EYMD) equations for flat cosmologies and a special case
of nonuniversal coupling to gravity have been derived in
[14,15] where the authors highlighted the energy exchange
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between the dilaton and the gauge fields and briefly dis-
cussed its effects on inflation, entropy crisis, and the
Polonyi problem (domination of a nearly massless dilaton
at late times). However, they did not propose a complete
solution to the EYMD field equations in the cosmological
framework which could allow to address completely these
issues. Moreover, they did not discuss the general influence
of nonuniversal coupling to gravity as well. The EYMD
system was also studied in [16] in the case of closed
Friedmann-Lemaitre-Robertson-Walker (FLRW) with a
static gauge field1 and vanishing dilaton potential and
cosmological constant.

As we mentioned before, tensor-scalar cosmologies
have been widely studied, with a large spectrum of appli-
cations for physical cosmology: inflation, primordial nu-
cleosynthesis, cosmic microwave background, . . .. The
question of the convergence of tensor-scalar theories to
general relativity during the cosmological evolution has
been widely studied in [17–20] and references therein. For
the so-called ‘‘Einstein conformal frame,’’ where the gravi-
tational and scalar fields have pure spin 2 and spin 0
dynamics, respectively, the scalar sector of gravitation
disappears naturally during cosmic expansion due to its
coupling to matter. The cosmological evolution of the
dilaton emerging from string theory has been studied
in [21].

In this paper, we will consider the cosmological evolu-
tion of the dilaton coupled directly to a large-scale non-
Abelian gauge field ruled by BI dynamics which go beyond
the scale invariance of YM theory. A nonuniversal cou-
pling to gravity, as suggested in preceding works, will lead
to quite different results to the usual coupling of tensor-
scalar theories to a fluid. For example, when the gauge
fields are governed by YM scale-invariant dynamics, the
scalar sector of gravitation remains directly coupled to the
gauge fields although they mimic a radiation fluid.
However, it is well known that tensor-scalar theories de-
couple from radiation (except during phase transition).
Through both numerical computations and analytical so-
lutions, we will show how the dilaton evolution is modified
by nonuniversal coupling to the metric. This will lead to
remarkable consequences for cosmology.

The structure of this paper will be as follows. In Sec. II,
we establish the general field equations for the EBID
cosmology. In Sec. III, we first remind the reader about
BI cosmology as was studied in [1]. The non-Abelian BI
cosmology can be split in two extreme regimes depending
on the energy density of the gauge field compared with a
critical scale introduced in the BI theory. For large ener-
gies, the gauge field is shown to mimic a fluid of negative
pressure with p=� � �1=3 while in the low-energy limit
1Because of this particular topology, the EYMD system does
not reduce to pure Einstein-dilaton field equations when the
gauge field is static.
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the scale-invariant YM dynamics is retrieved and the gauge
field looks like a radiation fluid. On the other hand, we also
remind the reader about dilaton cosmology, studied in
[17,21]. As the equations are to be established and solved
with pure spin degrees of freedom in the Einstein frame,
the interpretation in terms of the Jordan physical frame is
also recalled. The case of universal coupling is solved there
with usual properties of tensor-scalar theories. In Sec. IV,
we will focus on the strong-field limit of the EBID system
with general coupling to gravity and in Sec. V the low-
energy limit which consists of a generalized version of the
EYMD system appearing in [14,15] is treated. In Sec. VI,
we analyze a complete cosmological evolution of the EBID
system and present evidences for possible cosmic accel-
eration in the physical Jordan frame. This frame is defined
with respect to a pressureless matter fluid that has been
added to the gauge sector. The acceleration is shown to
resist to the attraction provided by matter and appears to be
intrinsically related to the nonuniversality of the coupling
to gravity. Finally, we conclude in Sec. VII by some
perspectives to the present work.
II. FIELD EQUATIONS OF EINSTEIN-BORN-
INFELD-DILATON COSMOLOGY

Most of the interest of field models, for example, deriv-
ing from string theory in the low-energy limit, comes from
their nonuniversal coupling to the gravity fields g�� and its
scalar counterpart � (each type of matter field has in
general its own coupling function to the dilaton, see
[21]). This results in a violation of the weak equivalence
principle and therefore the gravitational interaction of
these microscopic field models is different from a usual
tensor-scalar theory where the weak equivalence principle
is usually assumed. Without imposing such a violation of
the weak equivalence principle at a microscopic scale, field
models would not be different than considering a tensor-
scalar theory in the presence of a fluid with the equation of
state of the considered fields. Therefore, we will make use
of a general form of the action for the non-Abelian
Einstein-Born-Infeld-dilaton system, which takes into ac-
count a possible violation of the weak equivalence princi-
ple. This action writes down

S �
Z �
�

1

2�
R�

1

2
@��@��� V���

� A4���LBI�B2���g��; A��
� �������
�g
p

d4x

� Sm� m;C2���g���� (1)

In this action, the gravitational interaction is described by
the scalar curvature R and the dilaton �, � being the
‘‘bare’’ gravitational coupling constant and A���, B���,
and C��� being three different coupling functions of the
dilaton to matter. The first two illustrate the coupling of the
gauge sector to the volume form and to the Einstein metric
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g�� inside the Born-Infeld Lagrangian LBI (where A� are
the non-Abelian gauge potentials) and the last coupling
function C��� is related to another type of matter ruled by
the action Sm. Other parametrizations of Einstein-Born-
Infeld-dilaton action were considered in the literature, for
example, with A � 1 and B � exp�k=2�� in [14–16,22]
and with B � A2 � exp�k=2�� in [23]. The non-Abelian
gauge interaction is described by the Born-Infeld
Lagrangian built upon the field strength tensor

F�� � Fa
��Ta

(where Ta are the generators of the gauge group under
consideration2) and its dual tensor ~F��. Indeed, this
Lagrangian, denoted by LBI in (1), is defined as

LBI��c�R�1�

��c

� ������������������������������������������������������������������������������������
1�

B�4���
2�c

F��F
���

B�8���

16�2
c
�F�� ~F���2

s
�1

�
;

(2)

where �c is the Born-Infeld critical energy and B��� is the
dilaton coupling function which is equal to ek=2� when
nonperturbative effects are not taken into account (see
[14,15,21]). In this case, k will be called the dilaton cou-
pling constant. Throughout this paper, we will assume the
Planck system of units, in which @ � c � 1 and G � m�2

Pl ,
with the Planck mass mPl � 1:2211	 1019 GeV and the
gravitational coupling constant is � � 8�G. We have also
set the gauge coupling constant to unity, as it actually
defines a system of units for the dilaton field �, provided
the dilaton is massless (V � 0). The Born-Infeld critical
energy �c defines the scale above which nonlocal effects of
string theory arise and where the scale invariance of the
gauge fields is broken. For example, in the low-energy
limit �c ! 1 of the Born-Infeld part of the action (1),
we recover the usual, conformally invariant, Yang-Mills
(YM) Lagrangian density for the non-Abelian gauge field:�������

�g
p

LYM � �
�������
�g
p

A4���B�4���14F
a
��F

��
a � (3)

In this paper, we will focus on cosmology and therefore we
will adopt the prescriptions of the cosmological principle
which states that the spatial sections of our Universe are
homogeneous and isotropic. For the sake of simplicity, we
will also restrict ourselves to the case of flat spacetimes,
which constitutes however a very nice approximation of
the present universe and its early stages as well. The metric
describing such spacetimes is the one of FLRW:

ds2 � �N2�t�dt2 � a2�t��dr2 � r2d�2 � r2sin2�d’2�;

(4)

where a�t� is the scale factor and N is the so-called lapse
function of the Hamiltonian Arnowitt-Deser-Misner ap-
2Gauge indices will be noted as bold Latin letters.
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proach to general relativity. This function can be fixed by
a specific choice of time coordinate (gravitational gauge
freedom). The symmetries prescribed by the cosmological
principle we assume impose that the dilaton scalar field �
depends only on time. A remarkable fact about non-
Abelian gauge fields is that they admit nontrivial homoge-
neous and isotropic configurations at the opposite of their
Abelian U�1� counterparts [see [1,5] and references therein
for a complete discussion of the SU�2� case]. The main
reason for that is because only the gauge invariant quanti-
ties such as the field strength tensor have to exhibit the
symmetries explicitly, while the gauge potentials can be
symmetric up to a gauge transformation (see [4,24] for
more general gauge groups). As a result, the energy can be
distributed amongst the different gauge degrees of freedom
while the stress-energy tensor remains compatible with the
maximal symmetry of the spacetime background. In this
paper, we will restrict ourselves to the case of su�2�-valued
gauge potentials, for which the ansatz

A � Aa
�Tadx

� � 	�t�Tmdx
m (5)

of the connection one-form A makes the gauge invariant
quantities satisfying the required symmetry (see [4,5]). The
remaining dynamical degrees of freedom of the gauge
potential are now expressed by the field 	�t�. However,
our results will not depend on this particular choice as the
ansatz above can be generalized to higher gauge groups
(see [10,11]). In the equation above, the generators Tm of
the Lie algebra of the gauge group SU�2� are to be taken in
the coordinate dependent basis of the gauge degrees of
freedom space as follows:

Tr � sin� cos’T1 � sin� sin’T2 � cos�T3

T� �
@
@�
Tr T’ �

@
sin�@’

Tr;

with Ti �
1
2	i the usual basis of the Lie algebra su�2� (	i

being the Pauli matrices) with the following standard
normalization conditions and commutation relations:

tr�TaTb� �
1
2
ab; �Ta; Tb� � i�c

abTc:

The ansatz (5) is of course independent of the particular
choice of the action for the gauge field, as was shown
in [1].

The symmetries implied by the cosmological principle
therefore allow us to write down (1) as an effective one-
dimensional action, after integrating over R3 and dividing
by the infinite volume of its orbits:

Seff �
Z
dt
�
�

3

�

_a2a
N
�

_�2

2

a3

N
� V���Na3

� Na3�cA
4����R� 1�

�
� Sm; (6)

where a dot denotes a derivative with respect to the time t
and where R is given by
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R �

����������������������������������������������������������������������������������������������
1� 3

B�4���
�c

�
_	2

a2N2 �
	4

a4

�
� 9

B�8���

�2
ca6N2

_	2	4

s
;

(7)

where 	�t� is the gauge potential as defined in (5).
Following [1], it is also convenient to write R as

R �
�������������
1� �
p �������������

1� �
p

(8)

with

� �
3 _	2B�4���

�ca2N2 ; � �
3	4B�4���

�ca4 � (9)

From the action (6) and relation (7), it is straightforward to
write down the field equations for the Einstein-Born-
Infeld-dilaton system by varying this action over the fol-
lowing degrees of freedom: N; a;� and 	. First, the Euler-
Lagrange equation for the variable N gives the
Hamiltonian constraint�

_a
a

�
2
�
�
3

� _�2

2
� V��� � �cA

4����P � 1� � �m

�
; (10)

which we will refer to as the Friedmann equation. In the
previous equation, �m stands for the energy density of the
matter fluid ruled by Sm and the function P is defined in
terms of � and � in (9) as

P �

�������������
1� �

1� �

s
� (11)

The careful reader should have noticed that, after varying
over N, we set the gravitational gauge to N � 1, meaning
that we work with the synchronous time coordinate (an-
other convenient choice for the study of the gauge dynam-
ics in the Yang-Mills regime is the conformal gaugeN � a
as it naturally exhibits the conformal invariance). The
Friedmann equation allows us to define the Born-Infeld
effective energy density of the gauge field as a general-
ization of what was proposed in [1]

�BI � �cA4����P � 1�: (12)

The Euler-Lagrange equation for the scale factor a gives
the acceleration equation:

�a
a
�
�
3

�
�V��� � _�2� � �cA4����P�1 � 1�

�
1

2
��m � 3pm�

�
; (13)

where pm stands for the pressure of the additional matter
fluid. This allow us to define the Born-Infeld effective
pressure

pBI �
�c
3
A4����3� P � 2P�1� (14)

and the equation of state
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�BI �
pBI

�BI
�

1

3

�
�cA4��� � �BI

�cA4��� � �BI

�
(15)
for the gauge part of the EBID system as in [1]. Here we
see that the su�2�-valued gauge fields ruled by Born-Infeld
Lagrangian can be represented by a fluid with an equation
of state that varies continuously from � 1

3 , when the BI
energy density is much larger than the ‘‘critical field’’
A�4����BI 
 �c, to 1

3 at low energies A�4����BI � �c.
These two extreme regimes correspond to a gas of Nambu-
Goto strings in three spatial dimensions on one hand
(strong-field limit) and radiations on the other (weak-field
limit). The transition between these regimes occurs at
vanishing pressure when the BI energy density is of order
of the BI critical energy scale �c. At low energies (�c !
1), the gauge field behaves like radiation as expected
because the BI Lagrangian reduces to the conformally
invariant Yang-Mills one.

It is also important to notice that there is no cosmic
acceleration with the metric g�� as long as the dilaton is
massless. Indeed, the highest value of �a that can be
achieved in this frame is identically zero [see (13)], in
the limit of the pure Einstein-Born-Infeld system at high
energies ( _� � 0, �BI � �

1
3 ). However, we will see that

cosmic acceleration may appear once we examine the
behavior in another frame.

By varying the action (6) with respect to the dilaton �,
we find the Klein-Gordon equation:
��� 3
_a
a

_���
dV���
d�

� 2�cA4���������P �P�1� 2R�

�����2R� 2���������m� 3pm�; (16)
where ��� � d lnA���
d� , ���� � d lnB���

d� , and ���� �
d lnC���
d� . The key point of the physics in the EBID system

lies in the fact that the dilaton field couples differently to
the gauge sector of the theory depending on the values of
the coupling functions A and B. Although the cosmological
dynamics of the gauge fields ruled by Born-Infeld
Lagrangian can be regarded as a fluid with an equation
of state given by (15), the coupled dynamics of the dilaton
and the gauge field does not reduce in general to a scalar-
tensor theory with this fluid as background. This is only the
case when we have a universal coupling to the metric g��,
i.e. when A � B. In the general case, there exists a non-
trivial energy exchange between the dilaton and the gauge
sectors of the theory that will dominate at late epochs as we
shall see further. Finally, the Euler-Lagrange equation for
the gauge field 	 gives the Born-Infeld equation that rules
the gauge potential dynamics:
-4
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�	� 2
	3

a2 P
�2 � 2

_a
a

_	
�
1

2
� P�2

�

� 2 _� _	
�

2���
R

P
� ����

�
2
R

P
� 1� P�2

��
� 0�

(17)

This equation is essentially the same as that in [1] except
from the coupling term proportional to _� which accounts
for the direct energy exchange at the microscopic level
between the fields. It is important to notice that we did not
assume any direct coupling between the gauge field and the
additional matter fluid, which will allow one to treat them
separately. Indeed, from Eq. (17), and following [1], it is
possible to derive an energy conservation equation for the
BI density :

_�BI � �2
_a
a
�BI

�BI � 2�cA4���

�BI � �cA
4���

� 4��� _��cA4����R� 1�

� 2���� _��cA4���
�
�� �

R
� 2P � 2R

�
� (18)

Now that we have derived the complete set of the EBID
field equations for cosmology, we propose the reader to
briefly review some basic features of Born-Infeld cosmol-
ogy on one hand and dilaton cosmology on the other. In the
rest of this paper, we will only consider a massless dilaton
[i.e., vanishing self-interaction potential V��� � 0].
III. BORN-INFELD AND DILATON
COSMOLOGIES

A. Non-Abelian Born-Infeld cosmology

The Non-Abelian Born-Infeld cosmology in various
spacetimes with different values of the curvature and the
cosmological constant was described in detail in [1]. The
field equations governing these models are those of the
previous section with a vanishing dilaton � � _� � 0,
constant coupling functions A � B � 1, and no additional
matter fluid �m � 0. The equation (18) for BI energy
conservation can be written as

_�BI � �2
_a
a
�BI

�BI � 2�c
�BI � �c

(19)

which admits a first integral:

a4�BI��BI � 2�c� � C; (20)

where C is a positive constant. In the strong-field limit,
�BI 
 �c, the BI energy density redshifts as �BI � a�2

while in the weak limit, �BI � �c, we retrieve the radiation
behavior �BI � a�4 characteristic of the conformal invari-
ance of the gauge field at such energies. This allows one to
treat separately the spacetime evolution and the dynamics
of the gauge field. Although the complete analytical solu-
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tions for both gravitational and gauge sector were derived
in [1], let us illustrate simply the main features of this
cosmological model. First, the strong-field limit �BI 
 �c
corresponds to P 
 1. In this limit, the acceleration
Eq. (13) reduces to

�a
a
� �

�
3
�c

whose general solution is

a�t� � a sin
� ��������
��c

3

r
t
�

where we set a�0� � 0 and a is the value of the scale
factor at the time t �

�����������������
3=���c�

p
�
2 (in Planck units).

Therefore, the cosmic expansion starts with a zero accel-
eration at the singularity. Then, setting P 
 1 in Eq. (17)
brings

�	�
_a
a

_	 � 0

which shows that _	 scales as a. Near the singularity, the
behavior of the gauge field is therefore

	�t� � �

��������
3�c
p

3
a cos

� ��������
��c

3

r
t
�
;

and the gauge potential 	 starts at rest.
Then, in the weak-field regime, �BI � �c and P � 1

(�c ! 1). This limit corresponds to the Einstein-Yang-
Mills cosmological solution studied in [5]. The conformal
invariance of the gauge field in that regime yields that the
scale factor behaves like in the radiation-dominated era:
a�t� �

��
t
p

(in synchronous time). On the other hand, the
energy conservation equation (18) now reduces to

a2 _	2 � 	4 �
C

3�c

which can be integrated in terms of the Jacobi elliptic
function. Moving to the conformal time coordinate dt �
ad�, we find

	��� � E1=4cn�E1=4�;�1�;

where cn�u; k� is the Jacobi elliptic function and E �
C=�3�c�. In synchronous time, the gauge potential 	 os-
cillates with a fixed amplitude and a growing period. More
generally, it is possible to derive a general solution for the
gauge potential. Let us rewrite the first integral (20) in
terms of P as

P �

�������������������
1�

C

�2
ca4

s
� (21)

Using the definitions (11) and (9), the previous equation
may be integrated to give the gauge potential (in the
conformal gauge dt � ad�):
-5
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	��� � a2
0

�����
�c
p

cn�P�1�;�1��

Figure 1 illustrates the evolution of the scale factor, the
gauge potential, and the equation of state during the ex-
pansion of a non-Abelian Born-Infeld universe. The figures
correspond to the numerical integration of Eqs. (13) and
(17) with � � _� � 0 and A � B � 1. During numerical
evolution, we monitor the violation of the Hamiltonian
constraint (10) (see the appendix for more details on in-
FIG. 1. Illustration of Non-Abelian Born-Infeld cosmology:
(a) scale factor; (b) gauge potential; (c) equation of state of
the Born-Infeld ‘‘fluid.’’
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tegrating the EBID system). In this case, this violation does
not exceed a part on 10�12. Initial conditions at ti � 0 were
assumed such as �BI�ti� � 100�c, a�ti� � ai � 1, and
_	�ti� � 0 (�c � 10�4 	m4

Pl).

B. Dilaton cosmology

Dilaton cosmology can be retrieved from our fundamen-
tal equations by setting 	 equal to 0. Indeed, tensor-scalar
theories can be written in the so-called ‘‘Einstein’’ confor-
mal frame:

S �
1

2�

Z
d4x

����������
�g
p

fR � 2g�� @�’@�’g

� Sm� m;C
2�’�g���; (22)

where � is therefore the ‘‘bare’’ gravitational coupling
constant, Sm is the action for the matter fields  m, ’ ����������
�=2

p
�, and g�� the ‘‘Einstein’’ metric tensor which cor-

responds to basic gravitational variables with pure spin 2
propagation modes. This metric is measured by using
purely gravitational rods and clocks and allows one to
account for the dynamics in a simpler way3 than an ob-
servable frame in which the metric tensor ~g�� is univer-
sally coupled to matter fields  m. This frame is called the
‘‘Jordan-Fierz’’ frame in which the action (22) can be
written

S �
1

2

Z
d4x

�������
�~g

p �
� ~R�

!���
�

~g��@��@��
�

� Sm� m; ~g���; (23)

where ~R is the curvature scalar built upon the physical
metric ~g�� which is measured using nongravitational rods
and clocks and where!��� is called the coupling function.
The scalar field � now gives the effective gravitational
coupling constant. In this frame, matter fields evolve in the
same way that they could do in general relativity because
the action of matter does not depend explicitly on the scalar
field�, as matter couples universally to the physical metric
~g��. Einstein and Jordan frames can be linked together
through the conformal transformation

~g �� � C2�’�g�� (24)

and the following relation between the scalar field � in the
Einstein frame (pure spin 0 dynamics) and its counterpart
� in the Jordan physical frame:

��1 � �C2�’�; (25)

with ’ �
���������
�=2

p
�. The energy density and pressure of the

matter fluid in both frames are related by
3In particular, this frame represents gravitation with its pure
scalar and tensor degrees of freedom and the limit of general
relativity is not singular.
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�m � C4 ~�m (26)

pm � C4 ~pm; (27)

where �m and pm represent these quantities expressed in
the Einstein frame. At the opposite of scalar-tensor theo-
ries, we did not assume here an universal coupling to the
metric tensor g��. Indeed, the action (1) reduces to a
tensor-scalar theory in the Einstein frame (22) only when
A��� � B��� � C���, i.e. when the weak equivalence
principle applies. Let us now remind the reader about the
behavior of such tensor-scalar theories in the presence of a
background cosmological fluid. When the matter fields  m
are represented under the approximation of a perfect fluid,
the dynamics of the scalar field is ruled by (see [17–20])

2

�3� ’02�
’00 � �1� ��’0 � �1� 3����’� � 0; (28)

where ��’� � d lnC�’�
d’ and � � �=p is the equation of state

for the cosmological fluid. In the previous equation, a
prime denotes the derivative with respect to the variable
p � ln�a=ai�. The action of the cosmological fluid is thus
to damp the dynamics of the scalar field while it is rolling
down some effective potential depending on the coupling
function. Furthermore, the scalar field now has an effec-
tive, velocity-dependent, mass of

m�’� �
2

�3� ’02�
; (29)

where the field has a limiting speed ’0 �
���
3
p

for which its
effective mass diverges. This relativistic limit corresponds
to the case where the energy density of the background
fluid is negligible compared to the kinetic energy of the
scalar field (the universe is dominated by the kinetic energy
of the scalar field).

C. The universal coupling for EBID cosmology

Let us now turn back to the EBID system we wrote in the
previous section and focus on the gauge sector only by
setting Sm � 0. If we now assume a universal coupling to
the metric g�� by setting A � B, we now have for the
dilaton equation (16)

��� 3
_a
a

_�� �����BI � 3pBI� � 0; (30)

where

�BI � 3pBI � 2�cA
4����P � P�1 � 2�:

In this case of universal coupling, we recognize the equa-
tion for the scalar field in the presence of a background
fluid for general tensor-scalar theories.4 The equations
4We also have �BI � A4 ~�BI [see (12)] for the relation between
the energy density expressed in the Einstein and Jordan frames
(quantities with a tilde).
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(10), (13), and (16) can be simply solved in the Jordan
frame by using the results on the non-Abelian Born-Infeld
cosmology (previous paragraph). The equation (17) for the
gauge field in the Einstein frame can also be written

�	� 2
	3

a2 P
�2 � 2

_a
a

_	
�
1

2
� P�2

�
� 2��� _� _	�1� P�2� � 0� (31)

Therefore, in the weak energy regime �BI � �c (P � 1),
the gauge field undergoes a conformally invariant dynam-
ics (non-Abelian radiation, �BI � 3pBI) and decouples
from the scalar field.

In a radiation-dominated universe, where the equation of
state is � � p=� � 1=3, the dynamics of the scalar field is
given by the following solution to (28) (cf. [17,18,20]):

’�p� � ’1 �
���
3
p

ln�Ke�p �
�������������������������
1� K2e�2p

p
�; (32)

where the integration constant K is determined from the
initial velocity ’0�p � 0� � ’00:

K �
’00

3� ’020
�

This should correspond to the low-energy limit of the
Born-Infeld field equations when a universal coupling is
assumed: the scalar field velocity in p-time should be
damped to zero by the cosmological expansion. It should
be noticed that, when there is no universal coupling A � B,
we do keep an energy exchange between the dilaton and
the gauge fields and the usual dynamics of tensor-scalar
theories will be modified. Moreover, when there is no
universal coupling, the energy exchange between the
gauge potentials and the dilaton field will prevent the
dynamics to be purely dictated by the solution (32). As
we shall see in Sec. V, this solution will accurately describe
the early epochs of evolution when the field is almost
relativistic. However, at late times, energy transfer between
dilaton and gauge fields will substantially alter the
dynamics.

Once again, let us assume a universal coupling and
consider the strong-field limit of the Born-Infeld system
where we have � � �1=3. The dilaton equation (28) now
becomes

’00

3� ’02
�

2

3
’0 � �’� � 0� (33)

Let us now write down for the dilaton coupling function

A2��� � ek� (34)

!��� �
2�� 3k2

2k2 (35)

�’� �
k������
2�
p (36)
-7
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j3� 2!���j � �2�’� (37)

and face the simplest tensor-scalar theory of Brans-Dicke
type (’ �

���������
�=2

p
�). Using CONVODE [25], it is possible to

find an analytic solution for’0 under the following implicit
form when we use the coupling function (34):

�6A2 � 8��p� p0� �
���
3
p

A ln
���������’

0 �
���
3
p

’0 �
���
3
p

��������
�

� 2 ln
�

’02 � 3

�3A� 2’0�2

�
; (38)

where A � k=
������
2�
p

and p0 some integration constant.
When p! 1, there is an attractor for ’0, namely,

’0�p! 1� � �
3

2

k������
2�
p � (39)

Therefore, there is also a maximum value for the dilatonic
coupling constant k for which the attractor corresponds to
the relativistic limit for the dilaton (j’01j !

���
3
p

):

kmax �

������
8�
3

s
� (40)

In the nonrelativistic limit j’0j �
���
3
p

, Eq. (33) now be-
comes

’00 � 2’0 � 3A � 0;

which can be solved easily to give

’�p� � �
3

2

k������
2�
p

�
p�

1

2
e�2p �

1

2

�
; (41)

where we assumed ’i � 0. We can see that, due to the
constant potential term in Eq. (33), the value of the dilaton
field goes to �1 (�1 if k < 0) with the time variable p.
However, the gauge energy density will also decrease with
time and finally the assumption of strong field will be no
longer true as �BI becomes less than the critical energy �c.
At the end of the evolution, we should retrieve the radiation
case for which the solution in case of universal coupling
was described above. Once again, a nonuniversal coupling
to the metric yields modification of these behaviors as we
shall see further. Now that we have recalled the main
features of Born-Infeld and dilaton cosmologies as well
as EBID system with universal coupling, let us now discuss
how the nonuniversal coupling in the general EBID system
will modify a tensor-scalar cosmological picture. This will
be done in three steps: in the following section, we will
focus on the strong-field limit where the gauge field
mimics a Nambu-Goto string gas; then on the low-energy
limit which corresponds to the Yang-Mills regime for the
gauge fields and finally to the general cosmological evolu-
tion where transition between both regimes occurs.
023520
IV. THE STRONG-FIELD REGIME

As we have seen earlier, the strong-field limit is reached
when the BI critical energy �c can be neglected with
regards to the gauge field energy density. Setting P 
 1
into the EBID field equations (10), (13), (16), and (17) with
�m � pm � 0 and V � 0, we find�

_a
a

�
2
�
�
3

� _�2

2
� �cA

4���P
�

(42)

�a
a
� �

�
3
� _�2 � �cA

4���� (43)

��� 3
_a
a

_�� 2�cA4���P ������ � 2���� � 0 (44)

�	�
_a
a

_	� 2 _� _	�2��� � 3����� � 0� (45)

where we used R
P � 1� � and assumed �� 1 which will

be verified afterwards by the agreement between analytical
and numerical solutions. In the following, we will assume
the exponential coupling function (34) for the sake of
simplicity. However, the qualitative analysis will be valid
for any coupling functions. In terms of the new time
variable

p � ln
�
a
ai

�
(where ai defines the initial zero value for p), we can
combine Eqs. (42)–(44) to obtain

’00

3� ’02
�

2

3
’0 � ����’� � 2�’�� � 0; (46)

where ’ �
���������
�=2

p
�. In order to particularize, we can set

now  � 0 (A � 1) and B�’� � exp�k=
������
2�
p

’� and find
for the dilaton equation

’00

3� ’02
�

2

3
’0 �

k������
2�
p � 0 (47)

which admits a solution similar to the case of a tensor-
scalar theory with Nambu-Goto string gas (33):

�6A2 � 8��p� p0� � �
���
3
p

A ln
���������’

0 �
���
3
p

’0 �
���
3
p

��������
�

� 2 ln
�

’02 � 3

�3A� 2’0�2

�
; (48)

where A � k=
������
2�
p

. When p! 1, the attractor for ’0 is
now exactly the opposite of the universal coupling case
(39):

’0�p! 1� �
3

2

k������
2�
p : (49)

The maximum value for the dilatonic coupling constant k
-8
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is the same as before [Eq. (40)] and the nonrelativistic limit
can be obtained from (41) with an opposite sign. The
constant potential term in Eq. (46) is negative so that the
value of the dilaton field is pushed toward �1 (�1 if
k < 0) with the time variable p, as long as the gauge field
remains in the strong-field limit �BI 
 �c.

Figure 2(a) illustrates the evolution of the dilaton veloc-
ity with respect to the time variable p in the strong-field
limit. The trajectory has been computed numerically [solid
line in Fig. 2(a)] from the integration of the full EBID
system with the initial conditions indicated in the caption
[with A � 1 andB�’� � exp�k=

������
2�
p

’�]. Also shown is the
analytical approximation of the strong-field limit given by
Eq. (48) represented by big dots.

Figure 2(b) gives the evolution of the dilaton field along
the cosmic expansion for the case A � 1 and B�’� �
exp�k=

������
2�
p

’�. Starting with a negative velocity, the dilaton
is damped to a minimum before being accelerated to
infinite values (with k > 0). Fortunately, as the BI energy
density will decrease with time, the strong-field limit
�BI 
 �c will soon be no longer valid. We shall see further
FIG. 2. Evolution of the EBID system in the strong-field regime w
factor a�t�. (d) Energy density of the BI gauge field (ai � 1, �BI�a
10�13).

023520
that, in the Yang-Mills limit, the same coupling to gauge
fields will bring the dilaton to infinitely negative values. Of
course, a similar conclusion can be found when k is nega-
tive. Figure 2(c) gives the behavior of the scale factor in the
case discussed here. As the dilaton field is relativistic at
infinitely low times p! �1 and therefore dominates the
energy content of the universe, the expansion starts with an
infinite rate, breaking the ‘‘renormalization’’ that was done
in simple BI cosmologies. Finally, let us focus on the gauge
sector of the EBID system. In the strong-field limit, the
features of Born-Infeld cosmologies for the gauge field are
conserved: it starts at rest, damped by the cosmic expan-
sion, before entering the oscillation regime of the weak
energy Yang-Mills limit. Figure 2(d) illustrates the evolu-
tion of P for the numerical solution (solid line) with
dilaton compared to the evolution in a simple BI universe
with same initial BI energy density (dash-dotted line). This
holds for the particular coupling A � 1 and B�’� �
exp�k=

������
2�
p

’�. If we now transpose A and B, it is easy to
see from (46) that the attracting value for ’0 will be twice
the value of the universal coupling (39). Therefore, when
ith the p-time variable (a) ’0, (b) dilaton field �, and (c) scale
i�=�c � 1010, �c � 10�4 	m4

Pl, k � 5, �0i � �1:73, 
H=H <

-9



A. FUZFA AND J.-M. ALIMI PHYSICAL REVIEW D 73, 023520 (2006)
the coupling to the volume form is weaker than the cou-
pling to the metric,5 the scalar field behaves just the
opposite way than in the universal coupling (with � �
�1=3). Up to this point, we have obtained both analytical
and numerical solutions for the strong-field limit, �BI 

�c, of the EBID system. We have also explained qualita-
tively the effects of nonuniversal coupling to the Einstein
metric g�� on the dynamics of the scalar field. Let us now
turn to the weak-field regime in which the gauge sector is
ruled by Yang-Mills Lagrangian.

V. THE WEAK-FIELD REGIME: SOLUTIONS OF
THE EINSTEIN-YANG-MILLS-DILATON SYSTEM

The weak-field regime of the EBID system is reached
when the BI energy density A4�’��BI becomes much
smaller than the critical energy �c. In this case, the
Lagrangian ruling the gauge sector takes the usual Yang-
Mills form (3), which gives for the spatially homogeneous
and isotropic gauge potentials (5):

L YM � �
3

2

�
	4

a4 �
_	2

N2a2

�
� (50)

Taking into account the limit �c ! 1 (and P � 1) into the
EBID field equations (10), (13), (16), and (17) (with V �
0), we obtain�

_a
a

�
2
�
�
3

�
3

2
A4���B�4���

�
_	2a2 � 	4

a4

�
�

_�2

2

�
(51)

�a
a
� �

�
3

�
3

2
A4���B�4���

�
_	2a2 � 	4

a4

�
� _�2

�
(52)

��� 3
_a
a

_�� 6A4���B�4������� � �����

	

�
_	2a2 � 	4

a4

�
� 0 (53)

�	� 2
	3

a2 �
_a
a

_	� 4 _� _	���� � ����� � 0� (54)

These equations constitute the Einstein-Yang-Mills-dilaton
system, and the special case of A � 1 and B��� �
exp�k=2�� can be found in [14,15]. In this paper, the
authors highlighted the importance of the energy exchange
between the dilaton and the Yang-Mills field. Indeed, this
coupling yields a new force term in the field equation for
the dilaton (53) and the gauge field (54) which disappear in
case of universal coupling (A � B and  � �). With non-
universal coupling the gravitation is now sensitive to the
force term when it is coupled to Yang-Mills radiation
although its equation of state is those of radiation [see
(28)]. Let us now describe the dynamics of the different
5For example, in the case A � 1 and B�’� � exp�k=
������
2�
p

’�
we just discussed.
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fields in the EBID system for this low-energy regime. First,
let us move to the p-time variable p � ln�a=ai� and use the
acceleration and Friedmann equations (51) and (52) to
rewrite (53) as

’00

3� ’02
�
’0

3
� 2���� � �����

_	2a2 � 	4

_	2a2 � 	4 � 0; (55)

with

’ �
����
�
2

r
��

The energy exchange term in _	2a2 � 	4 inside relations
(53) and (55) is in general oscillating, due to the self-
coupling of the non-Abelian gauge field [term in 2	3=a2

in (54)]. A way to handle this easily is to replace it by an
effective source term which would account for the average
effect of the gauge field oscillations. Let us therefore
proceed to the following replacement:

_	2a2 � 	4

_	2a2 � 	4
� @ (56)

with @ some constant expressing the effectiveness of the
energy exchange between dilaton and gauge fields in the
weak-field regime. This constant @ can for instance be
estimated numerically by computing the average of the
driving term in (55) over one period. Equation (55) is the
same field equation as (28) for the tensor-scalar theory of
the dilaton but now with a nonvanishing force term due to
our averaging of the gauge oscillations. By averaging the
gauge oscillations, we obtain a similar equation to the
strong energy limit [Eq. (46)] seen in the previous section.
Therefore, we can use the same procedure as before: if we
set A � 1 and B��� � exp�k=2��, we can propose the
following implicit solution for ’0:

�6A2 � 2��p� p0� � �
���
3
p

A ln
���������’

0 �
���
3
p

’0 �
���
3
p

��������
�

� ln
�

’02 � 3

�3A� ’0�2

�
; (57)

where A � 2@k=
������
2�
p

. Once again, the p-time derivative
of the dilaton field ’0 evolves towards the following at-
tractor:

’0�p! 1� � �6
@k������
2�
p ;

and the maximum value allowed for the dilatonic coupling
constant k for which the dilaton remains relativistic (’01 !
�

���
3
p

) is

kmax �

��������
�

6@2

r
�

It is important to notice the opposite sign between the
attractors of the strong and weak-field regimes which
-10
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will have important consequences on the cosmological
evolution of the dilaton. In the nonrelativistic limit, �02 �
3, we find the following solution for the dilaton:

’ � �3A�e�p � p� 1� � ’i; (58)

and we see that the dilaton tends to �1, if the dilatonic
coupling constant is positive (@> 0). Figure 3 compares
our analytical solution (57) coming from an averaging
approximation (dashed line) to a numerical solution of
the full EBID system (solid line). In the YM regime, the
velocity of the dilaton ’0 appears oscillating, around aver-
age values given by the approximation (57) with @ � 1=3.
This value numerically appeared to account for the average
behavior of the EBID system in the low-energy limit for a
wide range of parameters (k, �c, ’i, or ’0i). Therefore,
averaging the oscillations of the source term to about a
third of their amplitude seems in very good agreement with
numerical solutions. Therefore, the attractor for the p-time
derivative of the dilaton is now

’0�p! 1� � �2
k������
2�
p ; (59)

while the maximum value allowed for the dilatonic cou-
pling constant is

kmax �

������
3�
2

s
� (60)

When A � 1 and B��� � exp�k=2��, the p-time deriva-
tive of the dilaton appears to converge to a constant nega-
tive value which is directly given by the nonrelativistic
approximation (58) which is valid when k is small com-
pared with

����
�
p

(dotted line). When B � 1 and A��� �
exp�k=2��, it is obvious from Eq. (55) that the attractor
has exactly the opposite value. Therefore, the case of
nonuniversal coupling A � B is quite different to what
happens in a usual tensor-scalar theory: in a radiation-
023520
dominated universe, the p-time velocity of the dilaton
freezes to zero [see the solution (32)]. Indeed, this will
make the dilaton field diverging after an infinite amount of
time as can be seen in Fig. 4. In this figure, we represented
the evolution of the dilaton in the numerical solution with
A � 1 and B��� � exp�k=2�� (solid line) to the solution
(32) for the same field in a radiation-dominated universe.
More precisely, the dilaton tends to �1. As a conclusion,
although the gauge field looks like radiation at a large-scale
level, the nonuniversal microscopic coupling between di-
laton and gauge sectors finally dominates at large redshift
and freezes the energy contribution of both sectors in such
a way that none of these components completely domi-
nates. Figure 5 presents the evolution of the gauge field
velocity _	 with the scale factor. The gauge field appears to
be damped by its coupling to the dilaton and in fact the
whole gauge sector loses energy at a rate fixed by (18).
-11
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Figure 6 shows the departure of the scale factor from the
radiation solution: �������� a

arad
� 1

��������
for the numerical solution presented in this section. We see
that the departure is important when the scalar field is
dominating at early times (t < 5	 104tPl) then finally
converges to a slightly less strong expansion at late times
(a � 0:99	 arad), when the equilibrium has been reached.

Before going further, let us summarize the cosmological
evolution of the fields constituting the EBID system in the
YM regime. First, the dilaton is damped until its velocity is
attracted to a negative (respectively positive) value for the
particular coupling A � 1 and B��� � exp�k=2�� and k >
0 [respectively B � 1 and A��� � exp�k=2��]. However,
it should have been damped to rest if it would have been
plunged in a radiation-dominated universe with universal
coupling. Because its velocity has been attracted to a
negative value, the dilaton field will eventually diverge
linearly to �1 (k > 0). This is exactly the opposite situ-
ation of the strong-field limit that was presented before
where the coupling term drives the dilaton to infinitely high
values. In a general situation where the gauge field starts
with an energy much higher than the BI critical energy and
then cools down to YM dynamics, one should expect that
the dilaton reaches some extremum value (’0 � 0) during
the transition. This will be treated in the next section.
VI. GENERAL COSMOLOGICAL EVOLUTION

Let us follow in detail some typical cosmological evo-
lutions of the EBID system for various couplings. Starting
at singularity, the dilaton is in general relativistic (j’j ! 1
and ’02 ! 3). The expansion therefore begins at a � 0
with an infinite rate and the gauge field dynamics is domi-
nated by the nonlocal effects induced by the BI nonlinear-
023520
ity (�BI 
 �c). As energy is exchanged between the
dilaton and the gauge field in the strong-field regime, the
dilaton velocity is attracted to some value depending on the
coupling functions, as illustrated in Fig. 7. During this
phase, the velocity of the dilaton in p-time is indeed a
positive (negative) constant when A � 1 and B��� �
exp�k=2�� [B � 1 and A��� � exp�k=2�� or the universal
coupling A � B]. When the gauge energy density has
decreased to the BI critical energy (�BI � �c), the dilaton
velocity leaves the strong-field attractor to enter the YM
low-energy regime. The epoch of this transition varies
according to the coupling functions considered (see
Fig. 7). It then moves to the low-energy attractor by
accomplishing damped oscillations around the analytical
solutions proposed in the previous section (with A � B) or
is damped to vanishing velocities when there is universal
coupling (see Sec. III). With nonuniversal coupling (A �

B), the value of the dilaton field reaches some extremum
(’0 � 0) on its way to the second attractor. This extremum
is unavoidable as we have seen that the attractors of the
dilaton velocity in the strong and weak-field regimes are of
opposite signs and its velocity will therefore vanish at some
time during the transition between these two attracting
regimes. It is also interesting to examine the evolution of
the gauge field energy density. Figure 8 represents the
gauge field energy density �P � 1� related to the curves
in Fig. 7. With universal coupling A � B, we retrieve a
cosmological evolution given by Eq. (19) and its first
integral (20): �BI � a�2 in the strong-field regime and
�BI � a�4 at low energies. The assumption of nonuniver-
sal coupling now leads to different evolutions of the gauge
field energy density, which in fact are given by the more
general energy conservation equation (18). The differences
between the evolutions come from the particular trajecto-
ries illustrated in Fig. 7.
-12
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Now that we have reviewed the main features of a
general full cosmological evolution from high to low-
energy regimes, it is also important to discuss the evolution
of the observed cosmological parameters like the scale
factor, the Hubble expansion rate, or the accelerating pa-
rameter in the Jordan physical frame. In order to define
such a frame, we will introduce an additional matter pres-
sureless fluid which will verify the weak equivalence prin-
ciple. The energy density �m of this fluid in the Einstein
frame is related to the physical energy density ~�m through
the relation (26). The coupling function C��� to ordinary
matter defines now our ‘‘observable’’ Jordan frame by

~g �� � C2���g��� (61)

In the Jordan frame obtained by the previous conformal
transformation, the energy density ~�m of the matter fluid is
ruled by the same conservation laws as in general relativity.
This is true because there is no direct interaction between
the gauge sector and the additional matter fluid and there-
fore they decouple from each other. The field equation for
the gauge potential 	 does not need to be modified as we
do not assume any direct coupling with the pressureless
fluid. We will now consider the field equations for the
EBID system we have written in Sec. II for the Einstein
metric g�� with a pressureless fluid pm � 0. The observ-
able scale factor in the Jordan frame will be given by

~a � C���a; (62)

while the synchronous time in the Jordan frame is denoted
by

d~t � C���dt� (63)

Then, the Hubble expansion rate can be derived directly:

~H �
d~a
~ad~t
� C�1����H� ���� _��; (64)
023520
where H � _a=a is the Hubble parameter in the Einstein
frame, and ���� � d lnC���=d�. The acceleration pa-
rameter ~q in the Jordan frame can be written

~q �
�~a ~a
_~a2
� a

�
d����
d�

_�2a� ���� ��a� ���� _� _a� �a
�

	 � _a� a���� _���2; (65)

where a dot over a quantity expressed in the Jordan frame
means a derivative with respect to the synchronous time ~t
in that frame. Although there is no possibility of a cosmic
acceleration (q > 0) in the Einstein frame [unless one
considers a nonvanishing potential, see relation (13)], this
does not rule out a possible acceleration for the observable
scale factor given by (62). Indeed, the existence of fluid
(constituted by our Born-Infeld non-Abelian gauge field)
that violates the weak equivalence principle will result in a
possibility of cosmic acceleration. To show that this is
actually the case even in the presence of a matter fluid
which would make the tensor-scalar theory converging to
general relativity if taken alone, we will use the coupling
function ��’� � ’. Figure 9 illustrates evolutions of the
acceleration parameter in the Jordan frame ~q�~p�, given by
(65) as a function of the Jordan scale factor ~a. The solu-
tions presented here are expanding universes ( ~H > 0). Four
different couplings have been considered, including the
simple case of A � B � C which correspond to different
couplings of gravitation to the gauge and the matter sector.
The pressureless fluid energy density at the start has been
chosen to dominate the BI energy density by more than 1
order of magnitude. As the gauge field starts in the strong-
field regime, its energy density will scale approximately
with a�2, depending on the coupling functions (see also
Fig. 8). Therefore, the gauge sector rapidly dominates the
-13
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energy content of the universe. The dynamics of the dilaton
is as described earlier: after having moved to the strong-
field regime attractor, the transition to YM dynamics oc-
curs and the dilaton quickly moves to the low-energy
attractor. During this transition, acceleration appears in
the Jordan frame defined by the pressureless fluid as in-
dicated in Fig. 9. We see also that any violation of the weak
equivalence principle (here by taking C � A, C � B or
C � A � B) leads to cosmic acceleration even with tensor-
scalar theory that would alone converge to general relativ-
ity. An important condition for cosmic acceleration is to
have a repulsive force term in the dilaton equation.
Therefore, the EBID system with a nonuniversal coupling
to gravitation offers the interesting possibility to build a
scenario for dark energy or inflation. For the curves
represented here, the acceleration periods are shorter
than in a usual �CDM (�� � 0:7; �m � 0:3; H0 �
70 km=s=Mpc) or quintessence model6 and therefore a
more complete study should be done to determine if it is
possible to explain distance-redshifts measurements with
EBID fields. It should also be noticed that an EBID dark
energy scenario would predict a finite period of accelera-
tion. Indeed, as the gauge field will recover a YM dynamics
at the end of its evolution, its energy density will finally
scale as a�4 and will finally be dominated by a pressureless
fluid. Therefore, the questions whether cosmic acceleration
(~q > 0) can occur, with which intensity, and for how long,
seem to depend on both initial energy distribution, the
value of the dilaton coupling constant, and the critical BI
energy scale �c. More work should focus on that point to
see if it would be possible to build a physically relevant
quintessence model with the EBID field equations.
However, the perspectives of cosmic acceleration in the
Jordan frame do exist and this looks particularly interesting
for our view of modern cosmology.
VII. CONCLUSION

The non-Abelian Einstein-Born-Infeld-dilaton model
provides an interesting framework, motivated by string
theory, to study the impact of large-scale non-Abelian
gauge fields on tensor-scalar theories of the gravitational
interaction. In this paper, we focused on the cosmological
evolution of an homogeneous and isotropic configuration
of these fields in a flat background. The microscopic
coupling between the dilaton and gauge fields induced by
6To give an idea on how these universes accelerate, we remind
the reader about the following values of the acceleration pa-
rameter for various energy content:

q�radiation� � �1 q�relativistic �� � �2 q��� � 1

q�ghost� � 2;

where � stands for the cosmological constant (the de Sitter
solution to which inflation is usually matched as an exponential
expansion).
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nonuniversal coupling to the metric leads to an energy
exchange between both gravitational and gauge sectors
that will alter the usual dynamics of tensor-scalar theories
(for which the coupling is universal).

As in non-Abelian Born-Infeld cosmology, we consid-
ered two different regimes depending on the gauge energy
density compared to the critical energy that parametrizes
the Born-Infeld Lagrangian. We have derived both analyti-
cal and numerical solutions to describe the cosmological
evolution of the whole system. In the case of nonuniversal
coupling, the gravitational scalar field no more depends on
the equation of state of the gauge field and the dynamics is
altered as follows.

In the particular case of a Brans-Dicke theory, in which
nonperturbative terms for the dilaton are not considered,
we have shown that the energy exchange resulting from the
particular couplings damps the dilaton to a frozen non-
vanishing velocity. In the high-energy regime of the gauge
dynamics, the attracting value for the velocity is positive
when the gauge field couples more to the metric than to the
volume form. The opposite situation happens in the low-
energy regime where the gauge field is ruled by Yang-Mills
Lagrangian. Therefore, in a general cosmological evolu-
tion where the gauge field cools down to low energies,
there is a transition between the two attractors. Their
values are directly proportional to the value of the dilatonic
coupling constant.

However, it is well known from experimental tests of the
gravitational theory, especially the determination of the
post-Newtonian parameter ��, that the value of the coupling
!0 is at least of order 500, roughly 10�3 for0 (see [26] for
a recent estimation of the post-Newtonian parameter �).
The influence of the dilaton potential is also important to
consider. Furthermore, the constraints on the weak equiva-
lence principle obtained by the tests on the universality of
free fall exclude a violation of this principle that would
exceed a part in 10�12. One can therefore argue that the
effect of such nonuniversal couplings should be neglected.
But, if the violation of the weak equivalence principle only
applies to large-scale fields which do not couple to ordi-
nary matter and whose distribution is roughly homogene-
ous, their energy density on our scales is far beyond
experimental reach and the violation could be hard to
exhibit.

The interesting possibility introduced by such a viola-
tion is a cosmic acceleration in the physical frame associ-
ated to ordinary matter. In this work, we build a first simple
model based on our treatment of the EBID field equations
that exhibits periods of acceleration in the presence of
ordinary matter verifying the weak equivalence principle.
The acceleration has been shown to resist to the attracting
property of the accompanying matter and seems to be a
general feature of a nonuniversal coupling to gravitation.
Furthermore, this model respects the weak energy condi-
tion �� 3p > 0 in the frame of the physical degrees of
-14
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freedom (the Einstein frame). The Born-Infeld dynamics
of the gauge field plays a crucial role in this kind of dark
energy model by ensuring a late arising of this mechanism
(when the gauge field mimics a Nambu-Goto string gas)
and even predicts an end to the dark energy domination
(when the gauge field looks like radiation). An interesting
perspective to this work would be to use this remarkable
feature of non-Abelian Born-Infeld gauge fields to build
physical models for quintessence and, maybe, inflation.

In conclusion, we can say that our study of non-Abelian
Born-Infeld gauge fields coupled to tensor-scalar gravity
opens new and interesting perspectives for the question of
the attraction to general relativity as well as other crucial
topics of modern cosmology such as inflation or dark
energy.
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APPENDIX: NUMERICAL INTEGRATION OF THE
EBID SYSTEM

Here we give some details of the numerical integration
of the full EBID system we use to illustrate this paper. In
order to integrate the system of equations (10), (13), (16),
and (17), we choose the following procedure. First, we
rewrite Eqs. (13), (16), and (17) as a system of six first-
order ODE’s and keep the Hamiltonian constraint (10) to
check the consistency of the numerical computation. Then,
let us redefine the fields in such a way that they will be
023520
approximately of the same order of magnitude (this will
avoid stiffness problems in the integration):

a �
A
ai

� � �mPl 	 � �mPl; (A1)

where A;� and � will be the fields to integrate. It is also
useful to set k � K=mPl and �c � �0cm

4
Pl. Once the equa-

tions have been rewritten under these considerations, we
choose the initial conditions as follows: ai is set to 1 and�i
to zero (we therefore start with a ‘‘bare’’ gauge coupling
constant equal to unity in the Einstein frame). We choose
the ratio �BI�a � ai�=�c � r so that we can control the
type of gauge dynamics (BI, YM, or transition) we start
with. Then, we choose the value of �0�ai� � �0i so that the
initial expansion rate will be given by H2

i �

�=3�BI�ai�=�1� ��02i =6�. This gives also _�i as it is equal
to Hi�0i. Then, without loss of generality, we can assume
	i � 0 and determine _	i from the postulated value of
�BI�a � ai�. Numerical integration of the system of six
ODE’s is performed using the standard method of
Shampine-Gordon [27]. To monitor the accuracy of the
numerical solution, we compute the absolute violation of
the Hamiltonian constraint (10):


H
H
�
jH� _A=Aj

H

all along the integration. The numerical integration makes
the violation of the Hamiltonian constraint diverging ex-
ponentially with time and we indicated in the previous
figures the final absolute error reached for each of the
numerical solutions that were presented.
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