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Constraining topology in harmonic space
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We consider several ways to test for topology directly in harmonic space by comparing the measured
a‘m with the expected correlation matrices. Two tests are of a frequentist nature while we compute the
Bayesian evidence as the third test. Using correlation matrices for cubic and slab-space tori, we study how
these tests behave as a function of the minimal scale probed and as a function of the size of the Universe.
We also apply them to different first-year Wilkinson microwave anisotropy probe CMB maps and confirm
that the Universe is compatible with being infinitely big for the cases considered. We argue that there is an
information theoretical limit (given by the Kullback-Leibler divergence) on the size of the topologies that
can be detected.
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I. INTRODUCTION

General relativity has been extremely successful in de-
scribing the large-scale features of our Universe. But the
global shape of space-time is a quantity that is not deter-
mined by the local equations of general relativity. An
intriguing possibility is therefore that our Universe is
much smaller than the size of the particle horizon today.

In the standard model, the Universe is described by a
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) type
metric which is homogeneous and isotropic. If the topol-
ogy of the Universe is not trivial, then we are dealing with a
quotient space X=� where X is one of the usual simply
connected FLRW spaces (spherical, Euclidean or hyper-
bolic) and � is a discrete and fixed-point free symmetry
group that describes the topology. This construction does
not affect local physics but changes the boundary condi-
tions (see e.g. [1,2] and references therein).

This could potentially explain some of the anomalies
found in the first-year Wilkinson microwave anisotropy
probe (WMAP) data. For example, the perturbations of
the cosmic fluids need to be invariant under �. Therefore
the largest wavelength of the fluctuations in the CMB
cannot exceed the size of the Universe, and so the suppres-
sion (and maybe the strange alignment) of the lowest CMB
multipoles might be due to a nontrivial topology [3–8].
Additionally, the last scattering surface can wrap around
the Universe. In this case we receive CMB photons, which
originated at the same physical location on the last scat-
tering surface, from different directions. Observationally
this would appear as matched (correlated) circles in the
CMB [9]. An analysis by Cornish et al. of the first-year
WMAP maps based on a search for matching circles has
not found any evidence for a nontrivial topology [10].
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However, it is difficult to quantify the probability of miss-
ing matching circles, and other groups have claimed a
tentative detection of circles at scales not probed by
Cornish et al. (see e.g. [11,12]). In this paper we study a
different approach which can in principle yield both an
optimal test as well as a rigorous assessment of the funda-
mental detection power of the CMB for a cosmic topology.

Instead of working directly with the observed map of
CMB temperature fluctuations, we expand the map in
terms of spherical harmonics,

T�x� �
X
‘;m

a‘mY‘m�x�; (1)

where x are the pixels. Both the pixels and the expansion
coefficients a‘m are random variables. In the simplest
models of the early universe, they are to a good approxi-
mation Gaussian random variables, an assumption that we
will make throughout this paper. Their n-point correlation
functions are then completely determined by the two-point
correlation function. The homogeneity and isotropy of the
simply connected FLRW universe additionally requires the
two-point correlation of the a‘m to be diagonal,

ha‘ma
�
‘0m0 i � C‘�‘‘0�mm0 : (2)

The symmetry group � will introduce preferred directions,
which will break global isotropy. This in turn induces
correlations between off-diagonal elements of the two-
point correlation matrix. In this paper we study methods
to find such off-diagonal correlations. Such a test is com-
plementary to the matched-circle test of [9,10], and if the
initial fluctuations are Gaussian then it can use all the
information present in the CMB maps and so lead to
optimal constraints on the size of the Universe.
Investigating the amount of information introduced into
the two-point correlation matrix by a given topology al-
lows us to decide from an information theoretical stand-
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point whether the CMB will ever be able to constrain that
topology.

We will use the following notation: We often combine
the ‘ andm indices to a single index s � ‘�‘� 1� �m and
mix both notations frequently. The noisy correlation matrix
given by the data is Ass0 � asa�s0 . We will write the
correlation matrix which defines a given topology as
Bss0 . This is the expectation value of the two-point corre-
lation function for as that describe a universe with that
topology.

All the simulations in this paper are based on a flat
�CDM model with �� � 0:7, a Hubble parameter of
h � 0:67, a Harrison-Zel’dovich initial power spectrum
(nS � 1) and a baryon density of �bh2 � 0:019, as de-
scribed in [13,14]. With this choice of cosmological pa-
rameters we find a Hubble radius 1=H0 � 4:8 G pc while
the radius of the particle horizon is Rh � 15:6 G pc. We
will denote a toroidal topology as T�X; Y; Z	 where X, Y
and Z are the sizes of the fundamental domains, in units of
the Hubble radius. As an example, T�4; 4; 4	 is a cubic
torus of size �19:3 G pc�3. The volume of such a torus is
nearly half that of the observable universe. The diameter of
the particle horizon is about 6:5=H0. But we should note
that there are nonzero off-diagonal terms in Bss0 even for
universes that are slightly larger than the particle horizon.

We have a range of correlation matrices at our disposal
so far. Two of them are cubic tori with sizes 2=H0

(T�2; 2; 2	) and 4=H0 (T�4; 4; 4	). For these two we have
the correlation matrices up to ‘max � 60 (corresponding to
smax � 3720). We also have two families of slab spaces.
The first one, T�X;X; 1	, has one very small direction of
size 1=H0. The second one, T�15; 15; X	, has two large
directions that are effectively infinite. Both groups include
all tori with X � 1; 2; . . . ; 15, and we know their correla-
tion matrices up to ‘max � 16 (or smax � 288). The corre-
lation matrices analyzed in this paper do not contain the
integrated Sachs-Wolfe contributions (cf. discussion in
Sec. VIII C).

This paper is organized as follows: We start out by
matching the measured correlations to a given correlation
matrix. We then show that a similar power to distinguish
between different correlation matrices can be achieved by
using the likelihood. In general we do not know the relative
orientation of the map and the correlation matrix, and we
discuss how to deal with this issue next. We then present a
first set of results from this analysis, before embarking on a
simplified analysis of the WMAP CMB data and toroidal
topologies.

So far the methods were all of a frequentist nature. Using
the likelihood we can also study the evidence for a given
topology, which is the Bayesian approach to model selec-
tion. We then talk about the issues that we neglected in this
paper, and finish with conclusions.

The appendixes look in more detail at how the correla-
tion and the likelihood method differ, and how their under-
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lying structure can be used to define ‘‘optimal’’ estimators.
We also discuss how selecting an extremum over all ori-
entations can be linked to extreme value distributions,
which allows us to derive probability distribution functions
that can be fitted to the data for quantifying confidence
levels. We finally consider a distance function on covari-
ance matrices, motivated by the Bayesian evidence discus-
sion, and study its application to the comparison between
different topologies.
II. DETECTING CORRELATIONS

A priori it is very simple to check whether there are
significant off-diagonal terms present in the two-point
correlation matrix: One just looks at terms with ‘ � ‘0

and/or m � m0. But the variance of the a‘m is too large as
we can observe only a single universe. When computing
the C‘ we average over all directions m. This averaging
then leads to a cosmic variance that behaves like 1=

���
‘
p

. But
now we have to consider each element of the correlation
matrix separately, leading to a cosmic variance of order 1
for each element. The matrix is therefore very noisy and we
need to ‘‘dig out’’ the topological signal from the noise.
Furthermore, if we detect the presence of significant off-
diagonal correlations, we still need to verify that they are
due to a nontrivial topology and not to some other mecha-
nism that breaks isotropy.

A natural approach to the problem is then to use the
expected correlation matrix for a given topology as a kind
of filter. To this end we compute a correlation amplitude �
which describes how close two matrices are. We do this by
minimizing

�2��	 �
X
ss0
�Ass0 
 �Bss0 �

2 (3)

where A�
ss0 � asa

�
s0 is the correlation matrix estimated

from the data and Bss0 the one which contains the topology
that we want to test. For a good fit we expect to find � � 1
while for a bad fit � � 0.

We can easily solve d�2=d� � 0 and find that

� �

P
ss0 Ass0Bss0P
ss0 �Bss0 �

2 (4)

minimizes Eq. (3). As we know that we will have to
compare our method against maps from an infinite universe
with the same power spectrum, we do not sum over the
diagonal s � s0 (which corresponds to ‘ � ‘0 andm � m0)
to improve the signal to noise. This corresponds to replac-
ing the correlation matrix through B! B
D where D
is a diagonal matrix with the power spectrum on the
diagonal. If the power spectrum is constant so that D �
C� 1 then the eigenvectors of the new correlation matrix
are the same as those of the original one, and the eigen-
values are replaced by ��i� ! ��i� 
 C. In this case they
will no longer be positive.
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TABLE I. Comparison of the mean and standard deviation of
� for different topologies and different ‘max, normalized with the
true power spectrum. The S=N value is given by Eq. (10).

Topology ‘max �1 �B S=N (�)

T�2; 2; 2	 60 0� 0:017 1� 0:102 9.7
T�4; 4; 4	 60 0� 0:046 1� 0:082 10.6
T�2; 2; 2	 16 0� 0:03 1� 0:34 2.9
T�4; 4; 4	 16 0� 0:09 1� 0:22 4.2
T�6; 6; 1	 16 0� 0:08 1� 0:33 2.9
T�15; 15; 6	 16 0� 0:51 1� 0:59 1.3
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We could also introduce a covariance matrix in Eq. (3).
In the presence of noise this may be useful. In this study we
will assume throughout an idealized noise-free and full-sky
experiment for simplicity. At any rate the WMAP data will
be cosmic variance dominated at the low ‘ that we consider
here; see Sec. VIII A. Neglecting the noise contribution,
the covariance matrix is Cqq0 � hBqBq0 iwhere q � fs; s0g.
But as the correlation matrices are already expectation
values, we end up with a matrix that has a single nonzero
eigenvalue � �

P
qB

2
q. If we invert this singular matrix

with the singular value decomposition (SVD) method (set-
ting the inverse of the zero eigenvalues to zero) and mini-
mize the resulting expression for the �2, we find again
Eq. (4).

It is straightforward to compute the expectation value
and variance of the � function for two important cases. In
the first case the Universe is infinite, so that the spherical
harmonics a‘m are characterized by the usual two-point
function,

ha‘ma
�
‘0m0 i1 � C‘�‘‘0�mm0 : (5)

In the second case the Universe has indeed the topology
described by the correlation matrix B against which we
test the a‘m. In this case the two-point function of the
spherical harmonics is given by

ha‘ma
�
‘0m0 iB � Bss0 : (6)

In both cases the spherical harmonics obey a Gaussian
statistics and the higher n-point functions are uniquely
determined by the two-point function via Wicks theorem.

Let us first define the autocorrelation U �
P
ss0 jBss0 j

2.
We remind the reader that such sums in this section exclude
the diagonal terms s � s0 except where specifically men-
tioned. For an infinite universe, we notice that if we sum
only over the nondiagonal elements s � s0 then, since
hasa�s0 i1 � Cs�ss0 the expectation value of � is zero,
h�i1 � 0. Else,

h�i1 �
1

U

X
s

CsBss: (7)

If the map were whitened (see below), then h�i1 �
tr�B�=U.

For a finite universe,

h�iB � 1 (8)

independently if we sum over the diagonal elements or not,
as we just recover the autocorrelation in the numerator. Of
course the autocorrelation value depends on the summation
convention.

For the variance, in the case of an infinite universe, we
find

�2
1 � h�

2i1 
 h�i
2
1 �

2

U2

X
ss0
CsCs0 jBss0 j

2: (9)
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The summation depends again if we keep the diagonal
elements or not. For a whitened map, the result simplifies
to �2

1 � 2=U. In a finite universe,

�2
B �

2

U2 tr�BB�BB��; (10)

however now we need to be more careful if we discard the
diagonal elements, as then

�2
B �

2

U2

X
s1�s2;s3�s4

�Bs1s2B
�
s2s3Bs3s4B

�
s4s1�: (11)

Table I shows the expectation values of variances for a
selection of topologies, computed with these formulas. It
may be surprising that the variance of � for an infinite
universe depends on the test topology. However, Eq. (4)
depends on B even if the a‘m do not. The variance is a
measure of how different B is from the diagonal ‘‘corre-
lation matrix’’ of an infinite universe, Eq. (5). The larger
the difference, the smaller the variance of �, as the random
off-diagonal correlations present in the a‘m are less likely
to match those of the test matrix B. The value of ‘max in the
table was chosen basically arbitrarily; we will discuss later
how it influences the measurements. We have also intro-
duced a ‘‘signal to noise ratio’’ S=N which is the difference
of the expectation values, divided by the errors added in
quadrature,

S=N�B; X� �
jhXi1 
 hXiBj����������������������������������
��X�21 � ��X�2B

q : (12)

Here X is the estimator used. This gives only a rough
indication of the true statistical significance with which a
universe with the given topology can be distinguished from
an infinite universe. As the distribution of � and �2 are not
exactly Gaussian, S=N is not exactly measured in units of
standard deviations. However, it is sufficient to compare
the different methods and to illustrate how well different
topologies can be detected. For precise statistical results
we fit the full distribution; see Appendix B.

The power spectrum C‘ depends of course on the cos-
mological parameters. To minimize this potential problem
we normalize the correlation matrices either by the diago-
nal Cs � hasa

�
si or by the usual orientation-averaged
-3
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power spectrum

C‘ �
1

2‘� 1

X
m

ja‘mj2; (13)

via the prescription

B ss0 !
Bss0������������
CsCs0
p : (14)

This is often called ‘‘whitening,’’ and it serves to enforce
the same (white noise) power spectrum in both the tem-
plate and the model being tested. After applying this nor-
malization the power spectrum is just Cs � 1. We apply
the same normalization to the a‘m. As we will not in
general know their ‘‘true’’ input power spectrum, we use
the one recovered from the a‘m themselves. As can be seen
in Table II, the division by the recovered power spectrum
greatly reduces the variance of � and so improves the
detection power for the different topologies. Contrary to
Table I we could not compute the numbers analytically and
have estimated them from 104 random realizations each of
maps with the trivial topology and the B topology.

For an infinite universe Cs is independent of m and it
does not matter whether we divide by Cs or C‘. For non-
trivial topologies this is not the case as additional correla-
tions are induced in different m modes. For this reason, the
division by the m-averaged C‘ tends to lead to somewhat
stronger constraints. Of course we lose the information
encoded in the power spectrum, like the suppression of
fluctuations with wavelengths larger than the size of the
Universe. However, we feel that the improved stability to
misestimates of the power spectrum and the reduced de-
pendence on the cosmological parameters is worth the
trade-off.

The numerical evaluation of Eq. (4) requires a double
sum over smax � ‘max�‘max � 2� matrix coefficients. It
scales therefore as ‘4

max. But the correlation matrix of an
infinite universe is diagonal, so that we only need to
perform a single sum. It should therefore be possible to
reduce the work for matrices that are close to being diago-
nal, i.e. for universes with a very large compactification
scale. A possibility is to decompose the correlation matrix
TABLE II. Comparison of the mean and standard deviation of
� for different topologies and different ‘max, normalized with the
power spectrum estimated independently for each realization. As
we see, the signal to noise ratio is improved considerably.

Topology ‘max �1 �B S=N (�)

T�2; 2; 2	 60 0� 0:015 0:973� 0:030 29.0
T�4; 4; 4	 60 0� 0:051 0:976� 0:044 14.5
T�2; 2; 2	 16 0� 0:032 0:924� 0:100 8.8
T�4; 4; 4	 16 0� 0:091 0:948� 0:100 7.0
T�6; 6; 1	 16 0� 0:083 0:894� 0:200 4.1
T�15; 15; 6	 16 0� 0:534 0:971� 0:553 1.3
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into a sum over eigenvalues and eigenvectors. We can then
only retain the most important eigenvectors. As the corre-
lation matrix is also a covariance matrix, this is somewhat
analogous to principal component analysis or the
Karhunen-Loeve transform. For a correlation matrix B
we will write the decomposition as

B ss0 �
X
i

��i�v�i�s v
�i��
s0 �

X
i

b�i�s b
�i��
s0 : (15)

The ��i� are the eigenvalues of the matrix B and they are
real and positive as the matrix is Hermitian and positive.
This allows us to define effective spherical harmonics
b�i�s �

�������
��i�
p

v�i�s , which have, for example, the same prop-
erties under rotation as the usual a‘m.

III. USING THE LIKELIHOOD

Instead of considering the correlation between the re-
covered and the theoretical matrix, we can think of the two-
point correlation matrix as the covariance matrix of the
a‘m. Then we may ask the question, what is the probability
of a covariance matrix C given the measured a‘m. This can
be answered using Bayesian statistics.

In a first step we need to construct the likelihood func-
tion. The probability distribution for a Gaussian random
variable x with variance �2 and zero expectation value is

p�x j �� �
1�������

2�
p

�
e
x

2=2�2
: (16)

If we assume that we measure x and want to know �, then
the likelihood function for finding a certain x is given by
L��� � p�x j ��. We write the likelihood as a function of
the variance, as this is the model parameter that we are
interested in.

For many independent variables, the probability distri-
bution is the product, which leads to a sum in the exponent.
In the case of the a‘m, the random variables are not
independent but are distributed according to a multivariate
Gaussian distribution with a covariance matrix C. The
likelihood function then is

p�a‘m j C� � L�C� /
1�������
jCj

p exp

(



1

2

X
s;s0
a�sC


1
ss0 as0

)
; (17)

where jCj is the determinant of the matrix C. The covari-
ance matrix is given by the two-point correlation matrix,
and hasi � 0. Any further model assumptions are implic-
itly included in the choice of C. Using Bayes law we can
invert the probability to find

p�C j a‘m� �
p�a‘m j C�p�C�

p�a‘m�
: (18)

The probability in the denominator is a normalization
constant, while p�C� is the prior probability of a given
topology encoded by C. We will assume that we have no
prior information about the topology of the Universe, so
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that this is a constant as well. In this case p�C j a‘m� /
L�C�, i.e. we can use the likelihood function to estimate
the probability of a topology given a set of a‘m. For our
purpose, the covariance matrix is just given by the corre-
lation matrix B. In general, one may have to add noise to it,
and maybe introduce a sky cut.

Generally it is preferable to consider the logarithm of the
likelihood, ln�L� � 
1=2�ln�jBj� � �2� � const where
we have defined

�2 �
X
s;s0
a�sB
1

ss0 as0 : (19)

We notice that there is a potential issue with the normal-
ization of the input model: If as ! 0 then �2 ! 0—gen-
erally any model whose as lead to a bad fit (high �2) could
be renormalized until a reasonable likelihood is obtained.
It is therefore required to fix the overall normalization, and
we will do this by using the whitened as, in which case the
normalization is fixed by

P
sjasj

2 � 1.
For the two special cases, the infinite universe and a‘m

distributed according to B, we can compute expectation
value and variance. For the general case we will write
hasas0 i �Ass0 . Then

h�2i �
X
ss0
ha�sas0 iB


1
ss0 � tr�AB
1�; (20)

where we have used the Hermiticity of the correlation
matrices. The two special cases are

h�2i1 �
X
s

CsB

1
ss ; (21)

h�2iB � tr�1� � smax: (22)

As the a‘m are Gaussian random variables, we expect to
find that �2 is distributed with a �2-like distribution. The
general expression is rather cumbersome, but for the two
special cases we find

�2
B � h��

2�2iB 
 h�2i2B � 2smax (23)

and

�2
1 � 2

X
ss0
CsCs0 jB
1

ss0 j
2: (24)

We list in Tables III and IV some examples, together with
TABLE III. Same as Table I for �2.

Topology ‘max �2
1 �2

B S=N (�)

T�2; 2; 2	 60 37 168� 2373 3720� 86 14.1
T�4; 4; 4	 60 14 656� 1517 3720� 86 7.2
T�2; 2; 2	 16 5608� 738 288� 24 7.2
T�4; 4; 4	 16 1802� 300 288� 24 5.0
T�6; 6; 1	 16 20 781� 7103 288� 24 2.9
T�15; 15; 6	 16 309� 28 288� 24 0.6
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the number of standard deviations that the two expectation
values lie apart.

In these computations, as in the corresponding ones for
the correlation coefficient, we have assumed that we
normalize the observed a‘m by the true power spectrum
(or diagonal). However, we do not know what it is. If
we instead normalize them by the estimated one (which
is different for each realization), we change the statistics.
It is now no longer Gaussian. The following table repro-
duces the previous one, but now for this scenario. We
estimated the numbers from 104 numerical realizations
for each topology. Again the detection power increases
considerably.

In Appendix A we compare the structure of the correla-
tion estimator to the likelihood �2. We find that for many
cases the �2 has minimal variance.
IV. ROTATING THE MAP INTO POSITION

The situation discussed so far is somewhat misleading:
Nature is rather unlikely to align the topology of the
Universe with our coordinate system. The correlation ma-
trices are not invariant under rotations, as rotations mix a‘m
with different m. To parametrize the rotations we use the
three Euler angles �, � and 	 which describe three sub-
sequent rotations around the z, the y and again the z axis.
The first and last rotation just lead to a phase change. The
rotation around the y axis couples different m and is given
by Wigner rotation matrices d‘mm0 ,

a‘m !
X
m0
e
i�m��m

0	�d‘mm0 ���a‘m0 : (25)

Together, the three rotations can describe any element of
the rotation group of order ‘. We use the relations given in
[15] to compute the rotation matrices. Figure 1 shows an
example where we plot � while rotating the a‘m azimu-
thally. The figure represents the case for ‘max � 60, for
lower values of ‘max the peaks are less sharp and there is
less substructure. The same is true for the �2, while the
peaks for likelihood, which is proportional to exp�
�2=2�,
are even much narrower.

We can therefore not avoid probing all possible rota-
tions, either by computing the average or by taking the
maximum/minimum of our estimator over all orientations.
Possibly the most straightforward approach is to try many
random rotations [16]. This is simple to program and uses
automatically any symmetries present in the template. But
due to the precision needed to find the best alignment for
some templates, we find that we need in excess of 106

rotations to get correct results for ‘max � 60. We can on the
other hand probe systematically all orientations, for ex-
ample, with the total convolution method [17]. In this
approach, the rotations with the three Euler angles are
replaced by a three-dimensional fast Fourier transform.
This speeds the procedure up a by a large factor.
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FIG. 1. Behavior of the correlation coefficient � under a
rotation around the z axis. The signal is maximal only for very
well-defined alignments. We used a T�2; 2; 2	 correlation matrix
and a‘m derived from a T�2; 2; 2	 topology.
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However, we found that we may nonetheless miss the best-
fit peaks which can be very sharp (see Figs. 1 and 2).

If we limit ourselves to finding the maximum/minimum
efficiently, then we can also start with a random rotation
and search for a local extremum nearby. We then repeat the
procedure for different random starting locations until we
found a stable global maximum (for example, 8 times the
same global maximum). This is the safest method, and can
be relatively fast depending on the topology.

Computing the average is therefore quite difficult and
slow. We also found that using the maximum or minimum
results in a much stronger detection than using the average,
at least for the � and �2 estimator. It is possible to improve
the average by using the likelihood which is proportional to
FIG. 2 (color online). The maximal correlation coefficient for
the case of a universe with T�2; 2; 2	 orientation. The sharp, high
peaks correspond to the correct orientation of the map with
respect to the template.
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exp�
�2=2�. This decreases the weight of the ‘‘wrong’’
orientations exponentially. However, it makes the average
even harder to compute. Furthermore, it lends itself readily
to a Bayesian interpretation which is quite different from
the frequentist approach followed so far. For this reason we
will consider only the maximum/minimum approach here
and defer the discussion of the average likelihood to Sec.
VII. We also note that it makes no difference if we consider
the �2 estimator or the likelihood when using the extre-
mum over orientations. The exponential function is mono-
tonic and so the maximum or minimum point will not
change under it (except that the minimum of the �2 will
turn into a maximum of the likelihood and vice versa). For
the same reason, it does not change the statistical weight. If
99 realizations of model A have a lower �2 than any of
model B, then those 99 realizations will have a higher
likelihood as well.

A drawback of using the extremum over all rotations is
that we do not know the resulting distribution function. In
general we have to compute a large number of test cases to
obtain the distribution, but this is very time consuming and
for high ‘max computing more than a few hundred realiza-
tions becomes prohibitive, at least on a single processor.
Instead we can find a good approximation to the new
distribution by assuming that each rotation leads to a new
independent Gaussian distribution. If there are N indepen-
dent rotations then we need to know the distribution of the
maximal value of N draws from a Gaussian distribution.
This leads to an extreme value distribution, and exact
results are known only for N < 6. However, for very large
N, the distribution should converge to one of three limiting
cases, analogously to the central limit theorem (see e.g.
[18]). If we fit these distributions to the numerical results
then we can obtain confidence limits with a reasonable
amount of cpu time. We discuss this in more detail in
Appendix B.

We compare in Tables V and VI the minimal �2 and
maximal � values, respectively, taken over all possible
orientations. We also quote the resulting S=N value. We
notice that especially the �2 estimator gains in sensitivity.
This seems rather surprising, as the distance between the
estimator values of an infinite and a finite universe will in
general decrease when taking the extremum. However, we
also notice that the variance is dramatically decreased,
which in turn leads to the even higher detection power.
TABLE IV. Same as Table II for �2.

Topology ‘max �2
1 �2

B S=N (�)

T�2; 2; 2	 60 37 366� 1123 4655� 438 27.1
T�4; 4; 4	 60 14 932� 1157 4027� 162 9.3
T�2; 2; 2	 16 5690� 477 474� 131 10.5
T�4; 4; 4] 16 1841� 196 335� 48 7.5
T�6; 6; 1	 16 21 093� 5645 786� 557 3.6
T�15; 15; 6	 16 309� 10 289� 5 1.8
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FIG. 3 (color online). Detection significance assuming that we
know the correct orientation. The topologies were T�2; 2; 2	
(solid black and dotted red lines) and T�4; 4; 4	 (dashed blue
and dot-dashed magenta lines). The estimators were, respec-
tively, the correlation amplitude � (dotted red and dot-dashed
magenta lines) and the likelihood �2 (solid black and dashed
blue lines).

FIG. 4 (color online). Detection significance when maximizing
over all orientations. The topologies were T�2; 2; 2	 (solid black
and dotted red lines) and T�4; 4; 4	 (dashed blue and dot-dashed
magenta lines). The estimators were, respectively, the correlation
amplitude � (dotted red and dot-dashed magenta lines) and the
likelihood �2 (solid black and dashed blue lines).
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The reduction of the variance, especially for the infinite
universe case, is easy to understand. In Tables II and IV we
use the best-fit alignment for the maps of a finite universe.
But the maps with the trivial topology are always randomly
aligned (being statistically isotropic). The variance for the
infinite universe maps contains therefore an effective ‘‘ran-
dom orientation’’ contribution. Taking the extremum over
all orientations eliminates this contribution. As the infinite
universe variance dominates strongly in the case of the �2

estimator, we find that this estimator benefits more from
the reduction of the variance.

As a final point, we notice that the maximized value of �
for the T�15; 15; 6	 topology in Table VI is larger than 1.
This is a sign that we cannot detect that topology. The
fluctuations are so large that they completely overwhelm
the signal. After maximizing over orientations we end up
with � > 1.

V. DISCUSSION OF GENERAL RESULTS

A. What angular resolution is required?

Is it better to test the maps to arbitrarily high ‘max, or to
use a lower resolution? One important consideration is the
amount of work (and thus of time) needed to evaluate the
estimator. For both estimators we need to sum over s and
s0. This means that the required number of operations
scales like ‘4

max. The matrix inversion required for the
likelihood evaluation scales like ‘6

max. However, for two
reasons it is normally not the limiting factor. First, as
discussed in the previous section, we still need to average
over directions. To do that we only need to invert the matrix
once at the start, not for every evaluation. But we need to
evaluate the likelihood for each orientation, and the num-
ber of the required rotations scales roughly like ‘2

max. We
therefore end up with a ‘6

max scaling at any rate. Second, the
most time-consuming procedure is the estimation of the
variance using simulated maps, and again we only need to
invert the matrix once as it stays the same. ‘6

max is a rather
steep growth, and it is certainly preferable to use the small-
est matrices that guarantee a detection.

On the other hand, does the detection always improve
with growing ‘max? Let us have a look at the correlation
estimator, in the case of a whitened map. Clearly �2

1 �
2=U can only decrease as long as there are any off-diagonal
elements in the correlation matrix. But this is not the
dominant error. However, we expect that the main contri-
bution to Eq. (11) is due to the remaining diagonal entries
s2 � s3 and s1 � s4. This term of the sum is equal to the
autocorrelation U and so contributes the same error as �2

1.
As the signature of the topology becomes very weak, we
expect that the two errors become comparable, but are still
decreasing functions of ‘max.

We compare in Figs. 3 and 4 the scaling of
S=N�T�2; 2; 2	� and S=N�T�4; 4; 4	� respectively, for the
correlation estimator (red dotted/ magenta dash-dotted
lines) and the likelihood method (black solid/blue dashed
023511-7



FIG. 5 (color online). Detection significance assuming that we
know the correct orientation. The topologies were T�X;X; 1	
(solid black and dotted red lines) and T�15; 15; X	 (dashed blue
and dot-dashed magenta lines). The estimators were, respec-
tively, the correlation amplitude � (dotted red and dot-dashed
magenta lines) and the likelihood �2 (solid black and dashed
blue lines). We used ‘max � 16.

TABLE V. Comparison of the mean and standard deviation of
the �2 for different topologies and different ‘max, normalized
with the power spectrum and minimized over rotations.

Topology ‘max �2
1 �2

B S=N (�)

T�2; 2; 2	 60 33 237� 586 4588� 382 41
T�4; 4; 4	 60 11 146� 438 4057� 204 14
T�2; 2; 2	 16 4062� 172 469� 172 17
T�4; 4; 4	 16 1180� 73 350� 47 10
T�6; 6; 1	 16 7719� 1125 675� 370 6
T�15; 15; 6	 16 287� 2:1 285� 2:5 0.6

TABLE VI. Same as Table V for �.

Topology ‘max �1 �B S=N (�)

T�2; 2; 2	 60 0:08� 0:01 0:98� 0:03 28
T�4; 4; 4	 60 0:21� 0:02 0:98� 0:05 14
T�2; 2; 2	 16 0:16� 0:02 0:95� 0:08 10
T�4; 4; 4	 16 0:38� 0:05 0:98� 0:09 6
T�6; 6; 1	 16 0:35� 0:05 0:94� 0:19 3
T�15; 15; 6	 16 1:84� 0:25 1:86� 0:27 0
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lines). In all cases we used 100 realizations to compute the
average and standard deviation, which explains the noisy
curves. As discussed earlier, we find that taking the extre-
mum over rotations can increase the detection power,
especially for the �2 estimator.

We also see that for the T�4; 4; 4	 topology and the
correct orientation, the correlation method eventually over-
takes the likelihood method. This is most likely because
the T�4; 4; 4	 correlation matrix is closer to being diagonal
than the T�2; 2; 2	 correlation matrix. At high ‘ the diago-
nal elements start to dominate the contributions to the �2.
The correlator method is not sensitive to this contribution
as it does not sum over the diagonal elements. After max-
imizing over orientations, on the other hand, the likelihood
is always superior to the correlation method, except maybe
for the highest ‘max.

We further notice that the detection power keeps increas-
ing with increasing ‘max, even though things tend to slow
down beyond ‘ � 40. This means that it is useful to con-
sider the largest ‘ for which we have the correlation matrix
and which we can analyze in a reasonable amount of time.
Unfortunately, it is also the case (and hardly surprising)
that the smallest universes profit the most from analyzing
smaller scales. The traces from large but finite universes
become rapidly weaker as ‘max increases. As there is little
practical difference between a 20� detection and a 50�
023511
detection, it seems in general quite sufficient to consider
scales up to ‘max � 40 to 60. The higher ‘ may become
more important when we also consider the integrated
Sachs-Wolfe (ISW) effect.

B. What size of the Universe can be detected?

From the suppression of the low-‘ modes in the angular
power spectrum, the T�4; 4; 4	 topology seems a good
candidate for the global shape of the Universe. Can we
constrain it with one of our methods? Tables Vand VI show
that we can indeed distinguish a universe with T�4; 4; 4	
topology from an infinite one at over 10�.

As in the previous section we plot in Figs. 5 and 6 the
detection significance both before and after maximizing
over directions. This time we study two families of slab
spaces. The first one, T�X;X; 1	, has one very small direc-
tion of size 1=H0 and we vary the other two. We find that
we can clearly detect this kind of topology at ‘max � 16 for
any size of the larger dimensions. For this example topol-
ogy it is very striking how the correlation estimator is
better if we use the ‘‘correct’’ alignment, while the �2

becomes more powerful as we extremize over orientations.
The second family, T�15; 15; X	 is considerably harder

to detect as here two directions are very large and effec-
tively infinite. For large values of X we cannot find a
difference to an infinite universe. As the third direction
shrinks, we start to see differences, but only for X 
 3=H0

can we detect the nontrivial topology at over 2�. In
this case the correlation method is always inferior to the
�2. In Appendix C we consider a more fundamental
distance measure between correlation matrices, namely,
-8



FIG. 6 (color online). Detection significance when maximizing
over all orientations. The topologies were T�X;X; 1	 (solid black
and dotted red lines) and T�15; 15; X	 (dashed blue and dot-
dashed magenta lines). The estimators were, respectively, the
correlation amplitude � (dotted red and dot-dashed magenta
lines) and the likelihood �2 (solid black and dashed blue lines).
Again ‘max � 16.
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the Kullback-Leibler (KL) divergence. We confirm
that we will never be able to distinguish T�15; 15; X	 with
X > 6=H0 from an infinite universe; see also Fig. 15. This
is not very surprising, as in this case the Universe is in all
directions larger than the particle horizon today.
FIG. 7 (color online). The distribution of the h�2i1 estimator
values when testing for a T�2; 2; 2	 universe with ‘max � 16. The
solid black histogram is computed from 10 000 noiseless full-sky
realizations used throughout this paper, while the red dashed
histogram used 1000 simulated LILC maps (see text). The
vertical lines show the �2 values of the measured maps, from
the left LILC, TW and WMAP (coincident) and TC.
VI. A SIMPLIFIED ANALYSIS OF WMAP DATA

To illustrate the application of these tests to real data, we
perform a simplified analysis of the WMAP [19] data.
Simplified in the sense that we do not deal with issues
like map noise and sky cuts. In general, one has to simulate
a large number of maps where both of these effects are
included, and which are then analyzed with the same
pipeline as the actual data map. However, as an illustration
we will analyze reconstructed full-sky maps. We use the
internal linear combination (ILC) map created by the
WMAP team, which we will call the WMAP map from
now on. We also use two map reconstructions by Tegmark,
a Wiener filtered map (TW) and a foreground-cleaned map
(TC) [20]. All of these maps are publicly available in
HEALPix format [21] with a resolution of Nside � 512.
We use this software package to read the map files and to
convert them into a‘m.

To get some idea of the systematic errors in this analysis,
we additionally analyze the ILC map reconstructed by
Eriksen et al. (LILC). They also produced a set of simu-
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lated LILC maps (for the trivial topology) with the same
pipeline [22,23]. It is a necessary (but not sufficient) con-
dition to trust our simplified analysis that the results from
these maps are consistent with our results for an infinite
universe. As an illustration we plot in Fig. 7 the distribution
of �2 for our simple infinite universe maps (black solid
histogram) and for the simulated ILC maps which contain
noise and foreground contributions (red dashed histogram).
We see that the two distributions agree quite well, to within
their own variance. The variance observed between the
different reconstructed sky maps (WMAP, TC, TW and
LILC) is of the same order of magnitude. This example is
for T�2; 2; 2	 and ‘max � 16, but it is representative of the
other cases.

For our standard example, the T�4; 4; 4	 template, we
find a maximal value for the 1st year WMAP ILC map of
�max � 0:20. This is about expected for an infinite uni-
verse. A universe exhibiting a genuine T�4; 4; 4	 topology
should lead to roughly �max � 1.

We give in Table VII the values of �2 and � for the
WMAP map. The values for the other maps are not very
different. We also give two probabilities for both estima-
tors, P1 and PB. The first one is the probability of mea-
suring a larger value of � (or a smaller value of �2) if the
Universe is infinite. PB on the other hand is the probability
of measuring a smaller value of � (or a larger value of �2 if
-9



FIG. 9 (color online). The same as Fig. 8 for the T�15; 15; X	
topology. Again all WMAP maps are consistent with an infinite
universe, but we can only rule out the universes with X < 3 at
more than 95% C.L.

TABLE VII. The value of �2 and � obtained for the WMAP
map, together with the probability of measuring such a value if
the Universe is infinite (P1) and if the Universe has indeed the
topology that we test for (PB).

Topology ‘max �2 P1 PB � P1 PB

T�2; 2; 2	 60 33 130 0.39 0 0.087 0.20 0
T�4; 4; 4	 60 11 020 0.40 0 0.20 0.64 0
T�6; 6; 1	 16 8 805 0.85 10
6 0.37 0.29 10
5

T�15; 15; 6	 16 290 0.95 0.01 1.6 0.16 0.84
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the Universe has indeed the topology that we tested for. For
a nondetection of any topology we require P1 to be not too
small. A positive detection of a topology on the other hand
requires a larger PB. If both probabilities are large then we
cannot detect that topology (as exemplified e.g. for the case
of T�15; 15; 6	). We compute these probabilities with the
best-fitting theoretical probability distribution function
(PDF), as discussed in Appendix B.

Figure 8 shows 95% confidence limits (estimated nu-
merically from 104 samples) when testing for the presence
(red, lower band) or absence (green, upper band) of a
T�X;X; 1	 topology. The WMAP data (points) are all com-
patible with the infinite universe and rule out this kind of
FIG. 8 (color online). Median and 95% confidence limits as
measured with the �2 estimator for infinite universes (upper
green limits) and universes with a T�X; X; 1	 topology (red lower
limits), as a function of size X in units 1=H0. We also plot the �2

values of the WMAP map (red crosses), the TW map (cyan
triangles) and TC map (blue circles) and the LILC map (magenta
stars). All sky maps are consistent with an infinite universe and
not consistent with a T�X;X; 1	 topology for any X. We also plot
error bars for the LILC map simulations.
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topology very strongly. The bounds from the simulated
LILC maps (black error bars) are consistent with our
simulated maps with a trivial topology, but systematically
a bit lower. We plot the same in Fig. 9 for a T�15; 15; X	
topology. Again, WMAP is compatible with the infinite
universe. But as discussed before, we cannot detect these
universes for X > 3=H0. Overall, all results are consistent
with an infinite universe.
VII. BAYESIAN MODEL SELECTION

The likelihood can also be used in a purely Bayesian
approach. We are interested in the probability of a model
given the data, p�M j d�. If all topologies are taken to be
equally probable, then through Bayes theorem the statisti-
cal evidence E�M� for a model is proportional to the
probability of that model, given the data. Using the three
Euler angles as parameters �, defining the model M to be
a given topology, and the data d the measured a‘m we can
write the model evidence as

E �M� / p�d jM� �
Z

�������L���; (26)

where ���� is the prior on the orientation of the map, see
e.g. [24]. The ratio of the evidence for two topologies is a
Bayesian measure of the relative probability. We can think
of it as the relative odds of the two topologies. A similar
method to constrain the topology was applied previously to
the Cosmic Background Explorer (COBE) data; see [25].
-10



FIG. 10 (color online). Relative likelihood for a T�4; 4; 4	
topology around one of the symmetry points where a simulated
T�4; 4; 4	 map aligns correctly. The broadest (black) curve has
‘max � 16, the intermediate (red) curve ‘max � 32 and the
narrowest (blue) curve ‘max � 60. The vertical (green) line lies
at � � �=2. The crosses show the location of 104 points
between � � 0 and � � 2�.
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The measure 
��� on SO(3) needs to be independent of
the orientation [26], which pretty much singles out the
Haar measure (up to an irrelevant constant). In terms of
the Euler angles it is d�d�d	 sin���=�8�2� with � and 	
going from 0 to 2�, and � from 0 to �. The volume of
SO(3) is then

R

��� � 1. A simple way to generate

random orientations is to select � and 	 uniformly in
�0; 2�	 and u in �
1; 1	 and then set � � arccos�u�.

The advantage of using Bayesian evidence is that it
provides a natural probabilistic interpretation which de-
pends only on the actually observed data, but not on
simulated data sets. Because of this, there is no need to
run large comparison sets. This is a very different view-
point from the frequentist approach followed so far.

For an infinite universe the correlation matrix is diagonal
and rotationally invariant (due to isotropy). The integral
over the alignment becomes trivial in this case. If we use
whitening then the correlation matrix is just the unit matrix
and we have

�2 �
X
s

jasj
2 � smax: (27)

The second equality is due to the whitening. The likelihood
is then

L1 �
const

j1j1=2
e
1=2�2��� � conste
smax=2; (28)

where the constant normalization is independent of the
topology. We will neglect it as it drops out when comparing
the evidence for different models. This ‘‘infinite’’ evidence
gives us a reference point, with our choice of measure on
SO(3) and of normalization it is


 ln�E1� �
smax

2
: (29)

On the other hand, if the Universe is infinite then we
know that the expected �2 is the trace of the inverse of the
correlation matrix that we test for. It is again rotationally
invariant as hasa�s0 i is rotationally invariant. The log evi-
dence is on average


 ln�E� � 1
2�tr�B


1� � lnjBj�: (30)

We notice that the expected log-evidence difference to the
true infinite universe is the Kullback-Leibler divergence,

� ln�E� � DKL�1 k B� �
1
2�lnjBj � tr�B
1 
 1��: (31)

We should not forget though that this is a very crude
approximation to the evidence. Nonetheless, Eq. (31) gives
a useful indication of the odds that we can detect a given
topology, as it can be evaluated very rapidly, without
performing the integration over orientations. Funda-
mentally, this is the amount of additional information about
topology contained in the correlation matrix B. If the
amount of information is not sufficient to distinguish it
from an infinite universe, no test will ever be able to tell the
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two apart. We discuss the KL divergence and its possible
applications in more detail in Appendix C. Table VIII lists
some of the relevant numbers for our standard topologies.

Of course, faced with real data we have to evaluate the
actual evidence integral. Unfortunately the likelihood is
extremely strongly peaked around the correct alignments
(especially for a nontrivial topology), and it is very difficult
to sample from it. Already the � and �2 estimators require
a very precise alignment to reach the true maximum or
minimum. Exponentiating 
�2 leads to much narrower
peaks in the extrema, and makes the problem far worse. In
Fig. 10 we plot the relative likelihood (normalized to unity
at the peak) for a universe with T�4; 4; 4	 topology close to
a correct alignment (the vertical line), and for different
‘max. The broadest peak corresponds to ‘max � 16, and we
added the location of 104 points evenly spaced between 0
and 2� as black crosses. This corresponds to a total of
roughly 1011 points to cover all of SO(3). For ‘max � 16
we could get away with using only every 10th point (about
108 points in total) and still detect the high-likelihood
region. But not so for ‘max � 32 and 60 (the narrower
peaks), which would easily be missed.

This renders methods like thermodynamic integration
infeasible. On the other hand, we are dealing only with
three parameters. Direct integration is therefore marginally
possible by using an adaptive algorithm. For ‘max � 16 we
need to start out with at least 106 points in order to detect
-11



TABLE VIII. Some key quantities for computing the KL di-
vergence. The whitening enforces tr�B� � smax�� 288�.

Topology ‘max tr�B
1� log�jBj� DKL�1 k B�

1 16 288 0 0
T�2; 2; 2	 16 4661 
486 1944
T�4; 4; 4	 16 1570 
192 545
T�15; 15; 6	 16 309 
8 6
T�6; 6; 1	 16 20 781 
399 10 047
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the high-probability regions at all. This means that we have
to count on 107 to 108 likelihood evaluations. The situation
gets worse for higher resolution maps, as both the like-
lihood evaluations require more time and the high-
probability regions shrink. We therefore only quote results
for ‘max � 8 in this section.

As the data sets which define our likelihood we use the
same four maps as in the frequentist analysis: The ILC map
by the WMAP team (WMAP), two maps by Tegmark et al.
the Wiener filtered map (TW) and the foreground- cleaned
map (TC) and the ILC map by Eriksen et al. (LILC). We
quote the logarithm (to base 10) of the evidence in Table IX
for our usual range of example models. The relevant quan-
tity for model comparison is the difference of these values
(corresponding to the ratio of the probability). If the log
evidence of a model A is 3 higher than the log evidence of
model B, we conclude that the odds for model A are
103 times better. This can be seen as fairly good odds in
favor of model A. We discuss at the end of Appendix C 1
the correspondence between the logarithm of a probability
ratio and the number of standard deviations (�) for a
Gaussian random variable.

All topologies except T�15; 15; 6	 are excluded at high
confidence. The evidence values for the different recon-
structed CMB maps agree at least qualitatively. We plot in
Fig. 11 the evidence of the T�15; 15; X	 cases as a function
of X. The two smallest universes are strongly excluded,
X � 2 could be excluded if we used a higher resolution,
and the rest are too close to the infinite universe to be
constrained. We also plot the mean and standard deviation
of the simulated LILC maps as error bars. The T�X;X; 1	
cases are all so completely excluded that the integral is just
barely feasible given the huge numbers involved.
TABLE IX. The log evidence log10�E� for a range of top-
ologies and data maps (see text). We also quote the KL diver-
gence with respect to an infinite universe for comparison.

Topology ‘max WMAP TC TW LILC DKL�1 k B�

1 8 
17 
17 
17 
17 0
T�2; 2; 2	 8 
114 
103 
100 
102 172
T�4; 4; 4	 8 
46 
41 
47 
44 64
T�6; 6; 1	 8 
526 
1 
1 
1 1733
T�15; 15; 6	 8 
17 
18 
18 
17 1
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We would like to remind the reader that the results in this
section are always relative to the observed map. It is there-
fore a bit worrying that the evidences differ by several
orders of magnitude when we consider the different full-
sky reconstructions. We also checked the stability of the
results for 1000 simulations of the LILC map with known
(trivial) topology. We found it to be rather poor (cf. the
large error bars in Fig. 11), although this may be partially
due to the smaller range of ‘. Another possible source for
this lack of stability is our simplistic likelihood. The
Bayesian interpretation of the results is only true if we
are able to derive the correct likelihood. This is an impor-
tant difference to the frequentist results where we calibrate
the statistical interpretation with the comparison sets. In
the frequentist scenario, we may end up with a suboptimal
test, but we will not get wrong results if we use the wrong
likelihood function. Not so in the Bayesian case, which
forces us to be more careful. A possible way out is to
reconstruct a likelihood from the set of simulated LILC
maps.

Normally, a difference of 2 to 3 in log10�E� is taken to be
sufficient to strongly disfavor a model against another one.
This may be reasonable for a full analysis that takes into
account all the issues discussed in the following section.
For full-sky reconstructed maps we feel that we should
require at least a difference of 10. Overall it seems that the
frequentist approach leads to results which are more stable
FIG. 11 (color online). The evidence of a T�15; 15; X	 topol-
ogy with ‘max � 8 for four different full-sky reconstructions of
the WMAP data (WMAP red crosses, TW cyan triangle, TC blue
circle and LILC magenta stars). The black error bars are derived
from simulated LILC maps. They are consistent with the actual
LILC data map. The green horizontal line shows the predicted
evidence of an infinite universe.
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against the uncertainties introduced by the full-sky recon-
struction and foreground removal.
VIII. COSMIC COMPLICATIONS

This paper aims at introducing and discussing the differ-
ent methods for constraining the topology of the Universe
in harmonic space. In doing so we study an idealized
situation with perfect data, neglecting several issues that
are present in the real world. Here we give a quick over-
view over the main complications that will have to be dealt
with for a rigorous analysis. Clearly they will change the
quantitative results presented here, but we do not expect
that they will lead to qualitative changes in the results.

A. Noise

If we assume constant and independent per-pixel noise
�N then the covariance matrix of the a‘m acquires an
additional diagonal term,

ha�sas0 i � �2
N�ss0 : (32)

This is fairly close to what many CMB experiments (like
WMAP and Planck) expect for their data. The CMB power
spectrum on large scales behaves roughly like 1=‘2

(Harrison-Zel’dovich) with a power of about C10 �
60 
K2. For any experiment that probes scales beyond
the first peak, we can conclude that the large scales (‘ <
100 say) are completely signal dominated. Taking WMAP
as an example, we see that Fig. 1 of [27] gives a noise
contribution to the C‘ of 0.1 to 0:6 
K2 depending on the
assembly. As the noise additionally (to first order) does not
enter in the off-diagonal terms, we can safely neglect it for
a first analysis.

More generally we expect a fixed noise variance per
detector and per observation. The resulting per-pixel noise
is �N�x� � �0=

���������
Nobs

p
. Turning again to WMAP as an

example, we find that they cite a noise variance �0 �
2–7 mK. Expressed in terms of the spherical harmonic
coefficients, the correlation matrix in this scenario be-
comes

ha�sas0 i � �
2
0

Z
d2xN
1

obs�x�Y
�
s �x�Ys0 �x� (33)

where the integration runs over all pixels x. Because of its
spatial variation, the noise is no longer confined to the
diagonal and should strictly speaking be taken into ac-
count. But the off-diagonal terms will still be very small.
The most straightforward way to include the noise is to
simulate maps with the correct power spectrum and noise
properties and to co-add them. This is especially the case
when we deal with a complicated sky cut (see below).

The ILC maps that we used here have more complicated
noise properties due to the full-sky reconstruction. But the
noise itself will still be negligible on large scales, com-
pared to the signal. More worrying are potential foreground
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contaminations that were not completely subtracted. We
explore that problem partially in Sec. VI by using simu-
lated LILC maps.

B. Uncertainties in the cosmological parameters

So far we have used correlation matrices computed for a
fixed cosmological model. But there are still significant
uncertainties present in the true value of the cosmological
parameters, and even in the underlying cosmological
model. An example was recently discussed in [28]. In
principle we have to take such uncertainties into account.
For the Bayesian model selection approach, we could do it
straightforwardly by marginalizing over them. Of course
this may mean computing a large number of correlation
matrices for different cosmological models, which would
lead to a computational challenge. Alternatively, one
should consider a selection of models and incorporate the
variance of the correlations into a systematic error on the
correlation matrices.

In practice, we hope that the whitening which eliminates
differences in the power spectrum will also minimize the
effects due to this parameter uncertainty. At the very least it
will do so for the ‘‘infinite universe’’ tests where no off-
diagonal correlations are present. The result that the full-
sky WMAP maps are compatible with an infinite universe
is thus not affected by the parameter uncertainty.

C. The integrated Sachs-Wolfe effect

An issue somewhat related to the last point is that not all
perturbations are generated on the last scattering surface.
Some of them are due to the ISW effect. Especially per-
turbations due to the late ISW effect that are generated
relatively close to us are then not affected by the global
topology and carry no information about it. They act as a
kind of noise for our purposes. This contribution is espe-
cially problematic when searching for matching circles in
pixel space. It is readily included when working with the
correlation matrices, even though it will also be subject to
the parameter uncertainties and it will lower our detection
power substantially.

The rapid decrease of the late ISW effect with increasing
‘ provides an additional incentive for probing smaller
scales, ‘ � 40–60.

D. Sky cuts

Here we have only considered full-sky maps.
Unfortunately a large part of the sky sphere is covered by
our galaxy which leads to foregrounds that are not easy to
subtract and obscure the true CMB signal. The most con-
servative approach is therefore to remove a part of the sky
via a sky cut. This amounts to introducing a mask M�x� in
pixel space, with value 1 on the pixels x where the CMB
signal is clean, and 0 in the contaminated parts of the sky.
We then consider the pseudo-a‘m
-13
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â ‘m �
Z
d2xM�x��T�x�Y‘m�x� (34)

instead of the true a‘m. We can perform the masking
operation directly in harmonic space, using the spherical
Fourier transform of the mask,

M ss0 �
Z
d2xM�x�Ys�x�Y

�
s0 �x�: (35)

The relation between the true a‘m and the observed
pseudo-a‘m is then given by âs �

P
s0Mss0as0 . Unfortu-

nately the mask matrix M corresponds to a loss of infor-
mation and can in general not be inverted. We could of
course use SVD to invert it, and eliminate the small SVD
eigenvalues. However, this would be quite similar to a full-
sky reconstruction. Instead, it may be preferable to apply
the sky cut to the correlation matrix as well. The resulting
pseudocorrelation matrix is then

B̂ �MyBM: (36)

This leads to two problems. The first one is purely
computational: The sky cut has a fixed orientation (with
respect to the a‘m). So far it did not matter if we rotated the
correlation matrix or the a‘m, as only the relative orienta-
tion counted. But since the sky cut defines an absolute
orientation we now need to apply the rotation to the
correlation matrix. Rotating the correlation matrix is con-
siderably more costly than rotating the observed a‘m. The
use of the eigenvector decomposition (15) and rotation of
the effective spherical harmonics b‘m can somewhat alle-
viate the situation if only a few eigenvalues dominate the
sum.

The second problem is that a sky cut and its associated
mask matrix introduce just the kind of correlations be-
tween different a‘m that we are looking for. A sky cut
will impact significantly on our ability to constrain large
universes. We will have to either accept this limitation, or
hope that better full-sky reconstruction and component
separation methods (for example [29]) will become avail-
able. However, one would have to demonstrate that such
methods do indeed not change the correlation properties of
the a‘m in a way that influences the detection of a topology
signature. At the very least one has to consider such effects
as systematic errors and include them in the error budget of
a full analysis.
IX. CONCLUSIONS AND OUTLOOK

In this paper we have studied three ways to constrain the
topology of our universe directly with the correlation
matrix of the a‘m. If the primordial fluctuations are
Gaussian then these correlation matrices contain all the
information about the global shape of our universe that is
carried by the CMB. By trying to find their traces in the
measured a‘m we can construct the most sensitive probes
possible.
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We studied two frequentist estimators, � which de-
scribes the correlation amplitude between the theoretical
correlation matrix B and the measured a‘m, and �2 �
ayB
1a. Although � has certain advantages at high ‘ by
leaving out the diagonal terms, we found the �2 to be
generally superior after taking into account the random
orientation of the observed map. We also computed the
Bayesian evidence, which we found to be a very sensitive
probe. But the angular integration is computationally very
intensive, especially at high resolutions. Additionally,
much care is needed in constructing the likelihood func-
tion. For these reasons, the �2 minimized over rotations
seems the most useful of our tests.

For our scenario we find that even high multipoles, ‘ >
50, still carry important information about the topology.
However, the amount of work needed to extract the infor-
mation scales as a high power of ‘. For most cases ‘ �
30–40 seems a sufficient upper limit.

We finally apply our methods to a set of reconstructed
full-sky maps based on WMAP data. For all topologies
considered (cubic and slab tori) we find no hints of a
nontrivial topology. Based on the exclusion of the
T�4; 4; 4	 topology, we conclude that the fundamental do-
main is at last 19.3 G pc long if it is cubic. We rule out (not
very surprisingly) any universe where a fundamental do-
main in any direction is smaller than 4.8 G pc (based on the
T�X;X; 1	 cases). If the Universe is infinite in two direc-
tions, then the third direction has to be larger than
14.4 G pc. These limits still allow two copies of the
Universe inside the current particle horizon. We prefer to
understand this analysis as a demonstration of our meth-
ods, as we neglected a range of important issues such as the
ISW effect.

The noise of the WMAP data is already cosmic variance
dominated on the scales of interest. Future experiments
will not be able to provide significantly better CMB tem-
perature data sets, although some improvement may come
from better foreground separation with more frequencies,
and from e.g. using polarization maps in addition to the
temperature maps. Short of waiting a few billion years for
the Universe to expand further, these tests and especially
the information theoretical limits provided by the
Kullback-Leibler divergence give us an idea about what
we can learn of the shape of our Universe.
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APPENDIX A: FINDING AN OPTIMAL
ESTIMATOR

It is interesting to compare the expressions for the �2

and the � estimator. The philosophy of the two approaches
is very different. In the first case we write down a like-
lihood function for a given covariance matrix. In the sec-
ond case we correlate the noisy estimated covariance
matrix with a theoretical model. We then use the correla-
tion amplitude � as a measure of goodness of fit. To
compare the two methods, we use the eigenspace expan-
sion (15). As B is Hermitian, the eigenvalues are real; if we
use the full covariance matrix, which is positive definite,
the eigenvalues are also positive.

Introducing this expansion into the expression for �2 we
find

�2 �
X
i

1

��i�

��������X
s

asv
�i�
s

��������2
: (A1)

To compute the same for the correlation amplitude, we use
that the eigenvectors are normalized and orthogonal,P
sv
�i�
s v

�j��
s � �ij. The autocorrelation is then simplyP

ss0 jBss0 j
2 �

P
i�
�i�2 and the correlation amplitude is

� �

P
i �
�i�j
P
s asv

�i�
s j2P

i��
�i��2

: (A2)

If one eigenvalue dominates, then the two expressions
coincide. If all eigenvalues are equal, then �2 � smax�.
This happens for an infinite universe if we normalize it by
the power spectrum. In both cases the statistical properties
are equal.

In the intermediate cases we see that both correspond to
a different weighting of the correlations between the ei-
genvectors and the a‘m. The question arising now is
whether we can determine an optimal weighting that leads
to the smallest variance if the a‘m are drawn either from an
infinite universe or from one with covariance matrix B. If
the two requirements are not the same, it is preferable to
optimize with respect to the infinite universe, as large
universes will be close to this case.

Let us, as an example and guided by the above discus-
sion, postulate a general estimator

� �
X
i

��i�Xi (A3)

where we use the structure that we observed above,

Xi �
��������X

s

asv
�i�
s

��������2
: (A4)

The expectation value and the variance of the general
estimator are
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h�i �
X
i

��i�hXii; (A5)

�2 � h�2i 
 h�i2 �
X
i;j

��i���j��hXiXji 
 hXiihXji�:

(A6)

The aim is to find the ��i� that minimize the variance of
the estimator, subject to a normalization constraint. We are
going to consider several different limits. The simplest
example is the case where the eigenvectors are due to an
infinite universe, in which case v�i�s � �is. It is now easy to
see that hXii � haia�i i � Ci and hXiXji � CiCj � 2jAijj

2

where Aij is the covariance matrix from which the ob-
served a‘m are drawn. The expectation value and variance
of the general estimator are now

h�i �
X
i

��i�Ci; (A7)

h�2i 
 h�i2 � 2
X
ij

��i���j�jAijj
2: (A8)

Adding the constraint
P
i�
�i� � smax, with a Lagrange

multiplier l we have to minimize the expression

2
X
ij

��i���j�jAijj
2 � l

 X
i

��i� 
 smax

!
: (A9)

The relevant system of equations is found as usual by
computing the first derivatives with respect to l and the
coefficients and setting them to zero to find the extrema:X

i

��i� � smax; (A10)

l� 4
X
i

��i�jAikj
2 � 0; 8 k � 1; . . . ; smax: (A11)

This is a linear system which can be solved via matrix
inversion. For the simplest case where Aij � Ci�ij (the
observed a‘m are also drawn from an infinite universe with
power spectrum Ci) we can write down the solution up to a
normalization constant:

��i� /
1

Ci
: (A12)

We assume that both the template and the sky have the
same power spectrum Ci. In our case this also means that
the eigenvalues of A are ��i� � Ci. The minimum variance
estimator is therefore proportional to the �2. On the other
hand, after whitening Ci � 1 and both estimators become
equivalent.

It is also easy to consider the case when the as are
distributed according to the same correlation matrix B
that we compare them with. As the eigenvectors are ortho-
normal, we find that
-15



FIG. 12. The location of the median value in the number of
standard deviations � for the maximum value out of n Gaussian
random variables.
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hXiiB � ��i�; (A13)

hXiXjiB � ��i���j� � 2���i��2�ij: (A14)

The variance of the estimator is then

�2
� � 2

X
i

�2
i ��
�i��2: (A15)

This is minimized by

�i /
1

��i�
(A16)

as before. The �2 estimator has therefore the minimal
variance in this case as well.

However, we see from Tables III and IV that the domi-
nant error is not h iB but h i1. We should therefore try to
minimize this variance instead. Here the a‘m are those of
an infinite universe while the eigenvectors are those of the
correlation matrix B. It is possible to derive an optimal
estimator for this case, but it is rather unwieldy.

Finally, our aim is to maximize the detection of a given
topology. This is not necessarily the same as minimizing
the variance as discussed above. First, the discussion nec-
essarily disregards the deviations introduced by dividing
the a‘m by their own power spectrum. Second, the �
correlation estimator gains power by leaving out the di-
agonal terms. And third, we use the extremum over all
orientations which will also change the results.
APPENDIX B: EXTREME VALUE DISTRIBUTIONS

Computing the extrema of the estimators for a large
number of cases takes a lot of cpu time. It is important to
use this information efficiently, for example by fitting a
theoretically motivated distribution function. We try to
derive such a fitting distribution by considering all rota-
tions as independent random realizations. We then use the
maximum or minimum, depending on the estimator. This is
known as extreme value statistics [18]. For example in the
case of � we found that its distribution is nearly Gaussian.
We find with our approximations for the distribution of the
maximum out of n draws

Cn�z� � p�max��1; . . . ; �n� 
 z	 (B1)

� p��1 
 z; . . . ; �n 
 z� (B2)

�
Yn
i�1

p��i 
 z� (B3)

� C�z�n: (B4)

Here C�z� � �1� erf�
���
2
p
z��=2 is the cumulative probabil-

ity function of a single univariate Gaussian random vari-
able andCn�z� the same for the maximum of n independent
univariate Gaussians. The median lies at Cn�z� � 1=2 or
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C�z� � 2
1=n. We show in Fig. 12 the location of the
median as a function of n. For the relevant number of
independent rotations, we find a shift of 4� to 6�.

A theorem similar to the central limit theorem says that
there are certain limiting distributions to which the distri-
bution of an extremal value converges. The limiting distri-
bution for an unbounded variable like � is the Gumbel
distribution, with a PDF of the form

P�x� � exp�
z
 exp�
z��=�; where z � �x

�=�

(B5)

(see e.g. [30] for a discussion and another astrophysical
application). The expectation value is �	�
 and the
variance is �2�2=6 where 	 � 0:577 is the Euler constant.
We can use these two values to find � and 
 given the
variance and expectation value of the distribution.

The cumulative distribution function (CDF) is

F�x� � e
 exp�
z�: (B6)

We can consider e.g. F�x � 0:95� as the 2� upper limit.
We find that for N of the order of a few thousand, 5� is a
very conservative upper bound. Even though the extreme
value distribution moves the expectation values up or
down, the variances around those values can still remain
surprisingly small. The signal to noise ratio need not
decrease because of the shift. Indeed, as discussed in
Sec. V we find that it often even increases.

For a bounded variable like a �2 the situation is similar,
except that the limiting distribution is now called Weibull
distribution, with
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P�x� �
	
x

�
x
�

�
	

exp
�



�
x
�

�
	
�
: (B7)

The two parameters � and 	 can be fixed again by mea-
suring the expectation value 
 � ���1� 1=		 and vari-
ance �2 � �2���1� 2=		 
 ��1� 1=		2� of the
numerical distribution. The CDF is simply

F�x� � 1
 e
�t=��
	
; (B8)

and x � 0.
However, we found that this form is a bad fit even to just

the minimum over independent variables with a true �2

type distribution. It seems better to allow for two different
exponents, leading to a PDF of the form

P�x� �
	

����1� ��=		

�
x
�

�
�

exp
�



�
x
�

�
	
�
: (B9)

We call this the extended Weibull distribution. The CDF is
now

F�x� � 1

���1� ��=	; �x=��		

���1� ��=		
(B10)

where ��a; b	 is the incomplete gamma function, with
��a; 0	 � ��a	 and ��1; x	 � exp�
x�. We recover the
standard case for � � 	
 1. We found the extended
Weibull distribution to be the best-fitting distribution in
FIG. 13 (color online). The PDF of � for a T�6; 6; 1	 topology
maximized over rotations (black histogram, 104 samples) and the
best fit using an extended Weibull distribution (red curve). The
Kolmogorov-Smirnov probability of the fit is 42%.
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general, even for the � estimator. Figure 13 shows an
example fit to the PDF of � for a T�6; 6; 1	 distribution.

There are different ways to fit the theoretical extreme
value distribution to the numerical CDF. We could, for
example, maximize the Kolmogorov-Smirnov probability.
Instead we decided to use a Bayesian approach: We con-
sider the numerical values as ‘‘data points’’ di for the true
CDF and use the theoretical distribution as a model with
parameters �j. For each data point the probability is then
given by p�di j �� � F�di�. As all the data points are
independent, we can define a likelihood function L as

�2 � 
2 ln�L���� (B11)

� 
2 ln

 Y
i

F�di�

!
(B12)

� 
2
X
i

ln�F�di��: (B13)

We can then easily compute the posterior probability of the
parameters � that describe the distribution with a Markov
chain Monte Carlo method.
APPENDIX C: A DISTANCE BETWEEN
TOPOLOGIES

1. The Kullback-Leibler divergence

Let us consider the following question: What is the
expectation value of the ratio of the likelihoods for covari-
ance matrices A and B if the as are distributed according
to a correlation matrix A? We have already computed the
log likelihood in Sec. III, the first case is simply

hlnLi � 
1
2�lnjAj � tr�1��; (C1)

and the second one

hlnLi � 
1
2�lnjBj � tr�AB
1��: (C2)

The difference between the two expressions is the loga-
rithm of the likelihood ratio,

h� lnLi � 
1
2�lnjAj 
 lnjBj � tr�1
B
1A��: (C3)

This is precisely the Kullback-Leibler divergence between
the two Gaussian distributions described by A and B.

The KL divergence is in general defined for two proba-
bility distributions p and q as

DKL�p k q� �
Z
p ln

�
p
q

�
: (C4)

Notice that this is not symmetric, so the symmetrized form
D�p k q� �D�q k p� is sometimes used if it is not clear
which distribution is the fundamental one. In information
theory the KL divergence describes the relative entropy (or
information) between the two probability distributions p
and q. This corresponds, for example, to the amount of
-17



FIG. 15 (color online). The Kullback-Leibler divergence
DKL�1 k T�15; 15; X	� between an infinite universe and a slab
space, as a function of the size of the smallest dimension X. We
show curves for ‘max � 8, 12 and 16. For X > 3 the topology
becomes difficult to detect and for X > 6 it is basically impos-
sible for any ‘max. Compare with Fig. 6.

FIG. 14. The probability that a Gaussian random variable is
more than n standard deviations away from the mean. This figure
helps to compare the results expressed in the number of � with
those expressed as log10�P�.
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information wasted when trying to describe data distrib-
uted as q with a model based on p (see e.g. [24]).

We consider the KL divergence for random variables x
which have a normal distribution with zero mean and
covariance matrix A,

p�A; x� � �2��n=2jAj
1=2 exp�
1
2x
TA
1x�: (C5)

We can derive an expression for the KL divergence directly
in terms of the covariance matrices by evaluating the
Gaussian integrals:

Z
p�A� ln

p�A�
p�B�

�
1

2
�lnjBj 
 lnjAj 
 tr�1
B
1A	�:

(C6)

This is the same expression as Eq. (C3).
We have encountered the KL divergence in Sec. VII

where we used it as a zeroth order approximation to the
evidence. In general, it is not rotationally invariant. But
although we cannot use it directly, we can define a distance
between two topologies if their correlation matrices are
aligned along the same symmetry axes. DKL�A k B� cor-
responds then to the maximal signal that we can expect.
The base of the logarithm that we use corresponds to a
choice of units—in information theory the conventional
choice is base 2, corresponding to bits. We quote the
numerical results to base 10, as it makes it easy to interpret
the result: ifDKL�A k B� � 3 then we can (at best) expect
to distinguish the topologies at the 1000:1 level. If
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DKL�A k B� 
 2 then it will be very difficult to distin-
guish the two topologies. Of course the Kullback-Leibler
divergence depends also on the resolution, ‘max.

When comparing to results quoted as a number of stan-
dard deviations, we use that for a Gaussian random vari-
able

P�jxj> 
�� � 1


����
2

�

s Z 1


e
x

2=2dx � 1
 erf�
=
���
2
p
�:

(C7)

For x� 1 we can well approximate 1
 erf�x� by
exp�
x2�=�

����
�
p

x�. In Fig. 14 we plot log10�P�jxj> 
���
against 
� to make it easy to compare the two quantities.

2. Information theoretical limits on detecting a topology

As we have already mentioned often, a FLRW universe
with the trivial topology is homogeneous and isotropic.
Correspondingly its correlation matrix is rotationally in-
variant. In this special case also the KL divergence does not
depend on the relative orientation of the two universes. The
quantity DKL�1 kA� measures therefore directly how
much ‘‘information’’ separates the Universe with the to-
pology described by A from an infinitely large universe. If
there is not enough information, then we will never be able
to detect that topology.
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FIG. 16 (color online). The scaling of the Kullback-Leibler
divergence as a function of ‘max. The curves show DKL�1 k
T�2; 2; 2	� (first curve from the top, blue) and DKL�1 k
T�4; 4; 4	� (third curve, red). Both keep increasing for the whole
range of ‘max considered, showing that there is information on
these topologies even at relatively small scales. We also plot
DKL�T�4; 4; 4	 k T�2; 2; 2	� (second curve, cyan) and
DKL�T�2; 2; 2	 k T�4; 4; 4	� (lowest curve, magenta). We argue
that the smallness of the latter curve shows that it is possible to
detect a T�2; 2; 2	 universe with a T�4; 4; 4	 template.
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Figure 15 shows the KL divergence between an infinite
universe and a T�15; 15; X	 topology for different X �
L=H0 and ‘max. We see that the distance falls rapidly for
L> 6=H0. Even increasing ‘max does not help as the
correlation matrices become essentially identical. Hence,
even though we can still detect correlations in spite of this
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universe being larger than the particle horizon in all direc-
tions, we will not be able to distinguish it from an infinite
universe at a significant level.

3. Comparing different templates

If the topology of the Universe is nontrivial then we will
end up using different correlation matrices until one fits. If
a template is completely wrong we expect to see no signal
at all. However, if the template belongs to a topology which
is ‘‘similar’’ to the real one, then we may find a reduced
signal.

What does similar mean in this context? As an example,
let us assume that either the Universe has a T�2; 2; 2	
topology while we test with T�4; 4; 4	 or the opposite. In
the first case, the signal is actually too strong, and we end
up finding a correlation of order unity (� � 0:91� 0:05),
but we pay the price of too much noise. If we had used the
T�2; 2; 2	 template, our detection would have been more
significant. On the other hand, if we use the T�2; 2; 2	
template for a T�4; 4; 4	 universe then the correlation is
smaller (� � 0:11� 0:02) while the (nonmaximized)
value for infinite universes is � � 0� 0:02. Overall, it
seems better to test first the largest universe that can still
be distinguished from an infinite one.

This is also borne out by the Kullback-Leibler
divergence between T�4; 4; 4	 and T�2; 2; 2	, shown in
Fig. 16. We find,for example, with ‘max � 16 that
DKL�T�4; 4; 4	 k T�2; 2; 2	� � 2000 while DKL�T�2; 2; 2	 k
T�4; 4; 4	� � 265. Both are smaller than DKL�1 k
T�2; 2; 2	� and the latter is smaller than DKL�1 k
T�4; 4; 4	�, indicating that it is possible to detect a
T�2; 2; 2	 universe with a T�4; 4; 4	 template. Another pos-
sible use of the Kullback-Leibler divergence is therefore to
map out the space of topologies and to identify those which
are very similar. This helps to reduce the space of models
that needs to be searched.
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