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Sudden gravitational transition
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We investigate the properties of a cosmological scenario which undergoes a gravitational phase
transition at late times. In this scenario, the Universe evolves according to general relativity in the
standard, hot big bang picture until a redshift z & 1. Nonperturbative phenomena associated with a
minimally-coupled scalar field catalyzes a transition, whereby an order parameter consisting of curvature
quantities such as R2, RabRab, RabcdRabcd acquires a constant expectation value. The ensuing cosmic
acceleration appears driven by a dark-energy component with an equation-of-state w<�1. We evaluate
the constraints from type 1a supernovae, the cosmic microwave background, and other cosmological
observations. We find that a range of models making a sharp transition to cosmic acceleration are
consistent with observations.
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I. INTRODUCTION

The observational evidence for a low density, spatially-
flat, accelerating universe poses a severe challenge to
theoretical physics. Solutions which have been proposed
include a cosmological constant, an ultralight scalar field,
and modifications to Einstein’s gravity. An approach which
unifies these different viewpoints can be found in
Sakharov’s description of the gravitational physics of the
vacuum [1]. According to his proposal, quantum effects of
the particles and fields present in the Universe give rise to
the cosmological constant and gravitation itself [2].
Models of the early universe have been proposed which
exploit such effects (e.g. Refs. [3,4]). Although this ap-
proach has not solved the problem of the cosmological
constant, it has pointed the way towards a novel model for
the dark energy.

Quantum effects of an ultralight, minimally-coupled
scalar field have been proposed to account for the dark
energy phenomena in the vacuum metamorphosis scenario
[5–9]. Effectively, the Ricci scalar curvature serves as an
order parameter, marking a gravitational transition when it
drops to the value �m2. Here,m� 10�33 eV is the mass of
the scalar field and � is a numerical constant of order unity
which is set by the theory. For most of the history of the
Universe, up until z� 1, R> �m2 and the vacuum stress
energy is negligble. Since the local value of the Ricci scalar
exceeds this critical value in the vicinity of galaxies today,
we see no vacuum energy nearby. On the largest scales,
however, the vacuum term comes to dominate the cosmic
evolution as R! �m2. A detailed analysis shows that
feedback from the vacuum prevents R from evolving past
the critical value in a sort of gravitational Lenz’s law which
maintains R � �m2 [9]. The ensuing, large-scale cosmic
expansion begins to accelerate, driven by a dark energy
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component with an equation-of-state w<�1 which ap-
proaches �1 in the future.

Despite the sharp change in the character of gravitation,
we are still justified to use basic cosmological tools such as
the luminosity distance. Although the transition changes
the relationship between curvature and matter, we still have
a metric theory and a complete description of the evolution
of the expansion scale factor.

The vacuum metamorphosis scenario is distinct from
scalar-tensor theories of gravity [10] or high-energy phys-
ics inspired modifications of the gravitational action
whereby the Einstein-Hilbert action is replaced by a func-
tion of the Ricci scalar, �16�GLg � R! f�R�. (See
Ref. [11] for a recent example.) In our case, the gravita-
tional action is modified by vacuum polarization effects of
the matter content in the theory. However, the modifica-
tions include contributions from R, Rab, Rabcd so there is
not a simple way to reexpress the model in terms of an
equivalent, nonminimally-coupled scalar field. (See
Refs. [12,13] for a discussion of the equivalence between
higher-order gravity theories and scalar-tensor gravity.)
Furthermore, the scenario we consider is different from
other dark energy models based on curved-space quantum
field theory effects [14,15] in that the cosmic acceleration
arises from nonlinear, nonperturbative phenomena. In fact,
the theory we examine in this article is similar in spirit to
the gravitational transition investigated in Refs. [16,17].
The distinction here is in the form of the vacuum stress
energy, which is based on the novel results by one of us and
collaborators [5–9]. The one-loop effective action, which
is complete for a free massive scalar field in curved space-
time, can be viewed perturbatively in terms of Feynman
diagrams. Classical gravitons attach to the vacuum loops of
the scalar field. With increasing number of external grav-
itons, these diagrams require counterterms that give rise to
-1 © 2006 The American Physical Society
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renormalization of the cosmological constant, Newton’s
constant, and several other constants that appear in terms
that are of second order in the Riemann tensor. In the limit
of a massless field, the conformal trace anomaly [18] arises
from finite parts of the second order terms and does not
depend on the values of the renormalized constants. The
terms in the perturbative expansion that are of still higher
order in the Riemann tensor have no infinities and appear to
be relevant only at Planckian scales. However, summation
of an infinite subset of those terms shows that they may
give rise to a large nonperturbative effect when the Ricci
scalar curvature approaches a specific value proportional to
the square of the scalar particle’s mass. Alternatively, the
functional integral over fluctuations of the scalar field in
the one-loop effective action can be performed and the
result can be expressed in terms of the exact heat kernel of
the scalar field equation. By studying known exact solu-
tions for the heat kernel, one can infer a plausible asymp-
totic form of the heat kernel and show that it leads to the
same type of large nonperturbative effect when the Ricci
scalar curvature approaches a value, �m2, proportional to
the square of the particle’s mass. This latter approach does
not rely on a subset of Feynman diagrams and is thus fully
nonperturbative. Like the conformal trace anomaly, this
effect is independent of the values of renormalized con-
stants. If the calculation is valid, vacuum metamorphosis
must occur if the Universe contains a light scalar field with
� positive. Since a complete description of the stress-
energy tensor source for Einstein’s equations must include
all matter fields as well as vacuum stress energy, the
cosmological phenomena resulting from the vacuum stress
energy is inevitable given the existence of such a scalar
field.

The original vacuum metamorphosis model is tightly
constrained, although not eliminated, by observations
[19,20]. We find the basic behavior to be of sufficient
interest to justify further investigation. In this article we
speculate that other curvature quantities such as RabRab or
RabcdR

abcd can serve a similar role as order parameters for
a gravitational transition. In the following we examine the
cosmic evolution resulting from such gravitational transi-
tions. We evaluate the observational constraints based on
type 1a supernovae, the cosmic microwave background,
the Hubble constant, and large scale structure. We stop
short of making a full perturbation analysis—the detailed
equations require a lengthy investigation—and we regard
this as a first cut at a family of models extending the
vacuum metamorphosis scenario.
II. GRAVITATIONAL TRANSITION

In the vacuum metamorphosis scenario, nonperturbative
effects of a light scalar field lead to a gravitational tran-
sition when the Ricci scalar reaches the level R � �m2. Here
we absorb the dimensionless parameter � into the mass �m.
Before the transition, the cosmic evolution is determined
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by the standard Friedmann-Robertson-Walker (FRW)
equation

3H2 � 8�G�m; a < a�; (1)

where a� marks the time of the transition, and �m repre-
sents all matter and radiation. There is no need to include
the vacuum energy density, �v, since it is negligible at
these early times. After the transition, however, the cosmic
evolution is given by

R � 6� _H � 2H2� � �m2; a � a�: (2)

Notably, the subsequent evolution of matter and radiation
after the transition have no influence on the expansion rate.
The vacuum energy does not merely contribute to the
cosmic energy density driving the expansion, as for most
dark energy models. Rather, it changes the form of gravity
on cosmological scales and completely determines the
expansion. After solving (2) for H�a� or a�t�, however,
we can still use the standard FRW equation

3H2 � 8�G��m � �v� (3)

together with the evolution of the matter density parameter

�m�a� �
�
H�
H

�
2
�
a�
a

�
3
; (4)

to deduce the properties of an equivalent dark energy that
has the equation-of-state, w � pv=�v:

w � ��1� 2
3

_H=H2�=�1��m�a��: (5)

The inferred equation of state is supernegative, with w<
�1 which approaches w! �1 in the future. For this
model, there is a single free parameter, �m. So, after choos-
ing a present day Hubble constant H0, the value of �m
determines the matter density
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The Hubble constant at the time of the transition is H� �
�m=

���
3
p

, so
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�
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(7)

gives the analytic solution to the evolution Eq. (2). Note
that the total energy density and pressure is always posi-
tive: �� p � �m2�a�=a�4=8�G. There is no ‘‘big rip’’ in
this scenario [21], as the late-time evolution resembles a
cosmological constant-dominated universe.

We propose to extend this gravitational transition model,
using RabRab or RabcdRabcd as the order parameter in place
of R. In either case, the evolution before the transition is
determined by the standard FRW Eq. (1). After the tran-
sition, from the constancy of the order parameter we have

�	 _H2 � N� _HH2 �H4�
 � �m4; a � a�; (8)
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FIG. 1 (color online). The evolution of the gravitational tran-
sition model in the w� _w=H phase plane is shown. For a given
N, the model trajectory follows the curve indicated with �m
decreasing as the phase variables evolve from the starting point
at �w; _w=H� � ��1;1� and head towards ��1; 0�. The values
corresponding to �m � 0:3; 0:4 are indicated by the small
squares and circles, respectively. In the case �m � 0:4 today,
�w; _w=H� � ��1:55; 2:4�; ��1:45; 1:6�; ��1:35; 1:0�, with the
transition occurring at a�=a0 � 0:7; 0:6; 0:5 for N � 2; 3; 4, re-
spectively.

FIG. 3 (color online). The evolution of the density parameter
�m as a function of the scale factor a is shown. All models have
�m � 0:4 today. The matter density drops suddenly at the onset
of the transition. The sharpness of the drop grows with decreas-
ing N. The N � 4 model is consistent with all observations, the
N � 3 is on the border, and N � 2 is excluded.
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where � � 12 and N � 2; 3 for the Riemann and Ricci
tensors, and � � 36; N � 4 for the Ricci scalar. Linear
combinations of these curvature terms which lead to cos-
mic acceleration, �a > 0, correspond to 3=2<N � 9=2.
We can solve these equations numerically to determine
the subsequent evolution.

The cosmic evolution under various gravitational tran-
sition scenarios is shown in Figs. 1–3. The hallmark of
these models is a rapidly evolving equation of state with
w<�1. We can see that by decreasing N, or increasing
FIG. 2 (color online). The evolution of the equation-of-state w
as a function of the scale factor a is shown. All models have
�m � 0:4 today. For decreasing N, the effective gravitational
repulsion of the dark energy as measured by w increases. The
N � 4 model is consistent with all observations, the N � 3 is on
the border, and N � 2 is excluded.
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the rank of the curvature quantities used to form the order
parameter, the strength of the vacuum energy increases.
The total �� p drops faster in time, and the onset of
cosmic acceleration is sharper.

Another possibility that comes to mind as an order
parameter is the Gauss-Bonnet invariant,

Q � R2 � 4RabRab � RabcdRabcd: (9)

However, the deceleration parameter q � �a �a= _a2 is pro-
portional to the Gauss-Bonnet invariant q � �Q=24H4.
This means the curvature cannot evolve down to some
constant Q to signal a gravitational transition to cosmic
acceleration: Q< 0 in a matter-dominated universe, but
Q> 0 is required for acceleration.
III. CONSTRAINTS

We now consider the observational constraints on the
cosmic evolution resulting from the family of generalized
vacuum metamorphosis models. These constraints are due
to (i) distance—redshift relationship using type 1a super-
novae (SNe) [22,23]; (ii) the distance to the cosmic micro-
wave background (CMB) last scattering surface and the
density �mh

2 implied by the WMAP measurements [24];
(iii) the Hubble constant based on the Hubble space tele-
scope key project [25]; (iv) the mass power spectrum shape
parameter � � �mh [26,27].
(i) F
-3
or the SNe we use the 156 supernova, ‘‘gold’’ data
set of Riess et al. [22] and the 54 supernova set of
Knop et al. [23]. We make a simple �2 test to
determine the 2� region allowed for each data set.
(ii) F
or the CMB we exploit the geometric degeneracy
of CDM-family models with identical primordial
perturbation spectra, matter content at last scatter-
ing, and comoving distance to the surface of last
scattering [28–30]. This means that there is a fam-
ily of dark energy models with different equation-
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of-state histories and dark energy abundances but
essentially identical CMB spectra [31]. Hence, our
best-fitting models are those which are degenerate
with the best-fitting �CDM models obtained by
WMAP [24]. We have taken the 2��CDM models
based on a 5-parameter fit (��;�ch2;�bh2; h; ns
obtained from a combination of earlier work [32],
new calculations using CMBfast [33], and CMBfit
[34]). We also use the big bang nucelosynthesis
prior �bh

2 � 0:02 0:002�95%� [35].
Ultimately, these points in the �CDM �m �H0

plane are mapped to points in the VCDM �m �H0

plane by fixing the quantities �mh2 and the lumi-
nosity distance to the last scattering surface. This
procedure overlooks differences in the large-angle
anisotropy pattern, which would require a full treat-
ment of the cosmological perturbations after the
transition to model accurately. However, the �2 fit
between the theoretical model and experiment is
dominated by the small-angle anisotropy pattern so
these differences should be small. (A preliminary
treatment of the large-angle CMB anisotropy sug-
gests the VCDM constraint region shifts to higher
�m by & 10% [20].)
(iii) F

FIG. 4 (color online). The observational constraints on the
�m �H0 parameter space for the N � 2; 3; 4 gravitational tran-
or the Hubble constant, we require that the value
of H0 falls within 2� of the Hubble space tele-
scope’s result 72 8 km=s=Mpc (1�) [25].
sition models are shown. The crescent-filled contour is the
(iv) F

WMAP CMB 2� region, obtained from the �CDM 2� region,
given by the dashed contour, by using the geometric degeneracy.
The line connecting the dots shows the mapping of the best-fit
�CDM model to the gravitational transition model. The SN 2�
regions are shown by the wide, lightly shaded (Knop et al. 2004)
and narrow shaded (Riess et al. 2004) bands. The shape parame-
ter � 3� region is shown by the lightly shaded swath. The
Hubble constant 2� region is the horizontal band. For reference,
gravitational transition models with age 13.5 Gyrs lie along the
thin dark line. There is significant overlap amongst all model
constraints for the cases N � 4 for the R2 transition. Sharper
transitions, corresponding to N < 4, are in conflict with some or
all of the observations.
or the shape parameter, the chief obstacle in ap-
plying the Two Degree Field Galaxy Redshift
Survey and Sloan Digital Sky Survey results is
the difference in the rate of growth of linear density
perturbations between our models and a �CDM
cosmology. We expect linear perturbation growth
to cease at the transition, although we postpone a
detailed treatment for a future investigation. The
current 1� bound on � has a �20% uncertainty
which should be comparable to the differences
resulting from the perturbation growth. For safe
margin, we require that our best-fit model has a
shape parameter which falls within 3� of the bound
� � 0:2 0:03�1�� [26,27].
The results are shown in Fig. 4. We see that the gravi-
tational transition models require a lower matter density
than �CDM to satisfy the CMB constraints and a higher
matter density to satisfy the SN constraints. The �2 fit to
the CMB data for the best-fit model is identical to that for
the best-fit �CDM model, due to the geometric degener-
acy. The fit to the SN data is marginally better than �CDM
(�2 � 175 for 156 SNe [22]; �2 � 59 for 54 SNe [23]).
For N � 4, the original VCDM model, there are viable
models near �m � 0:4; H0 � 70 whereby the transition
redshift is z� � 1 [20]. However, as N decreases, the
tension between CMB and SN data builds. Hence, sharp-
ening the gravitational transition relative to VCDM con-
flicts with observation. As N approaches 9=2 it turns out
that the gap between the SN and CMB parameter ranges
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decreases. But in this limit, for fixed matter density today,
the transition occurs at earlier and earlier times, at z� � 1.
Since linear perturbation growth is expected to slow or
cease at the transition, such an early transition can be
expected to wreck the basic structure formation scenario.

There are some straightforward ways to ease the conflict
between these gravitational transition models and observa-
tions: (1) allow for a small amount of spatial curvature; (2)
include the energy of the scalar field itself.

Adding negative spatial curvature improves the fit to the
SN data while lowering the matter density. However, the
viable CMB region shifts to an even lower range of �m,
and so the two major constraints remain in conflict. Adding
positive spatial curvature, thereby closing the Universe,
brings the 2� SN and CMB regions into closer agreement.
-4



FIG. 5 (color online). Same as Fig. 4 but with positive spatial
curvature. In all cases �k � �0:05 and �m � 1:05 at the time
of the transition. The agreement with CMB and SN constraints
improves significantly, particularly for the N � 4 case as the
CMB best-fit point falls inside the 2� contour for all other
constraints.
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As illustrated in Fig. 5, the addition of a small amount of
positive spatial curvature, �k � �0:05 at the transition,
leads to concordance. The quality of the improvement is
best for N � 4, whereby �m � 0:4 and H0 �
60 km=s=Mpc lies within the 2� contour for all the con-
straints. Yet, we view the addition of spatial curvature as
extraneous. It is unrelated to the mechanism of vacuum
metamorphosis or gravitational transition, and there is no
direct observational evidence which requires it. Hence, we
do not pursue spatial curvature any further.

Including the energy of the scalar field itself can also
bring the SN and CMB constraint regions into better
agreement. Here it is necessary to explain that the vacuum
stress energy which gives rise to the gravitational transition
consists of the gravitational corrections to the scalar field
stress energy in the state in which the vacuum expectation
value of the scalar field is zero. A nonzero vacuum expec-
tation value would contribute the same stress energy as a
free classical scalar field of mass m.

This classical scalar field introduces new degrees of
freedom into the model. The mass of the scalar field,
with potential V � 1

2m
2�2, is related by m2 � �m2=� to

the parameter �m that determines the cosmological evolu-
tion after the transition. Using the value � � 6 suggested
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by earlier versions of the VCDM model [5], then m2 �
�m2=6. The evolution of such a light field will be strongly

damped by the cosmic expansion up to the time of the
transition, so that to first approximation it will look like a
cosmological constant. In order to contribute a fraction 1�
�m�a�� of the total cosmic energy density at the transition
time, the field amplitude must be � �����������������������������������������

3�1��m�a���=2�
p

MP where MP is the Planck mass.
This is a potential sticking point for the model, much as
for scalar field quintessence, since such a high field ampli-
tude should be susceptible to quantum gravitational effects
which, for example, induce couplings to all other matter
fields. However, the absence of nongravitational interac-
tions for�, together with its very small massm, appears to
suppress such couplings. Also, one may question whether
it is necessary or economical to introduce a second form of
dark energy. This reduces to the question of the vacuum
expectation value of the field, which must be determined
by the initial conditions or perhaps post-inflationary phys-
ics. Whether or not the vacuum expectation value is large,
for the quantum scalar field that we have been considering,
the quantum effects that lead to vacuum metamorphosis are
inevitable.

Including an effective cosmological constant before the
transition, the evolution equations for the Hubble expan-
sion rate or the scale factor are the same as (8) but with
different initial conditions at the transition. For the R2 case
with N � 4, the analytic solution is

H�a� �
�m

2
���
3
p

�
3�m�a��

4� 3�m�a��

�
a�
a

�
4
� 1

�
1=2
; (10)

�m�a� � �m�a��
�
H�
H

�
2
�
a�
a

�
3
: (11)

The equation of state is still obtained from (5). But whereas
w is undefined at the transition in the absence of the
classical scalar field, now w�a�� � �1 as illustrated in
Fig. 6. Also, note that �m�a�� � �m�a0�. In the N � 4
model with �m�a�� � 2=3 and �m�a0� � 0:3, the transi-
tion occurs at a�=a0 � 0:64 and the equation of state is
w � �1:15 today. As �m�a�� is lowered, the onset of
cosmic acceleration is earlier but the transition is later,
for fixed �m�a0�. In the limit that �m�a�� � �m�a0� the
transition occurs at z� � 0 and the model is equivalent to
�CDM.

We have evaluated observational constraints for the R2,
RabRab, and RabcdRabcd models with a cosmological con-
stant. As more � is added before the transition, the gap
between the CMB and SN constraints reduces. In Fig. 7 we
show the constraints resulting for the case �m�a�� � 2=3.
The quality of the �2 fit to the CMB and SN data are
approximately the same as for the cases without the addi-
tion of the scalar field contribution. In all cases shown there
are viable models near �m � 0:3 and H0 � 70, providing
good motivation for further investigation of these models.
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FIG. 7 (color online). Same as Fig. 4, but the classical mode of
the scalar field contributes an effective cosmological constant
before the gravitational transition. At the transition, �m�a�� �
2=3, ���a�� � 1=3. The result is that the transition to accelera-
tion is softened, and the tension between the CMB and SN
constraints is relaxed. Models with N � 2� 4 are viable.

FIG. 6 (color online). The evolution of the equation-of-state w
as a function of the scale factor a is shown for the N � 4 model
including the classical scalar field. In all cases, w starts at �1 at
the transition, drops below, and then ultimately evolves back to
�1 in the asymptotic future. For �m � 0:3 today, only the top
curve, with �m � 0:67 at the transition, produces a viable
cosmology satisfying all observational constraints.
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IV. COSMOLOGICAL PERTURBATIONS

The vacuum metamorphosis scenario and its general-
izations have dramatic implications for gravitation. The
transition occurs when the order parameter, R2 in the N �
4 case, reaches a critical value. On large scales, when the
cosmological curvature drops to R � �m2 the transition
takes place. On subhorizon scales, on the scales of voids,
this critical value is reached a bit earlier than on average;
on the scale of clusters, this value is reached a bit later.
Since R � 8�G��� 3p� in Einstein’s gravitation, a high
density or pressure will keep R above the critical value.
Inside a cluster and on the scale of galaxies, where the
mean density is well above the cosmic background, the
transition never takes place.

What happens to gravitation after the transition? The
field equations become higher order, so that a static poten-
tial obeys a fourth order equation, ��Ar2r2 �r2�� �
4�BG�.

����
A
p

is a length, below which the potential is
exponentially suppressed. B modifies the strength of grav-
ity and grows tiny upon the transition. This would look like
a disaster, except that the transition takes place only on
large scales, where this Newtonian analysis is invalid.

To treat the scenario in cosmological perturbation the-
ory, we first observe that the gravitational transition takes
place on a spacelike hypersurface of constant curvature.
And the duration of the transition is effectively instanta-
neous, based on a numerical modeling of the vacuum
effects [9]. Taking into account small cosmological pertur-
bations, this surface will be a surface of constant R� �R to
linear order. At times after the transition, the feedback of
the vacuum effects on the gravitational field equations
forces R to a constant. It is reasonable to surmise that
fluctuations �R are forced to vanish. To deal with the
evolution of fluctuations across the transition we resort to
junction conditions, ensuring energy and momentum flow
is continuous. Following Ref. [36], we can choose a gauge
and then match the perturbation variables from pre- to post-
transition. In general, we can expect that the pure growing
mode which dominates the evolution before the transition
will give way to a linear combination of growing and
decaying modes afterwards. The evolution of the perturba-
tions after the transition, however, presents a challenge.

If the transition forces fluctuations of the scalar curva-
ture to vanish, then we find the constraint

�R � 8�G���� 3�p� (12)

�
1

a2 �h
00 � 3Hh0 � 4k2�� � 0; (13)

which should be valid on the range of scales for which the
mean curvature has frozen at R � �m2. Similar constraints
arise for the N � 2; 3 cases. Here we work in the synchro-
nous gauge with metric perturbation variables h and �,
following the notation of Ref. [37], H � a0=a, and the
prime indicates a derivative with respect to conformal time.
-6
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Since density perturbations in the nonrelativistic matter
respond to gravitational fluctuations according to �0m �
�h0=2, we have

�00m � 3H�0m � 8k2� � 0: (14)

Compared to the standard case, for which �00m � 2H�0m �
4k2� � 0, we expect stronger Hubble damping but also a
stronger source. We are tempted to use one of the perturbed
Einstein’s equations to replace � with a fluid variable such
as �� for the density perturbations. However, we must not
forget to include all contributions to the fluid perturbations.
We know that the vacuum effects must contribute an
equivalent energy density ��v and pressure �pv such
that ��v � ��m � 3�pv � 0. But that is all we know
without making a detailed calculation. (A brief glance at
the stress-energy tensor for the vacuum metamorphosis
model [9] should convince the reader that this is not so
straightforward.) Yet, the evolution equations for the cos-
mic expansion look similarly difficult and a simple result,
transition to constant curvature, is obtained. There may be
a simple resolution to the perturbation evolution as well.
V. DISCUSSION

The future prospects for distinguishing a gravitational
transition from other proposals for dark energy such as a
cosmological constant are illustrated in Fig. 8. Here, we
consider the N � 4 gravitational transition model includ-
FIG. 8 (color online). Projected likelihood contours are shown
for Planck CMB and SNAP SN constraints on the N � 4
gravitational transition model, including the contribution of
scalar field potential energy prior to the transition. Models
must lie below and to the right of the diagonal line, outside
the top-left shaded region, with �m�today� � �m�transition�.
The dark contour shows the CMB 95% likelihood region, while
the thin line indicates the family of geometric degeneracy
models. The lighter contour shows a weaker constraint from
the CMB allowing for our uncertainty in the amount of spatial
curvature. The black circles show the location of two specific
models: a �CDM model and an N � 4 gravitational transition.
The Hubble parameters for these two models have been chosen
so that they have identical CMB anisotropy spectra. The lightly
shaded contours show the SN 95% likelihood regions for these
two underlying models. Whereas both models are viable at
present, they are clearly distinguishable with future observations.
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ing the contribution of scalar field potential energy prior to
the transition. We assume a three-parameter family of
models, consisting of �m today and at the transition, and
the Hubble parameter h. We have calculated the 95%
confidence region based on the forecasts for CMB and
SN experiments, projected into the �m�transition� �
�m�today� plane. We use the proposed SNAP experiment
[38,39] as the basis for forecasts to measure the recent
cosmological expansion history. The results are shown for
two different underlying models which are currently indis-
tinguishable, �CDM with �m � 0:3 and the N � 4 model
with �m � 0:67; 0:27 at the transition and today. In each
case the Hubble parameter has been chosen so the two
models have identical CMB anisotropy, with the same
matter density �mh

2 and angular-diameter distance to
the last scattering surface DCMB. Next, we expect the
Planck CMB [40] experiment will determine DCMB to
0.2% and �mh

2 to 0.9%, using temperature and polariza-
tion data [41,42]. A weaker constraint, due to our lack of
knowledge of the spatial curvature, whereby ��ln�mh

2� �
0:018 [43] and ��lnDCMB� �

1
4��ln�mh

2� [42], is also
shown. The figure clearly indicates that these two sample
cases are distinguishable. Other probes of cosmic evolu-
tion, such as weak lensing and baryon acoustic oscillations
can further sharpen the distinction.

To summarize, we have introduced a new scenario
which generalizes the vacuum metamorpohsis model. In
this scenario, gravitation undergoes a transition in which
an order parameter built out of curvature tensors freezes at
a constant value. After the transition, the matter content of
the Universe no longer determines the cosmological evo-
lution—the expansion is ruled by the value of the order
parameter. The onset of cosmic acceleration is sudden, and
the effective dark energy equation of state is strongly
negative, w<�1.

We have demonstrated that a range of these models
satisfy a number of the standard tests of cosmology.
There is excellent motivation to study these models further.
The primary focus will be to analyze cosmological pertur-
bations and the impact on structure formation. We can
expect to find effects on the rate of growth of structure,
the large-angle CMB anisotropy pattern, and weak gravi-
tational lensing. The other focus will be to examine probes
of the cosmic expansion suggesting the dark energy equa-
tion of state sharply [44– 47] dropped below�1 [48–50], a
distinct signature of this model.
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