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Inner caustics of cold dark matter halos
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We prove that a flow of cold collisionless particles from all directions in and out of a region necessarily
forms a caustic. A corollary is that, in cold dark matter cosmology, galactic halos have inner caustics in
addition to the more obvious outer caustics. The outer caustics are fold catastrophes located on topological
spheres surrounding the galaxy. To obtain the catastrophe structure of the inner caustics, we simulate the
infall of cold collisionless particles in a fixed gravitational potential. The structure of inner caustics
depends on the angular momentum distribution of the infalling particles. We confirm a previous result that
the inner caustic is a ‘‘tricusp ring’’ when the initial velocity field is dominated by net overall rotation. A
tricusp ring is a closed tube whose cross section is a section of an elliptic umbilic catastrophe. However,
tidal torque theory predicts that the initial velocity field is irrotational. For irrotational initial velocity
fields, we find the inner caustic to have a tentlike structure which we describe in detail in terms of the
known catastrophes. We also show how the tent caustic transforms into a tricusp ring when a rotational
component is added to the initial velocity field.
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I. INTRODUCTION

It is generally believed at present [1] that approximately
23% of the energy density of the Universe is in the form of
‘‘cold dark matter’’ (CDM). The CDM particles must be
nonbaryonic, collisionless, and of small primordial veloc-
ity dispersion. Particle physicists have put forth several
candidates with the required properties. Two among these,
the axion and the neutralino, have the distinction of having
been originally postulated for purely particle physics rea-
sons. The axion solves the ‘‘strong CP problem,’’ whereas
the neutralino is a prediction of supersymmetric extensions
of the standard model. The primordial velocity dispersions
of these two candidates are very small, of order 3�
10�17 c for axions and 10�12 c for neutralinos.

A central problem in dark matter studies is the question
of how CDM is distributed in the halos of galaxies, and, in
particular, in the halos of spiral galaxies such as our own
Milky Way. Indeed, knowledge of this distribution is es-
sential for understanding galactic dynamics and for pre-
dicting signals in direct and indirect searches for dark
matter on Earth.

Three main approaches towards determining the dark
matter distribution in galactic halos have been put forth.
The first assumes that galactic halos are isothermal [2].
This assumption is highly predictive and, in fact, some of
the predictions of the isothermal model agree with obser-
vation, to wit the flatness of rotation curves and the exis-
tence of core radii [3]. However, even if galactic halos were
thermalized in the past, they do not remain so because
surrounding dark matter keeps falling onto them [4,5].
There is no mechanism which thermalizes the flows of
axions or neutralinos which fall late onto the galaxy. The
second approach is to carry out N-body simulations of the
halos [6]. This does presumably give a correct description
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if the number N of particles in the simulations is suffi-
ciently large. However, present simulations have only N �
107 and, as a result, suffer from 2-body relaxation [7] and
from inadequate sampling of phase space [8].

The third approach exploits the fact that the CDM
particles lie on a 3-dim. hypersurface in 6-dim. phase space
[4,8,9]. This implies that the velocity distribution of dark
matter particles at every point in physical space is discrete
and that there are surfaces in physical space, called caus-
tics, where the density of dark matter particles is very
large. We have recently argued [5] that these discrete flows
and caustics are a robust prediction of cold dark matter
cosmology. The reader may wish to consult Ref. [5] for
background information and a list of references.

In the present paper we investigate the catastrophe
structure of the caustic formed in a flow of cold collision-
less dark matter particles falling in and out of a galactic
gravitational potential well. We call the caustics thus
formed the ‘‘inner caustics’’ of the galactic halo. Galactic
halos also have ‘‘outer caustics.’’ An outer caustic occurs
near where an outflow of dark matter turns around before
falling back in [10,11]. The catastrophe structure of outer
caustics is simple. They are fold (A2) catastrophes [12]
located on topological spheres surrounding the galaxy. We
will see below that the catastrophe structure of inner caus-
tics is relatively more complicated.

We start off below (Sec. II) by proving that there always
is an inner caustic, i.e. that it is impossible for cold colli-
sionless particles to flow from all directions in and out of a
region without forming a caustic. The proof indicates that
the inner caustic occurs near where the particles with the
most angular momentum are at their distance of closest
approach to a central point of the region. This suggests that
the structure of an inner caustic depends mainly on the
angular momentum distribution of the infalling particles.
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In previous work [8], it was shown by analytical meth-
ods that the inner caustic is a tricusp ring when the initial
velocity field ~v�~r� of the infalling particles is dominated by
net overall rotation. A tricusp ring is a closed tube whose
cross section is a section of an elliptic umbilic catastrophe
[12]. We confirm this result in Sec. IV. Figure 2(b) shows
an axially symmetric tricusp ring as it appears in our
simulations.

However, as will be shown below (Sec. III), the leading
theory for the origin of the angular momentum of galaxies,
namely, tidal torque theory [13–15], predicts that the initial
velocity field of dark matter particles is a pure gradient. A
pure gradient field is of course irrotational ( ~r� ~v � 0). It
can nonetheless carry net angular momentum ~L �R
d3r�� ~r� ~r� ~v� ~r� because the density � is

inhomogeneous.
Motivated by tidal torque theory, we want to determine

the structure of the inner caustics of galactic halos when
the initial velocity field is irrotational and, more generally,
when the initial velocity field is not dominated by net
overall rotation. We address this issue by simulating the
infall of cold collisionless particles in a fixed gravitational
potential well. The inner caustic is revealed by finding the
locus of points where the Jacobian of the map between the
initial and final positions of the particles vanishes, i.e.
where the map is singular.

We consider all initial velocity fields which are linear in
position ~r, i.e. fields of the type ~v � M~r where M is a 3�
3 real matrix. We set Tr�M� � 0 and more generally ignore
the radial component vr � r̂ � ~v because it does not con-
tribute to the angular momentum and hence does not have
much influence upon the inner caustics. Tidal torque theory
predicts MT � M, but we consider the more general case
in which M has both symmetric and antisymmetric parts.

The outline of our paper is as follows. In Sec. II, we
introduce the formalism of zero velocity dispersion flows
and caustics, and give an existence proof of inner caustics.
In Sec. III, we discuss our numerical techniques and the
initial conditions expected from tidal torque theory. In
Sec. IV, we simulate flows which are dominated by net
overall rotation, confirm that the inner caustic is a tricusp
ring in that case, and demonstrate the stability of the
tricusp ring under small perturbations. In Sec. V we simu-
late flows which are not dominated by overall rotation and
derive the structure of inner caustics for those cases. In
Sec. VI, we summarize our conclusions.

In this paper, unless stated otherwise, the words ‘‘circle’’
and ‘‘sphere’’ will be used in their topological, rather than
geometrical, sense. So an ellipse will be called a circle, etc.

II. EXISTENCE PROOF OF INNER CAUSTICS

Consider a flow of cold collisionless particles falling
from all directions in and out of the gravitational potential
well of a galaxy. That the particles are collisionless means
that they move under the influence of purely gravitational
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forces. We assume in this paper that Newtonian gravity
applies, and so the particles obey the equation of motion

d2 ~r

dt2
� � ~r��~r; t� (1)

where �� ~r; t� is the gravitational potential of the galaxy.
Note, however, that the existence proof of inner caustics
given below would hold equally well in general relativity.
That the particles are cold means that they have negligible
velocity dispersion. We set the velocity dispersion equal to
zero. However, the presence of a small velocity dispersion
does not affect the existence of caustics, and does not
change their structure. It only cuts off the divergence of
the dark matter density at the location of the caustics.

As was mentioned in the Introduction, CDM particles lie
on a 3-dim. hypersurface in 6-dim. phase space. Because
the number of particles is huge—of order 1084 axions and/
or 1068 neutralinos per galactic halo—the particles can be
labeled by three continuous parameters ~� � ��1; �2; �3�
which are chosen arbitrarily. For example, one may choose
~� to be the position ~q of the particle at some early initial
time tin, before shell crossings have occurred. Other pa-
rametrizations may be more convenient however, depend-
ing on the problem at hand.

Let ~x� ~�; t� be the position of the particle labeled ~�, at
time t. After shell crossings have occurred, there will, in
general, be particles with different values of ~� at the same
location ~r. Let ~�j� ~r; t�, with j � 1 . . . n�~r; t�, be the solu-
tions of ~r � ~x� ~�; t�. Thus n�~r; t� is the number of distinct
flows at location ~r at time t. n is always a positive odd
integer because n � 1 to start with (before shell crossings
have occurred) and the number of solutions of ~r � ~x� ~�; t�
can only change by two at a time. Let �d3N=d�3�� ~�� be the
number density of particles in the chosen parameter space.
The mass density of particles in physical space is then [8]

d� ~r; t� � m
Xn� ~r;t�
j�1

d3N

d�3 � ~��
1

jD� ~�; t�j

�������� ~�� ~�j� ~r;t�
(2)

where m is the particle mass and

D� ~�; t� � det
�
@~x� ~�; t�
@ ~�

�
: (3)

The magnitude of D is the Jacobian of the map ~�! ~x.
Caustics occur where D � 0, i.e. where the map is singu-
lar. Note that, although D is not reparametrization invari-
ant, the density d and the caustic condition D � 0 are
reparametrization invariant. Caustics lie generically on 2-
dim. surfaces because, in general, the condition D � 0
defines a surface in physical space. Only in special cases
does the condition D � 0 define an isolated line or point.
Hence isolated line caustics and isolated point caustics are
degenerate cases; they are unstable towards becoming
caustic surfaces. Finally note that the map ~�! ~x is sin-
gular where the number of flows n changes. So caustics lie
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generically at the boundaries between regions which have
different numbers of flows. On one side of a caustic surface
are two more flows than on the other.

We now show that a continuous flow of CDM particles
falling in and out of a gravitational potential well cannot be
free of caustics. Let us define a geometrical sphere of
radius R surrounding the potential well. The precise value
of R and precise location of the sphere’s center do not
matter. Let us label the particles by ~� � ��;�; �� where �
is the time when the particle crosses the sphere on its way
into the well, and � and � are the polar coordinates of its
crossing point on the sphere. ~x��;�; �; t� is the position of
the particle as a function of time t. We will show that, at
any t,

D � det
@�x; y; z�
@��;�; ��

�
@~x
@�
�

�
@~x
@�
�
@~x
@�

�
(4)

vanishes at, at least, one point inside the sphere. The flow is
considered at an arbitrary fixed time t. We will suppress the
label t henceforth.

For each ��;��, the initial crossing time parameter � has
some range: �out��;��< �< �in��;�� where �in��out� is
the initial crossing time of particles presently crossing the
sphere on the way in (out). [The careful reader may notice
that �in��;�� � t, but this does not play a special role in
what is to follow.] Let us choose the origin ~x � 0 at the
center of the sphere and consider the function of three
variables r��;�; �� �

�������������������������������������������
~x��;�; �� � ~x��;�; ��

p
. We have

@r
@� j�;�;�out��;�� < 0 and @r

@� j�;�;�in��;�� > 0. Hence for all
��;�� there exists �0��;�� such that

r��;�; �0��;��� � min r��;�; �� � rmin��;��; (5)

where the minimum is over � 2 	�out��;��; �in��;��
 for
fixed ��;��. rmin��;�� is the closest distance to the origin
among all particles labeled ��;��. Let us first assume that
rmin��;�� � 0 for some ��;��. We will return later to the
opposite case, where rmin��;�� � 0 for all ��;��.

We have

@r
@�

���������;�;�0��;��
�
~x
r
�
@~x
@�

���������;�;�0��;��
� 0 (6)

for all ��;�� such that rmin��;�� � 0. Now, rmin��;�� has
a maximum value over the sphere S2 � f��;��g. Let
��0; �0� be such that

rmin��0; �0� � max rmin��;��: (7)

We have then

@r
@�

�������� ~�0

�
~x
r
�
@~x
@�

�������� ~�0

� 0;
@r
@�

�������� ~�0

�
~x
r
�
@~x
@�

�������� ~�0

� 0

(8)

with ~�0 � ��0; �0; �0��0; �0��. Note that ~x0 � ~x� ~�0� � 0.
Equations (6) and (8) imply that @~x@� j ~�0

, @~x@� j ~�0
, and @~x

@� j ~�0
are

all perpendicular to ~x0. Hence those three vectors are
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linearly dependent, and therefore D� ~�0� � 0. This implies
that ~x0 is the location of a caustic. Note that ~x0 depends on
the choice of origin. If we move the origin about, ~x0 will
move too. Thus the inner caustic is, in general, spatially
extended. This is as expected since caustics lie generically
on surfaces.

Next we consider what happens in the special case where
rmin��;�� � 0 for all ��;��. Then ~x��;�; �0��;��� � 0
for all ��;��. Therefore, for � near �0��;��,

~x��;�; �� � ~���;����� �0��;��� �O���� �0��;���
2�

(9)

where ~���;�� � @~x
@� j�;�;�0��;��. We may reparametrize �0 �

�, �0 � �, �0 � �� �0��;�� and rename ��0; �0; �0� !
��;�; ��. In this parametrization, ~x��;�; �� � ~���;����
O��2� for small �. Hence

D��;�; �� � ~���;�� �
�
@ ~�
@�
�
@ ~�
@�

�
�2: (10)

Since D � 0 at � � 0, the origin is the location of a
caustic. This completes the proof. Note that the case ~x0 �
0 is special since the whole inner caustic has collapsed to a
point.

To conclude this section, let us remark that in the situ-
ation discussed here, where CDM particles fall in and out
of a gravitational potential well, the number of participat-
ing flows inside the sphere with radius R is everywhere an
even integer. Indeed just inside the r � R surface there are
two flows, one going in and one going out, and (as re-
marked earlier) the number of flows can only change by
two at a time. The reader may wonder how this fits with the
statement that the number of flows is everywhere odd. The
resolution of this little puzzle is that, in actual realizations
such as a galactic halo, there is always an odd number of
additional flows present which are not participating in the
in and out flow under consideration.
III. INITIAL CONDITIONS AND NUMERICAL
TECHNIQUES

In this section we describe how the simulations are done.
A central issue is the initial conditions we give to the
particles. In Sec. III A we show that in the tidal torque
theory for the origin of the angular momentum of spiral
galaxies the flow of CDM particles is irrotational to all
orders in perturbation theory, i.e. to all orders in an expan-
sion in powers of the density perturbations. In Sec. III B,
we present the initial conditions used in the simulations.
They are a generalization of the prediction of tidal torque
theory to allow for rotational flow as well as irrotational
flow. In Sec. III C, we describe the steps carried out in
doing the simulations.
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A. Irrotational flow in tidal torque theory

Net rotation is a striking property of isolated spiral
galaxies. Yet it is not clear at present that the origin of
this net rotation is well understood [16]. The leading
hypothesis is that net rotation of spiral galaxies is the result
of torque applied by the tidal gravitational forces of neigh-
boring density perturbations in the very early stages of
structure formation [13–15]. This hypothesis is called
‘‘tidal torque theory.’’ It is assumed in this context that
general relativisitic effects are unimportant, and that
Newtonian gravity applies.

In CDM cosmology, density perturbations enter the non-
linear regime when shell crossings occur and caustics form.
Before that time, or wherever shell crossings have not
occurred yet, there is a single flow at every physical
location ~r. Let us call ~v�~r; t� the velocity of that primordial
flow. In the formalism of Sec. II, ~v� ~r; t� is obtained by
eliminating ~� from ~r � ~x� ~�; t� and ~v � @~x

@t � ~�; t�. For col-
lisionless particles

d ~v
dt
� ~r; t� �

@ ~v
@t
� ~r; t� � � ~v� ~r; t� � ~r� ~v�~r; t� � � ~r�� ~r; t�

(11)

where �� ~r; t� is the gravitational potential. Equation (11)
neglects relativistic effects such as the gravitomagnetic
force of general relativity. Equation (11) implies

@
@t
� ~r� ~v� � � ~r� 	� ~v � ~r� ~v


� �î�ijk	�@jvl��@lvk� � vl@l@jvk
: (12)

If ~v � ~r�, both terms on the RHS of Eq. (12) vanish.
Hence a pure gradient initial velocity field remains pure
gradient at all times.

In zeroth order of perturbation theory, the flow is given
by Hubble’s law: ~v�~r; t� � H�t�~r where H�t� � _a

a and a�t�
is the scale factor. That velocity field is certainly a pure
gradient. In first order, the particle trajectories are given by
[17]

~x� ~q; t� � a�t�	 ~q� b�t� ~rq�� ~q�
 (13)

where ~q is the particle’s position at a very early time, and
�� ~q� is the gravitational potential. [The latter is time
independent in first order perturbation theory when ex-
pressed in terms of the comoving coordinate ~q, i.e. �� ~r �
a�t� ~q; t� � �� ~q�.] In a flat universe, both a�t� and b�t� are
proportional to t2=3 during the matter dominated era. As
expected, the velocity field implied by Eq. (13) is irrota-
tional. Our remark implies that the velocity field remains
irrotational to all orders of perturbation theory.
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B. The linear initial velocity field approximation

Equation (13) implies

~v�~r; t� � H�t� ~r� a�t�
db
dt
�t� ~rq�� ~q�

�������� ~q�	1=a�t�
 ~r
: (14)

Following Ref. [15], let us choose ~q � 0 at a minimum of
� and expand � in Taylor series up to second order in the
q’s. In this approximation, the velocity field is a linear
function of position:

~v�~r� � M~r (15)

where M is a symmetric (MT � M) 3� 3 matrix. When a
shell of particles surrounding a galaxy approaches turn-
around, its initial Hubble expansion has been canceled by
the attractive gravitational force of the galaxy. For such a
shell the trace of M is approximately zero.

In Secs. IVand V we numerically integrate the equations
of motion of particles falling in and out of the galactic
gravitational potential well. The particles are given initial
conditions on a geometrical turnaround sphere as follows.
The particle labeled ��;�; �� starts at time � at location

~r in��;�� � R~n��;�� (16)

where ~n��;�� is the unit vector in the direction defined by
polar angle � and azimuth �. R is the radius of the
turnaround sphere. The particles are assigned velocities
of the form of Eq. (15) with TrM � 0. We write M �
S� A with ST � S and AT � �A. Tidal torque theory
predicts A � 0. However, as tidal torque theory may not
be the final word on the origin of the angular momentum of
galaxies, we will study the inner caustics for A � 0 as well
as A � 0.

We believe the above set of initial conditions is suffi-
ciently general for our purpose of studying the structure of
inner caustics. Indeed, the structure of inner caustics is
determined by the distribution of distances of closest ap-
proach of the particles falling in. This in turn is determined
by the distribution of angular momenta on the turnaround
sphere, or equivalently by the tangential components of the
initial velocity field on the turnaround sphere.
Nondegenerate caustics are stable under deformations.
So, to find the structure of inner caustics it is not necessary
to use the most general initial conditions, but only initial
conditions which are sufficiently representative of those
that occur in reality and which are sufficiently general that
none of the resulting caustics are degenerate. We expect
that to include higher order terms in the Taylor expansion
of the initial velocity field as a function of position will
only deform, without changing their essential structure, the
inner caustics found when assuming the initial velocity
field is of the form of Eq. (15). We verify this expectation
explicitly in the case of the tricusp caustic ring when we
study its stability in Sec. IV.
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We choose coordinate axes such that S is diagonal:

M �
1

R

g1 �c3 c2

c3 g2 �c1

�c2 c1 �g1 � g2

0
@

1
A: (17)

g1 and g2 parametrize the symmetric part of M which
yields the gradient part of ~v, whereas c1, c2, and c3

parametrize the antisymmetric part of M which yields the
curl part of ~v and describes a rigid rotation of angular
velocity ~! � ~c

R . In terms of the five parameters, the com-
ponents of the initial velocity field tangent to the turn-
around sphere are

v���;�� � ~v � �̂

� �g2 � g1� sin� sin� cos�

� cos��c1 cos�� c2 sin�� � c3 sin�;

v���;�� � ~v � �̂

� sin� cos�	g1�1� cos2�� � g2�1� sin2��


� c1 sin�� c2 cos�: (18)

The radial component ~v � r̂ of the initial velocity field does
not contribute to the angular momentum, and is set equal to
zero. We verify in Sec. IV that the inclusion of radial initial
velocities on the turnaround sphere has very little effect on
the position of tricusp caustic rings, and no effect on their
structure.

To conclude this subsection, we discuss the symmetry
properties of our initial velocity field. Almost always we
take the gravitational potential to be spherically symmet-
ric, in which case the symmetry properties of the initial
velocity field are those of the subsequent evolution as well.
In the irrotational case (c1 � c2 � c3 � 0), the initial
velocity field is reflection symmetric about the x � 0, y �
0, and z � 0 planes. Moreover it is axially symmetric when
two of the three eigenvalues (g1, g2, and g3 � �g1 � g2)
are equal. Most often we will choose the axes such that
g1 � g2 � g3. The parameter space is then g1 � 0 and
g1 � g2 � �

1
2g1. When g1 � g2, the initial velocity field

is axially symmetric about the z axis. When g2 � �
1
2g1, it

is symmetric about the x axis.
In the case of pure rotation (g1 � g2 � 0), we may

choose axes such that ~c � cẑ. The initial velocity field is
always axially symmetric in this case. When g1, g2, c1, c2,
and c3 are all different from zero, the initial velocity field
has no symmetry. When axial symmetry about the z axis is
imposed, c1 � c2 � 0 and g1 � g2.

C. How the simulations are done

We simulate a single flow of zero velocity dispersion
falling in and out of a time independent gravitational
potential ��r�, which is specified below. The initial con-
ditions are Eqs. (16) and (18) plus vr � ~v � r̂ � 0. We
solve the equation of motion, Eq. (1), numerically to obtain
023510
for all ��;�� the trajectory ~x��;�; �; t� of the particle
which started at position ��;�� on the turnaround sphere,
at time �. Since neither the potential � nor the initial
conditions are time varying, the simulated flows are sta-
tionary, i.e. ~x��;�; �; t� � ~x��;�; t� ��. The simulation
of nonstationary flows would be straightforward but con-
siderably more memory intensive and time consuming,
without being more revealing of the structure of inner
caustics. The only change with respect to simulations of
stationary flows would be that the caustics deform in a time
dependent way. This would not teach us anything new
about the structure of inner caustics.

From ~x��;�; t0 � t� �� we calculate D � det @�x;y;z�@��;�;t0� .
We then plot the points where D � 0. The set of these
points is the inner caustic surface.

Unless stated otherwise, � is the gravitational potential
produced by the matter density profile:

��r� �
v2

rot

4	G�r2 � a2�
; (19)

which implies an asymptotically flat rotation curve with
rotation velocity vrot. a is the core radius. We will refer to
the density profile of Eq. (19) as the ‘‘isothermal’’ profile
although it is only an approximation to an exact isothermal
profile. The equation of motion is then

d2 ~r

dt2
� �

v2
rot

r

�
1�

a
r

tan�1

�
r
a

��
r̂: (20)

We use everywhere R, the radius of the turnaround sphere,
as the unit of distance and vrot as the unit of velocity. So our
unit of time is R=vrot, which is of order the infall time. The
core radius a is always set equal to 0.0285.

The five parameters g1, g2, c1, c2, and c3, when ex-
pressed in units of vrot, are related to and of order the
dimensionless angular momentum j defined in [18]. It was
estimated in that paper that the average of j over the
turnaround sphere is approximately 0.2 in the case of the
Milky Way. This sets the overall scale for the values of
g1 . . . c3 we are interested in and which are used in our
simulations. Note that it is the relative values of these five
parameters that determine the structure of inner caustics.
The overall scale of the parameters merely determines the
overall size of the inner caustics relative to R.

Since we simulate the infall of a single cold flow in a
fixed potential, the particle resolution is not a critical issue.
We chose a resolution of one particle per degree interval in
� and �, and a time step of 10�4.
IV. THE TRICUSP RING

It was found in Ref. [8] that the inner caustic is a
‘‘tricusp ring’’ when the initial velocity distribution is
dominated by a rotational component. A tricusp ring is a
closed tube whose cross section has the tricusp shape
characteristic of the elliptic umbilic (D�4) catastrophe. In
-5



ARAVIND NATARAJAN AND PIERRE SIKIVIE PHYSICAL REVIEW D 73, 023510 (2006)
this section, we perform simulations of flows with initial
velocity fields dominated by a rotational component, and
show that the inner caustic is indeed a tricusp ring and that
this structure is stable under perturbations.

A. Axially symmetric case

Consider the simple case where the initial velocity field
is a linear function of the coordinates and is purely rota-
tional, i.e. when Eq. (15) holds with an antisymmetric
matrix M. The initial velocity field is then axially sym-
metric. Let us choose coordinates such that ~v � c3 sin��̂.
Figure 1 shows the resulting infall of a single shell in the xz
cross section, at successive times, for c3 � �0:1.
FIG. 1. Infall of a cold collisionless shell for the axially
symmetric initial velocity field ~v � �0:1 sin��̂. The six frames
show the shell in cross section at times t0 � 1:206, 1.258, 1.263,
1.265, 1.267, 1.275. The continuous infall of many such shells
produces the caustic shown in Figs. 2(a) and 2(b). x and z are in
units of the outer turnaround radius R. Note that here, and in
many subsequent figures, the x and z scales vary from frame to
frame.
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As the shell falls in, deviations from spherical symmetry
appear due to the presence of angular momentum. The
particles at the poles have zero angular momentum and
fall in faster than the particles near the equator [Fig. 1(b)].
They are the first to cross the xy plane [Fig. 1(c)]. The shell
completes the process of turning itself inside out in
Fig. 1(e), forming a crease. Finally the shell increases in
size again and regains an approximately spherical shape
[Fig. 1(f)].

The inner caustic occurs at and near the location of the
crease in Fig. 1. Figure 2(a) shows the flow near the crease

in the �z cross section where � �
����������������
x2 � y2

p
. The figure

shows that the �z plane is divided into two regions, one
with two flows at each point and the other with four flows at
each point. The boundary that separates these two regions
is the caustic. The dark matter density is infinite there in the
limit of zero velocity dispersion. Figure 2(b) shows the
(a)

(b)

FIG. 2. (a) Dark matter flows near the inner caustic for the
initial velocity field ~v � �0:1 sin��̂. The inner caustic is a ring
whose cross section has three cusps, one of which points away
from the galactic center. The three cusps are clearly visible in the
figure. There are four flows everywhere inside the caustic
surface, and two everywhere outside. (b) The axially symmetric
tricusp ring in three dimensions. Note that here, and in many
subsequent figures, the caustic is stretched in the z direction for
greater clarity.
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FIG. 3. Tricusp ring for the initial velocity field of Eq. (18)
with c3 � �0:1, g1 � �0:033, g2 � 0:0267. It has reflection
symmetry about the xy, xz, and yz planes.
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caustic in three dimensions. It is indeed the tricusp ring
described in Ref. [8].

B. Perturbing the initial velocity field

1. Breaking axial symmetry

We introduce departures from axial symmetry by adding
gradient terms, proportional to g1 and g2. Figure 3 shows
the inner caustic for the initial velocity field of Eqs. (18)
with c3 � �0:1, g1 � �0:033, g2 � 0:0267. It is again a
tricusp ring but the cross section is now � dependent. The
tricusp shrinks to a point 4 times along the ring. In the
neighborhood of each such point, the catastrophe is the full
elliptic umbilic �D�4� [12].

2. A random perturbation

We added randomly chosen perturbations to the previ-
ously discussed axially symmetric initial velocity field.
The inner caustic shown in Fig. 4 is for the initial velocity
field

~v � �0:1 sin��̂� 0:01 sin�	sin�2�� � 0:5 sin�3��

� 0:25 sin�4��
�̂: (21)

Although the caustic is deformed from what it was in
FIG. 4. Tricusp ring for the initial velocity field given in
Eq. (21).
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Fig. 2, its structure remains a ring whose cross section is
everywhere a tricusp.

3. The effect of radial velocities

We added radial velocities to the previously discussed
axially symmetric initial velocity field. We find that the
radial velocity components result in only relatively small
changes in the dimensions of the tricusp ring. For the initial
velocity field

~v � c3 sin���̂� r̂� (22)

with c3 � �0:1, the tricusp ring radius was decreased by
0.28%, compared to what it was for the original initial
velocity field ( ~v � c3 sin��̂), and the transverse dimen-
sions of the tricusp ring were reduced by 11% and 14% in
the directions perpendicular and parallel to the plane of the
ring. For c3 � �0:3, the radius was reduced by 1.7% and
the transverse dimensions by 69% and 73%, respectively.

Let us explain why radial velocities on the turnaround
sphere have only a small effect on the inner caustics. The
inner caustics are determined by the distribution of dis-
tances rmin of closest approach to the galactic center of the
infalling particles. The distance of closest approach is
determined by angular momentum conservation: ‘ �
rminvmax, where ‘ is the specific angular momentum and
vmax is the speed at the moment of closest approach. The
latter is determined by energy conservation

1

2
v2

max �
1

2
�v2

� � v
2
� � v

2
r� ���R� ���rmin�: (23)

The main contribution to vmax is from the gravitational
potential energy released while the particle falls in. The
initial velocity components provide only corrections to
vmax which are second order in v�, v�, and vr. Since ‘
does not depend on vr at all, radial velocities produce only
second order corrections to the distances of closest
approach.

C. Modifying the gravitational potential

In this subsection we verify that, when the initial veloc-
ity field is dominated by a rotational component, the inner
caustic is a tricusp ring independently of the choice of
gravitational potential.

1. The NFW density profile

We carried out simulations of the infall of collisionless
particles in the gravitational potential produced by the
density profile of Navarro, Frenk, and White (NFW) [19]:

��r� �
�s

r
rs
	1� r

rs

2
: (24)

The scale length rs was chosen to be 25 kpc. �s was
determined by requiring that the rotational velocity at
galactocentric distance r � 8:5 kpc is 220 km/s. The
-7



FIG. 5 (color online). Tricusp rings caused by the same initial
velocity field but different gravitational potentials. The larger
ring was obtained using the NFW profile, Eq. (24), while the
smaller ring was obtained using the density profile of Eq. (19).

FIG. 6. Tricusp ring for the initial velocity field ~v � 0:2 sin��̂
and the nonspherically symmetric gravitational potential of
Eq. (26).
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acceleration of a particle orbiting in the potential produced
by the NFW density profile is then

~a�r� � �
�220 km=s�2x2



rx2

�
ln�1� x� � x

1�x

ln�1� x� �
x

1�x

�
r̂ (25)

where x � r=rs and x � r=rs.
Figure 5 shows the result of two simulations plotted on

the same figure. The outer caustic ring is obtained using the
density profile of Eq. (24), while the inner caustic ring is
obtained using the density profile of Eq. (19) with vrot �
220 km=s and a � 4:96 kpc. In both cases, the turnaround
radius R � 174 kpc and the initial velocity field ~v �
0:2 sin��̂. As always, the coordinates x; y; z are in units
of R. The inner caustic is a tricusp ring in each case, but
with different dimensions. The ring caustic produced by
the NFW profile has a larger radius than that produced by
the isothermal profile because the NFW gravitational po-
tential is shallower than the isothermal one at the location
of the caustic (rcaustic ’ 16 kpc). Since ‘ � rminvmax is the
same, rmin is larger in the NFW case because vmax is
smaller.

2. Breaking spherical symmetry

We also simulated the infall of collisionless particles in a
nonspherically symmetric gravitational potential. For the
latter, we chose the triaxial form:

��r� � �v2
rot ln

�
R����������������������������������������

� xa1
�2 � � ya2

�2 � � za3
�2

q
�

(26)

where a1, a2, and a3 are dimensionless numbers. Figure 6
shows the inner caustic for the case where a1 � 0:95, a2 �

1:0, and a3 � 1:05, and the initial velocity field ~v �
0:2 sin��̂. It is again a tricusp ring. Its axial symmetry is
lost due to the absence of axial symmetry in the potential.
The tricusp ring still has reflection symmetry about the xy,
yz, and xz planes. As in Fig. 3 the tricusp shrinks to a point
4 times along the ring.
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V. GENERAL STRUCTURE OF INNER CAUSTICS

In this section, we describe the structure of inner caustics
when the initial velocity field is not dominated by a rota-
tional component. In Sec. VA, we discuss the axially
symmetric case, whereas the nonaxially symmetric case
is discussed in Sec. V B. In each subsection, we simulate
first irrotational (i.e. pure gradient) initial velocity fields.
As was mentioned in Sec. III, irrotational initial velocity
fields are predicted by tidal torque theory. We will find the
inner caustics produced by irrotational velocity fields to
have a definite structure which we refer to as the ‘‘tent
caustic.’’ After describing the tent caustic, we add a rota-
tional component to the initial velocity field and see how
the tent caustic deforms into a tricusp ring.

A. The axially symmetric case

The initial velocity field of Eqs. (18) is symmetric about
the z axis when c1 � c2 � 0 and g1 � g2. Then

~v �
3

2
g1 sin�2���̂� c3 sin��̂: (27)

We first simulate the flow and obtain the inner caustic in
the irrotational case, c3 � 0. Next we see how the flow and
inner caustic are modified when c3 � 0.

1. Infall of a cold collisionless shell

Figures 7 and 8 show the infall of a cold collisionless
shell whose initial velocity field is given by Eq. (27) with
c3 � 0 and g1 � �0:0333. Since c3 � 0, each particle
stays in the plane containing the z axis and its initial
position on the turnaround sphere. Figures 7 and 8 show
the particles in the y � 0 plane. The angular momentum
vanishes at � � 0 and � � 	=2 where � is the polar
coordinate of the particle at its initial position. Hence,
the particles labeled � � 0 and � � 	=2 follow radial
orbits. The angular momentum increases in magnitude
from � � 	=2, reaches a maximum at � � 	=4, and re-
turns to zero at � � 0. The sign of the angular momentum
does not change during this interval.
-8



(a) (b) (c)

(d) (e) (f)

(g) (h)

FIG. 8. Continuation of the se-
quence of Fig. 7. The shell is
shown at times t0 � 1:265,
1.269, 1.271, 1.272, 1.273,
1.2737, 1.2742, and 1.280.

(a) (b) (c)

(d) (e) (f)

(g) (h)

FIG. 7. Infall of a cold colli-
sionless shell for the axially
symmetric initial velocity field
~v � �0:05 sin�2���̂. The shell
is shown in the xz cross section
at times t0 � 1:132, 1.235, 1.241,
1.251, 1.256, 1.258, 1.260, and
1.261. The further time evolution
is shown in Fig. 8. The continu-
ous infall of many such shells
produces the caustic shown in
Fig. 10(a).
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The shell starts out as shown in Fig. 7(a). As the shell
falls in, the particles at � � 0; 	=2 move towards the poles.
These particles feel an angular momentum barrier and fall
in more slowly than the particles at � � 0. This results in
the formation of a loop in Fig. 7(c). The formation of the
loop implies a cusp caustic on the z axis. The particles
labeled � � 0 and � � 	 have crossed the z � 0 plane and
the particles labeled � � 	=2 have crossed the x � 0 plane
in Fig. 7(g). The shell then takes the form shown in
Fig. 7(h). The further evolution is shown in Fig. 8. The
loop that is present near the z � 0 plane in Fig. 8(b)
disappears through the sequence of Figs. 8(c)–8(g). The
disappearance of the loop implies the existence of a cusp
caustic in the z � 0 plane as well. In Fig. 8(h) the shell has
regained an approximately spherical form and is expanding
to its original size.

For larger values of jg1j the early evolution is qualita-
tively the same as in Fig. 7, but the late evolution is
qualitatively different from Fig. 8. Figure 9 shows the
(a) (b

(d) (e

(g)

FIG. 9. Same as Fig. 8 but for the initial velocity field ~v � �0:1
1.285, 1.287, 1.2875, 1.2880, and 1.329. The earlier evolution is qu
shells with this initial velocity field produces the caustic shown in F
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late evolution of a cold collisionless shell with the initial
velocity field of Eq. (27) with c3 � 0 and g1 � �0:0667.
The loop which is present near the z � 0 plane in Fig. 9(b)
disappears by a more complicated sequence [Figs. 9(c)–
9(g)] than was the case in Fig. 8. In Fig. 9 the particles near
� � 	=2 cross the z � 0 plane before the sphere turns
itself inside out. This crossover produces additional struc-
ture, and a more complicated caustic, than for the g1 �
�0:0333 case. The critical value of jg1j, below which the
qualitative evolution is that of Fig. 8, and above which the
qualitative evolution is that of Fig. 9, g1� ’ 0:05.

2. Caustic structure

The inner caustic is a surface of revolution whose cross
section is shown in Fig. 10(a) for the case �c3; g1� �
�0;�0:0333� and in Fig. 11(a) for �c3; g1� �
�0;�0:0667�. For the sake of brevity, we call this structure
a ‘‘tent caustic.’’ On the z axis, there is a caustic line which
) (c)

) (f)

(h)

sin�2���̂. The shell is shown at times t0 � 1:273, 1.280, 1.283,
alitatively the same as in Fig. 7. The continuous infall of many
ig. 11(a).
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(a) Caustic structure.

(b) Dark matter flows near the butterfly caustic.

FIG. 11. Cross section of the inner caustic produced by the
irrotational axially symmetric velocity field ~v � �0:1 sin2��̂.

(a) Caustic structure.

(b) Dark matter flows.

FIG. 10. Cross section of the inner caustic produced by the
irrotational axially symmetric velocity field ~v � �0:05 sin2��̂.
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we call the ‘‘tent pole.’’ The remainder of the caustic is
called the ‘‘tent roof.’’ As was mentioned in Sec. II, caustic
lines are not generic. The tent pole is a line in Figs. 10(a)
and 11(a) only because the initial velocity field is axially
symmetric and irrotational. We will see below that when
axial symmetry is broken or when a rotational component
is added, the tent pole becomes a caustic tube of a specific
sort.

For jg1j< g1� there is a cusp in the tent roof where it
meets the z � 0 plane and two cusps where the tent roof
meets the tent pole, one at the top and one at the bottom.
For g1 <�g1� the cusp in the z � 0 plane is replaced by a
butterfly (A5) catastrophe [12]. The butterfly has three
cusps and three points of self-intersection. The cusp in
the z � 0 plane transforms into a butterfly by increasing
jg1j. The latter parameter may therefore be called the
‘‘butterfly factor’’ [20].
023510
If g1 is chosen positive instead of negative, the behavior
at the poles and the equator is reversed [see Eq. (27)] and
we have cusps on the x axis and either cusp or butterfly
catastrophes on the z axis, depending on the magnitude of
g1.

Figure 10(b) shows the dark matter flows in the vicinity
of the caustic for jg1j< g1�. There are four flows every-
where inside the caustic tent and two flows everywhere
outside. Figure 11(b) shows the dark matter flows in the
vicinity of the butterfly caustic, for g1 <�g1�. Figure 12
shows the number of flows in each region of the butterfly
caustic.

3. Adding a rotational component

Here we show, in the axially symmetric case, the effect
of adding a rotational component to the initial velocity
field. On the basis of the discussion in Sec. IV we expect
-11



(a)

(c)

FIG. 13. Cross sections of the inner caustics produced by the axial
and (a) c1 � 0, (b) c2 � 0:01, (c) c3 � 0:05, (d) c3 � 0:1. Increasin
tent caustic (a) to transform into a tricusp ring (d).

FIG. 12. The butterfly catastrophe has three cusps, and three
points where the caustic intersects itself. The number of flows in
each region is indicated.
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the tent caustic to transform into a tricusp ring. Figure 13
shows the transformation. We start with an irrotational
velocity field �c3 � 0� in 13(a) and increase c3 until the
rotational component dominates the velocity field, in
13(d). The tent pole on the z axis, which is a line caustic
in the irrotational case, changes to a tube of circular cross
section. The radius of this tube increases until the tent
caustic becomes indistinguishable from a tricusp ring.

B. Nonaxially symmetric case

We start off by discussing the flows and caustics result-
ing from irrotational initial velocity fields. With ~c � 0,
Eqs. (18) become

~v � 
 sin� sin�2���̂� sin�2���
sin2�� g��̂; (28)

where 
 � 1
2 �g2 � g1� and g � g1 �

1
2g2. 
 is a measure

of ẑ axial symmetry breaking in the irrotational case. We
first let 
� g. Next, we explore all of �g1; g2� parameter
space. Finally, we add a rotational component by letting
c3 � 0.
(b)

(d)

ly symmetric initial velocity field of Eq. (27) with g1 � �0:033,
g the rotational component of the initial velocity field causes the
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1. Irrotational, nonaxially symmetric perturbations

We saw in Sec. VA that there is a caustic line on the z
axis (the tent pole) when the initial velocity field is irrota-
tional and axially symmetric. Figure 14(a) shows the tra-
jectories of the particles in the z � 0 plane for such a case.
The orbits are radial. Indeed all particles have zero angular
momentum with respect to the z axis when the initial
velocity field is irrotational and axially symmetric.
Because all trajectories intersect the z axis, there is a pile
up of particles on that axis and hence a caustic line.

Figure 14(b) shows the trajectories of the particles in the
z � 0 plane for the initial velocity field of Eq. (28) with

 � 0:01 and g � �0:05. The particles do have angular
momentum with respect to the z axis now. The caustic line
on the z axis spreads onto a tube whose cross section is the
diamond-shaped envelope of particle trajectories shown in
Fig. 14(b). That envelope has four cusps. The flows and
caustic have reflection symmetry about the xy, xz, and yz
(a)

(b)

FIG. 14. Dark matter flows in the z � 0 plane for the initial
velocity field of Eq. (28) when (a) 
 � 0, g � �0:05, and (b)

 � 0:01, g � �0:05. In (a) the particles move on radial orbits.
In (b) the particles have angular momentum about the z axis.
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planes because the initial velocity field has those symme-
tries. Figure 14(b) shows four flows inside the diamond-
shaped caustic and two flows outside. The infall of dark
matter particles from regions above and below the z � 0
plane will add two more flows at each point, which are not
shown in Fig. 14 for clarity.

Figure 15 shows the inner caustic in three dimensions for
the initial velocity field of Eq. (28) with 
 � 0:005 and
g � �0:05. The tent pole has spread onto a tube with a
diamond-shaped cross section, as in Fig. 14(b).
Figure 15(b) shows a succession of constant z sections.
The (topological) circles, which are sections of the tent
roof, and the diamond structure can be seen clearly. Near
the z � 0 plane, there are six flows inside the diamond,
four flows in the other regions inside the caustic tent, and
two outside the tent. Figure 16 shows y � 0 and x � 0
sections of the tent caustic.
(a)

(b)

FIG. 15. The inner caustic for the initial velocity field of
Eq. (28) with 
 � 0:005, g � �0:05: (a) the tent caustic in
three dimensions; (b) a succession of constant z sections over the
range 0 � z � 0:01.
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(a) (b)

FIG. 16. The tent caustic of Fig. 15 in (a) the y � 0 cross
section and (b) the x � 0 cross section. The manner in which the
tent pole is connected to the tent roof is described in detail in
Fig. 17.

(a) (b)

(e) (f)

(i)

FIG. 17. (a)–(d) Constant z sections of the tent caustic of Fig. 15 in
the pole is entirely inside the roof. In (b) the cusps of the pole which
parts of the pole and the roof near the y � 0 plane traverse each oth
side and one on the x < 0 side. (e)–(h) Constant z sections of the tent
detail. (i) the hyperbolic umbilic at z > 0, x < 0 in three dimension

ARAVIND NATARAJAN AND PIERRE SIKIVIE PHYSICAL REVIEW D 73, 023510 (2006)
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2. A hyperbolic umbilic catastrophe

Let us look more closely at the two regions (top and
bottom) in Fig. 16 where the tent pole reaches and traverses
the tent roof. Figures 17(a)–17(d) show z � constant sec-
tions of the inner caustic in such a region. As jzj is
increased, the two cusps of the pole which are in the x �
0 plane simply pierce through the roof, whereas the parts of
the pole near the y � 0 plane traverse the roof by forming
with the latter two hyperbolic umbilic (D�4) catastrophes
[12], one on the positive x side and one on the negative x
side. The sequence through which this happens is shown in
greater detail in Figs. 17(e)–17(h) for the hyperbolic um-
bilic on the positive x side. The arc (section of the tent
roof) and the cusp (section of the tent pole) approach each
other until they overlap [Fig. 17(g)], forming a corner.
After they have crossed, the roof section is cuspy whereas
(c) (d)

(g) (h)

the region where the tent pole connects with the tent roof. In (a)
are in the x � 0 plane have pierced the roof. From (b) to (d) the

er by forming hyperbolic umbilic catastrophes, one on the x > 0
caustic near the hyperbolic umbilic on the x > 0 side, for greater
s.
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the pole section is smooth. The cusp is transferred from the
tent pole to the tent roof as the two surfaces pass through
one another. This behavior is characteristic of the hyper-
bolic umbilic catastrophe. There are four hyperbolic um-
FIG. 18 (color online). The first, second, and third columns show
inner caustics produced by the irrotational initial velocity field
��0:05; 0�, ��0:06; 0:02�, and ��0:067; 0:033� in five rows from to
a tent symmetric about the z axis (first row) to a tent symmetric ab
becomes the pole of the caustic in the last row and vice versa.
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bilics embedded in the caustic tent structure, two (x > 0
and x < 0) at the top (z > 0) and two at the bottom (z < 0).
The hyperbolic umbilic at z > 0 and x < 0 is shown in
three dimensions in Fig. 17(i).
, respectively, the z � 0, y � 0, and x � 0 cross sections of the
of Eq. (28) for �g1; g2� � ��0:033;�0:033�, ��0:04;�0:02�,
p to bottom. During this sequence, the caustic transforms from
out the x axis (last row). The roof of the caustic in the first row
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(a) (b)

(c) (d)

(e) (f)

FIG. 19. z � 0 sections of the inner caustics produced by the
initial velocity field of Eqs. (18) for c1 � c2 � 0, 
 � 0:01, g �
�0:05, and increasing values of c3: (a) c3 � 0, (b) c3 � 0:005,
(c) c3 � 0:01, (d) c3 � 0:015, (e) c3 � 0:025, (f) c3 � 0:1.
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Let us mention that the particles forming the pole and
roof where they intersect in the x � 0 plane originate from
different patches of the initial turnaround sphere whereas
the particles forming the pole and roof near a hyperbolic
umbilic originate from the same patch of the initial turn-
around sphere.

3. The �g1; g2� landscape

Here we describe the inner caustic in the irrotational
case for g1 and g2 far from those values where the flow is
axially symmetric. Recall that the flow is symmetric about
the z axis when g1 � g2 (g3 � �2g1), about the y axis
when g2 � �2g1 (g3 � g1), and about the x axis when
g2 � �

1
2g1 (g3 � g2). In terms of 
 and g, these condi-

tions for axial symmetry are 
 � 0, g � 0, and 
 � �g,
respectively.

The first, second, and third column of Fig. 18 show,
respectively, the z � 0, y � 0, and x � 0 sections of the
inner caustic produced by the initial velocity field of
Eq. (28) for various values of �g1; g2�. The ratio g2=g1

decreases uniformly from 1 (top row) to �1=2 (bottom
row). Note that the third column describes a sequence
which is that of the first column in reverse, and that the
first half of the sequence in the second column is the
reverse of the sequence in its second half, with x and z
axes interchanged.

In the first row, the caustic is axially symmetric about the
z axis. It is as described earlier in Fig. 10. In the second
row, the axial symmetry is broken and the tent pole has
acquired a diamond-shaped cross section. The caustic is
now as described in Figs. 15–17. In the third row, the cusps
on the tent pole that lie in the x � 0 plane have pierced the
tent roof all the way from top to bottom, and the hyperbolic
umbilics in the y � 0 plane have moved towards the z � 0
plane. In the fourth row, the hyperbolic umbilics have
almost reached the z � 0 plane. What was the tent roof
in the first row is now stretched along the x axis, and
becomes the tent pole in the fifth row when the inner
caustic is axially symmetric about the x axis. In the process
described by Fig. 18, in which the inner caustic metamor-
phoses from a tent symmetric about the z axis to a tent
symmetric about the x axis, the tent roof smoothly deforms
into the tent pole and vice versa.

The plots of Fig. 18 are reminiscent of caustics seen in
gravitational lensing theory [21–23], and ship stability
analysis [24,25].

4. Adding a rotational component

Here we add a rotational component (c3 � 0) to the
initial velocity field of Eq. (28) to see the metamorphosis
of the inner caustic from tent to tricusp ring. Figure 19
shows the z � 0 cross sections of the inner caustic during
such a transition. In Fig. 19(a), the initial velocity field is
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irrotational and we see a circle and diamond, as before. In
Fig. 19(b), the diamond is skewed because of the rotation
in the z � 0 plane introduced by c3 � 0. Figure 19(c)
shows the case c3 � 
. As c3 is increased further, the
diamond transforms into two swallowtail �A4� catastrophes
[12] joined back to back [Fig. 19(d)]. There are two flows
in the central region, six flows in the cusped region of each
swallowtail, four in the other regions inside the circle, and
two outside the circle. Finally, the swallowtails pinch off to
form the inner circle of the z � 0 section of the tricusp
ring. Figure 20 shows the transition in three dimensions.
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(a) (b)

(c) (d)

FIG. 20. Inner caustics produced by the initial velocity field of Eqs. (18) for 
 � 0:01, g � �0:05, c1 � c2 � 0, and increasing
values of c3: (a) c3 � 0, (b) c3 � 0:015, (c) c3 � 0:03, (d) c3 � 0:12.
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VI. CONCLUSIONS

In Sec. II, we gave a mathematical proof of the statement
that a cold flow of collisionless particles from all directions
in and out of a region necessarily produces a caustic. We
call this caustic the ‘‘inner caustic’’ of the in and out flow.
The main purpose of our paper was to determine the
catastrophe structure of the inner caustics formed by cold
dark matter particles falling in and out of a galactic gravi-
tational potential well.

The structure of the inner caustic depends for the most
part on the angular momentum distribution of the particles
falling in. It had been shown previously by analytical
methods [8] that the inner caustic is a tricusp ring when
the velocity distribution of the infalling particles is domi-
nated by net overall rotation. However, we show in Sec. III
that the leading theory for the angular momentum of
galaxies, namely, tidal torque theory, predicts that the
velocity field is irrotational � ~r� ~v � 0� to all orders of
perturbation theory, i.e. to all orders in an expansion in
powers of the size of density perturbations. So, tidal torque
theory states not only that the initial velocity field of the
infalling particles is not dominated by net overall rotation,
it states that the initial velocity field is exactly irrotational.
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So the question was, what is the structure of the inner
caustic when the initial velocity field is irrotational? Or
more generally, what is that structure when the initial
velocity field is not dominated by net overall rotation?
We addressed this issue by simulating the flow of cold
collisionless particles falling in and out of a fixed gravita-
tional potential. In principle, we can do this for any initial
velocity field. However, we restricted ourselves to initial
velocity fields of the form ~v � M~x where ~x is the initial
position and M is a 3� 3 real traceless matrix. As far as
uncovering the catastrophe structure of inner caustics is
concerned, we expect this to be a sufficiently broad set of
initial velocity fields. Adding higher order terms to the
expansion of ~v in powers of ~x is expected to merely deform
the inner caustics obtained when keeping linear terms only.
M can be written in the form of Eq. (17) which depends on
five parameters: ~c � �c1; c2; c3�, g1, and g2. The first three
describe net rotation with angular velocity ~c. The last two
describe irrotational flow.

In Sec. IV, we simulated flows which are dominated by
net rotation and confirmed that the inner caustic is a tricusp
ring in that case. We show that the tricusp ring is stable
under perturbations both in the initial velocity field and in
the gravitational potential. This stability is not a surprise
-17
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since it is known that the structure of nondegenerate cata-
strophes is stable under perturbations [26]. When the initial
velocity field and/or the gravitational potential are not
axially symmetric, the dimensions of the tricusp vary along
the ring. In the neighborhood of a point where the tricusp
dimensions have shrunk to zero, the catastrophe structure
is the full elliptic umbilic.

In Sec. V, we simulated flows which are not dominated
by a rotational component. We started off simulating flows
which are both irrotational ( ~c � 0) and axially symmetric
(g1 � g2). For such flows the inner caustic is shown in
Fig. 10 for jg1j< g1� ’ 0:05. We call this structure a ‘‘tent
caustic.’’ It has a caustic line on the axis of symmetry,
which we call the ‘‘tent pole,’’ connected to a caustic
surface which we call the ‘‘tent roof.’’ When g1 <�g1�,
the inner caustic is the same as for jg1j< g1� except the
cusp in the equatorial plane is replaced by a butterfly
caustic. When g1 > g1�, the cusps on the symmetry axis
are replaced by butterfly caustics.

When g2 is different from but close to g1, axial symme-
try is slightly broken. In that case the caustic pole spreads
onto a tube whose cross section has four cusps forming a
diamond shape. See Figs. 14 and 15. In a region where the
tent pole connects with the tent roof, two hyperbolic um-
bilic catastrophes appear, as described in Fig. 17. Figure 18
shows what happens when g2 is very different from g1. The
inner caustic metamorphoses from a tent which is sym-
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metric about the z axis when g2 � g1 to a tent symmetric
about the x axis when g2 � �

1
2g1.

Finally, we investigated the smooth transformation of
the tent caustic into a tricusp ring when a rotational com-
ponent is added ( ~c � 0). In the axially symmetric case (see
Fig. 13) the tent pole spreads onto a tube of circular cross
section. The radius of this tube becomes the inner radius of
the tricusp ring. So, in the axially symmetric case, we may
think of the tent caustic as a tricusp ring whose inner radius
has shrunk to zero. In the nonaxially symmetric case, the
metamorphosis of the tent caustic to tricusp ring is shown
in Figs. 19 and 20. The diamond-shaped cross section of
the tent pole transforms to a (topological) circle by passing
through an intermediate stage where it consists of two
swallowtail catastrophes back to back.
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