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Dimensionless constants, cosmology, and other dark matters
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We identify 31 dimensionless physical constants required by particle physics and cosmology, and
emphasize that both microphysical constraints and selection effects might help elucidate their origin.
Axion cosmology provides an instructive example, in which these two kinds of arguments must both be
taken into account, and work well together. If a Peccei-Quinn phase transition occurred before or during
inflation, then the axion dark matter density will vary from place to place with a probability distribution.
By calculating the net dark matter halo formation rate as a function of all four relevant cosmological
parameters and assessing other constraints, we find that this probability distribution, computed at stable
solar systems, is arguably peaked near the observed dark matter density. If cosmologically relevant weakly
interacting massive particle (WIMP) dark matter is discovered, then one naturally expects comparable
densities of WIMPs and axions, making it important to follow up with precision measurements to
determine whether WIMPs account for all of the dark matter or merely part of it.
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I. INTRODUCTION

Although the standard models of particle physics and
cosmology have proven spectacularly successful, they to-
gether require 31 free parameters (Table I). Why we ob-
serve them to have these particular values is an outstanding
question in physics.

A. Dimensionless numbers in physics

This parameter problem can be viewed as the logical
continuation of the age-old reductionist quest for simplic-
ity. Realization that the material world of chemistry and
biology is built up from a modest number of elements
entailed a dramatic simplification. But the observation of
nearly 100 chemical elements, more isotopes, and count-
less excited states eroded this simplicity.

The modern SU�3� � SU�2� � U�1� standard model of
particle physics provides a much more sophisticated re-
duction. Key properties (spin, electroweak and color
charges) of quarks, leptons and gauge bosons appear as
labels describing representations of space-time and inter-
nal symmetry groups. The remaining complexity is en-
coded in 26 dimensionless numbers in the Lagrangian
(Table I).1 All current cosmological observations can be
fit with 5 additional parameters, though it is widely antici-
pated that up to 6 more may be needed to accommodate
more refined observations (Table I).

Table II expresses some common quantities in terms of
these 31 fundamental ones2, with � denoting cruder ap-
nd � are defined so that the Higgs potential is
j2 � �j�j4.

ix entries are mere order-of-magnitude estimates
renormalization group approximation for � in
fermions with mass below mZ should be included.
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proximations than � . Many other quantities commonly
referred to as parameters or constants (see Table III for a
sample) are not stable characterizations of properties of the
physical world, since they vary markedly with time [7]. For
instance, the baryon density parameter �b, the baryon
density �b, the Hubble parameter h and the cosmic micro-
wave background temperature T all decrease toward zero
as the Universe expands and are, de facto, alternative time
variables.

Our particular choice of parameters in Table I is a
compromise balancing simplicity of expressing the funda-
mental laws (i.e., the Lagrangian of the standard model and
the equations for cosmological evolution) and ease of
measurement. All parameters except �2, ��, �b, �c and
�� are intrinsically dimensionless, and we make these final
five dimensionless by using Planck units (for alternatives,
see [8,9]). Throughout this paper, we use ‘‘extended’’
Planck units defined by c � G � @ � jqej � kB � 1. We
use @ � 1 rather than h � 1 to minimize the number of
�2�� factors elsewhere.

B. The origin of the dimensionless numbers

So why do we observe these 31 parameters to have the
particular values listed in Table I? Interest in that question
has grown with the gradual realization that some of these
parameters appear fine-tuned for life, in the sense that
small relative changes to their values would result in
dramatic qualitative changes that could preclude intelligent
life, and hence the very possibility of reflective observa-
tion. As discussed extensively elsewhere [10–23], there
are four common responses to this realization:
(1) F
-1
luke—Any apparent fine-tuning is a fluke and is
best ignored.
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TABLE I. Input physical parameters. Those for particle physics (the first 26) and �� appear
explicitly in the Lagrangian, whereas the cosmological ones (the last 11) are inserted as initial
conditions. The last six are currently optional, but may become required to fit improved
measurements. The values are computed from the compilations in [1–3]. (Throughout this
paper, we use extended Planck units c � @ � G � kb � jqej � 1. For reference, this common
convention gives the units shown in the bottom portion of this table.)

Parameter Meaning Measured value

g Weak coupling constant at mZ 0:6520� 0:0001
�W Weinberg angle 0:482 90� 0:000 05
gs Strong coupling constant at mZ 1:221� 0:022
�2 Quadratic Higgs coefficient �	 10	33

� Quartic Higgs coefficient �1?
Ge Electron Yukawa coupling 2:94� 10	6

G� Muon Yukawa coupling 0:000 607
G	 Tauon Yukawa coupling 0:010 215 623 3
Gu Up quark Yukawa coupling 0:000 016� 0:000 007
Gd Down quark Yukawa coupling 0:000 03� 0:000 02
Gc Charm quark Yukawa coupling 0:0072� 0:0006
Gs Strange quark Yukawa coupling 0:0006� 0:0002
Gt Top quark Yukawa coupling 1:002� 0:029
Gb Bottom quark Yukawa coupling 0:026� 0:003
sin�12 Quark CKM matrix angle 0:2243� 0:0016
sin�23 Quark CKM matrix angle 0:0413� 0:0015
sin�13 Quark CKM matrix angle 0:0037� 0:0005

13 Quark CKM matrix phase 1:05� 0:24
�qcd CP-violating QCD vacuum phase <10	9

G�e Electron neutrino Yukawa coupling <1:7� 10	11

G�� Muon neutrino Yukawa coupling <1:1� 10	6

G�	 Tau neutrino Yukawa coupling <0:10
sin�012 Neutrino MNS matrix angle 0:55� 0:06
sin2�023 Neutrino MNS matrix angle 
 0:94
sin�013 Neutrino MNS matrix angle � 0:22

013 Neutrino MNS matrix phase ?

�� Dark energy density �1:25� 0:25� � 10	123

�b Baryon mass per photon �b=n� �0:50� 0:03� � 10	28

�c Cold dark matter mass per photon �c=n� �2:5� 0:2� � 10	28

�� Neutrino mass per photon ��=n� �
3

11

P
m�i <0:9� 10	28

Q Scalar fluctuation amplitude 
H on horizon �2:0� 0:2� � 10	5

ns Scalar spectral index 0:98� 0:02
�n Running of spectral index dns=d lnk j�j & 0:01
r Tensor-to-scalar ratio �Qt=Q�

2 & 0:36
nt Tensor spectral index Unconstrained
w Dark energy equation of state 	1� 0:1
� Dimensionless spatial curvature k=a2T2 [4] j�j & 10	60

Constant Definition Value

Planck length �@G=c3�1=2 1:616 05� 10	35 m
Planck time �@G=c5�1=2 5:390 56� 10	44 s
Planck mass �@c=G�1=2 2:176 71� 10	8 kg
Planck temperature �@c5=G�1=2=k 1:416 96� 1032 K
Planck energy �@c5=G�1=2 1:221 05� 1019 GeV
Planck density c5=@G2 5:157 49� 1096 kg=m3

Unit charge jqej 1:602 18� 10	19 C
Unit voltage �@c5=G�1=2=jqej 1:221 05� 1028 V
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TABLE II. Derived physical parameters, in extended Planck units c � @ � G � kb � jqej � 1.

Parameter Meaning Definition Measured value

e Electromagnetic coupling constant at mZ g sin�W � 0:313 429� 0:000 022
��mz� Electromagnetic interaction strength at mZ e2=4� � g2sin2�W=4� � 1=�127:918� 0:018�
�w Weak interaction strength at mZ g2=4� � 0:033 83� 0:000 01
�s Strong interaction strength at mZ g2

s=4� � 0:1186� 0:0042
�g Gravitational coupling constant Gm2

p=@c � m2
p � 5:9046� 10	39

� Electromagnetic interaction strength at 0 ����mz�
	1 � 2

9� ln m20
z

m4
um

4
cmdmsmbm

3
em

3
�m

3
	
	1 1=137:035 999 11�46�

mW W� mass vg=2 �80:425� 0:038� GeV
mZ Z mass vg=2 cos�W �91:1876� 0:0021� GeV
GF Fermi constant 1=

���
2
p
v2 � 1:17� 10	5 GeV	2

mH Higgs mass
����������������
	�2=2

p
100–250 GeV?

v Higgs vacuum expectation value
����������������
	�2=�

p
�246:7� 0:2� GeV

me Electron mass vGe=
���
2
p

�510 998:92� 0:04� eV
m� Muon mass vG�=

���
2
p

�105 658 369� 9� eV
m	 Tauon mass vG	=

���
2
p

�1776:99� 0:29� MeV
mu Up quark mass vGu=

���
2
p

�1:5	 4� MeV
md Down quark mass vGg=

���
2
p

�4	 8� MeV
mc Charm quark mass vGc=

���
2
p

�1:15	 1:35� GeV
ms Strange quark mass vGs=

���
2
p

�80	 130� MeV
mt Top quark mass vGt=

���
2
p

�174:3� 5:1� GeV
mb Bottom quark mass vGb=

���
2
p

�4:1	 4:9� GeV
m�e Electron neutrino mass vG�e=

���
2
p

<3 eV
m�� Muon neutrino mass vG��=

���
2
p

<0:19 MeV
m�	 Tau neutrino mass vG�	=

���
2
p

<18:2 GeV

mp Proton mass 2mu �md � QCD�QED �938:272 03� 0:000 08� MeV
mn Neutron mass 2md �mu � QCD�QED �939:56536� 0:00008�MeV

 Electron/proton mass ratio me=mp 1=1836:15
n Neutron/proton relative mass difference mn=mp 	 1 1=725:53

Ry Hydrogen binding energy (Rydberg) Ry � mec
2�2=2 � �2mp=2 � 13:6057 eV

aB Bohr radius aB � @=cme� � ��mp�
	1 � 5:291 77� 10	11 m

�t Thomson cross section 8�
3 �

@�
mec
�2 � 8�

3 ��=mp�2 � 6:652 46� 10	29 m2

kc Coulomb’s constant 1=4��0 � @c�=q2
e � � 1=137:035 999 11�46�

� Baryon/photon ratio nb=n� � �b=mp �6:3� 0:3� � 10	10

� Matter per photon �b � �c � �� � �m=n� � mp��1� Rc � R�� �3:3� 0:3� � 10	28 � 4 eV
Rc CDM/baryon density ratio �c=�b � �c=�b � !cdm=!b � 6
R� Neutrino/baryon density ratio ��=�b �

f�!m

!b
� 3

11
M�
�mp

& 1
M� Sum of neutrino masses M� � 3��=n� � �11=3�mp�R�

f� Neutrino density fraction f� � ��=�m � �1�
11��b��d�

3M�
	1 <0:1

Teq Matter-radiation equality temperature 30��3�
�4 �1� 21

8 �
4
11�

4=3	1� � 0:220189� � 9:4� 103 K

�eq
m Matter density at equality �m�Teq� �

765314352000��3�4

�242�21�222=3�3�14 �4 � 0:00260042�4 � 1:1� 10	16 kg=m3

A� Dark energy domination epoch x1=3
eq � ��

eq
m =���

1=3 � 0:137514�4=3�	1=3
� 3215� 639

mgalaxy Mass of galaxy [5] ��5	1=2m	3
p �1041 kg

m? Mass of star [5] �m	2
p �1030 kg

mplanet Mass of habitable planet [5] �10	4�3=2m	2
p �1024 kg

masteroid Maximum mass of asteroid [5] ��3=23=2m	1=2
p �1022 kg

mperson Maximum mass of person [5] �102�3=4m	1=2
p �102 kg

�wimp WIMP dark matter density per photon �105v2=g2 � 	105�2=�g2 �3� 10	28?
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TABLE III. Derived physical variables, in extended Planck units c � @ � G � kb � jqej � 1.

Parameter Meaning Definition Measured value

T CMB temperature (Acts as a time variable) �2:726� 0:005� K (today)
n� Photon number density 2��3�

�2 T3,��3� � 1:202 06 0:243 588T3

n� Neutrino number density 9
11 n� �

18��3�
11�2 T3 0:199 299T3

�� Photon density �2

15 T
4 0:657 974T4

�b Baryon density �bn� � mp�n� �
2��3�
�2 �bT

3 0:243 588�bT
3

�c CDM density �cn� � Rc�b �
2��3�
�2 �cT

3 0:243 588�cT
3

�� Neutrino density (massive) ��n� � R��b �
2��3�
�2 ��T

3 � n�M�
3 � 3

11 n�M� 0:243 588��T
3

��� Neutrino density (massless) 21
8 �

4
11�

4=3�� � 0:681 322�� 0:448 292T4

�m Total matter density �b � �c � �� � n�� �
2��3�
�2 ��b � �c � ���T

3 � !�x 0:243 588�T3

�k Curvature density 	 3k
8�a2 � 	

3
8� �T

2 	0:119 366�T2

A Expansion factor since equality a=aeq � A�x
1=3 � 0:137514�4=3�	1=3

m � 3:5� 103 today
x Dark energy/matter ratio ��=�m � �A=A��

3 � �2

2��3�
��

�T3 � 7=3 today
H� Hubble reference rate (mere unit) H=h � 100 kms	1 Mpc	1 �9:7779 Gyr�	1

�h Hubble reference density (mere unit) 3H2
�=8�G � 3�100 kms	1 Mpc	1�2=8�G 1:878 82� 10	26 kg=m3

!b Baryon density parameter �bh
2 � �b=�h � �bn�=�h � �2��3�=�

2��bT
3 0:023� 0:001 today

!cdm Cold dark matter density parameter �cdmh
2 � �c=�h � �cn�=�h � �2��3�=�

2�h��cT
3 0:12� 0:01 today

!� Neutrino density parameter ��h
2 � ��=�h � ��n�=�h � �2��3�=�

2�h���T
3 <0:01 today

!d Dark matter density parameter �dh
2 � !cdm �!� � �2��3�=�

2�h���b � �c�T
3 � 0:023� 0:001 today

!m Matter density parameter �mh
2 � !b �!cdm �!� � �2��3�=�

2�h���b � �c � ���T
3 0:14� 0:01 today

!� Dark energy density parameter ��h
2 � ��=�h 0:34� 0:09

!� Photon density parameter ��=�h � ��
2=15�h�T

4 � 1:806 18� 10122T4 0:000 024 7� 0:000 000 4 today
H Hubble parameter �8�G3 ��� � �m � �� � �k�

1=2 � �10 Gyr�	1 today
h Dimensionless Hubble parameter H=H� � 0:7 today
t Age of Universe

R
a
0 H�a

0�	1d lna0 � 14 Gyr today
tRD Age during radiation era 3

4�

��������
3=2

p
�1� 21

8 �
4

11�
4=3	1=2T	2 � 0:225 492=T2

tMD Age during matter era � 1=�12��3�1=2�1=2T3=2 � 0:2633�	1=2T	3=2

t�D Age during vacuum era � 3
8���

ln�
1=3T
�1=3

��� Vacuum density ratio !�=h
2 � ��=h

2�h � 0:7 today
�m Matter density ratio !m=h

2 (analogously, �b � !b=h
2, �d � !d=h

2, etc.). � 0:3 today
�tot Spatial curvature parameter 1� ��T=H�2 1:01� 0:02 today
As Scalar power normalization ��3=2���T=1�K�Q2=800 � 0:8 today

TEGMARK, AGUIRRE, REES, AND WILCZEK PHYSICAL REVIEW D 73, 023505 (2006)
(2) M
ultiverse—These parameters vary across an en-
semble of physically realized and (for all practical
purposes) parallel universes, and we find ourselves
in one where life is possible.
(3) D
esign—Our universe is somehow created or simu-
lated with parameters chosen to allow life.
(4) F
ecundity—There is no fine-tuning, because intelli-
gent life of some form will emerge under extremely
varied circumstances.
Options 1, 2, and 4 tend to be preferred by physicists, with
recent developments in inflation and high-energy theory
giving new popularity to option 2.

Like relativity theory and quantum mechanics, the the-
ory of inflation has not only solved old problems, but has
also widened our intellectual horizons, arguably deepening
our understanding of the nature of physical reality. First of
all, inflation is generically eternal [24–30], so that even
though inflation has ended in the part of space that we
inhabit, it still continues elsewhere and will ultimately
produce an infinite number of post-inflationary volumes
as large as ours, forming a cosmic fractal of sorts. Second,
these regions may have different physical properties. This
023505
can occur in fairly conventional contexts involving sym-
metry breaking, without invoking more exotic aspects of
eternal inflation. (Which, for example, might also allow
different values of the axion dark matter density parameter
�c [31–33].) More dramatically, a common feature of
much string theory related model building is that there is
a ‘‘landscape’’ of solutions, corresponding to space-time
configurations involving different values of both seemingly
continuous parameters (Table I) and discrete parameters
(specifying the space-time dimensionality, the gauge
group/particle content, etc.), some or all of which may
vary across the landscape [34–38].

If correct, eternal inflation might transform that poten-
tiality into reality, actually creating regions of space real-
izing each of these possibilities. Generically each region
where inflation has ended is infinite in size, therefore
potentially fooling its inhabitants into mistaking initial
conditions for fundamental laws. Inflation may thus indi-
cate the same sort of shift in the borderline between
fundamental and effective laws of physics (at the expense
of the former) previously seen in theoretical physics, as
illustrated in Fig. 1.
-4
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FIG. 1 (color online). The shifting boundary (horizontal lines)
between fundamental laws and environmental laws/effective
laws/initial conditions. Whereas Ptolemy and others sought to
explain roughly spherical planets and circular orbits as funda-
mental laws of nature, Kepler and Newton reclassified such
properties as initial conditions which we now understand as a
combination of dynamical mechanisms and selection effects.
Classical physics removed from the fundamental law category
also the initial conditions for the electromagnetic field and all
other forms of matter and energy (responsible for almost all the
complexity we observe), leaving the fundamental laws quite
simple. A prospective theory of everything (TOE) incorporating
a landscape of solutions populated by inflation reclassifies im-
portant aspects of the remaining ‘‘laws’’ as initial conditions.
Indeed, those laws can differ from one post-inflationary region to
another, and since inflation generically makes each such region
enormous, its inhabitants might be fooled into misinterpreting
regularities holding within their particular region as Universal
(that is, multiversal) laws. Finally, if the level IV multiverse of
all mathematical structures [124] exists, then even the ‘‘theory of
everything’’ equations that physicists are seeking are merely
local bylaws in Rees’s terminology [12], that vary across a wider
ensemble. Despite such retreats from ab initio explanations of
certain phenomena, physics has progressed enormously in ex-
planatory power.
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There is quite a lot that physicists might once have
hoped to derive from fundamental principles, for which
that hope now seems naive and misguided [39]. Yet it is
important to bear in mind that these philosophical retreats
have gone hand in hand with massive progress in predictive
power. While Kepler and Newton discredited ab initio
attempts to explain planetary orbits and shapes with circles
and spheres being ‘‘perfect shapes,’’ Kepler enabled pre-
cise predictions of planetary positions, and Newton pro-
vided a dynamical explanation of the approximate
sphericity of planets and stars. While classical physics
023505
removed all initial conditions from its predictive purview,
its explanatory power inspired awe. While quantum me-
chanics dashed hopes of predicting when a radioactive
atom would decay, it provided the foundations of chemis-
try, and it predicts a wealth of surprising new phenomena,
as we continue to discover.

C. Testing fundamental theories observationally

Let us group the 31 parameters of Table I into a 31-
dimensional vector p. In a fundamental theory where in-
flation populates a landscape of possibilities, some or all of
these parameters will vary from place to place as described
by a 31-dimensional probability distribution f�p�. Testing
this theory observationally corresponds to confronting that
theoretically predicted distribution with the values we ob-
serve. Selection effects make this challenging [10,13]: if
any of the parameters that can vary affect the formation of
(say) protons, galaxies or observers, then the parameter
probability distribution differs depending on whether it is
computed at a random point, a random proton, a random
galaxy or a random observer [13,15]. A standard applica-
tion of conditional probabilities predicts the observed dis-
tribution

f�p� / fprior�p�fselec�p�; (1)

where fprior�p� is the theoretically predicted distribution at
a random point at the end of inflation and fselec�p� is the
probability of our observation being made at that point.
This second factor fselec�p�, incorporating the selection
effect, is simply proportional to the expected number den-
sity of reference objects formed (say, protons, galaxies or
observers).

Including selection effects when comparing theory
against observation is no more optional than the correct
use of logic. Ignoring the second term in Eq. (1) can even
reverse the verdict as to whether a theory is ruled out or
consistent with observation. On the other hand, anthropic
arguments that ignore the first term in Eq. (1) are likewise
spurious; it is crucial to know which of the parameters can
vary, how these variations are correlated, and whether the
typical variations are larger or smaller than constraints
arising from the selection effects in the second term.

D. A case study: cosmology and dark matter

Examples where we can compute both terms in Eq. (1)
are hard to come by. Predictions of fundamental theory for
the first term, insofar as they are plausibly formulated at
present, tend to take the form of functional constraints
among the parameters. Familiar examples are the con-
straints among couplings arising from gauge symmetry
unification and the constraint �QCD � 0 arising from
Peccei-Quinn symmetry. Attempts to predict the distribu-
-5
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tion of inflation-related cosmological parameters are
marred at present by regularization issues related to com-
paring infinite volumes [30,40–52]. Additional difficulties
arise from our limited understanding as to what to count as
an observer, when we consider variation in parameters that
affect the evolution of life, such as �mp;�;�, which
approximately determine all properties of chemistry.

In this paper, we will focus on a rare example where
there are no problems of principle in computing both
terms: that of cosmology and dark matter, involving varia-
tion in the parameters ��c; ��; Q� from Table I, i.e., the
dark matter density parameter, the dark energy density and
the seed fluctuation amplitude. Since none of these three
parameters affect the evolution of life at the level of
biochemistry, the only selection effects we need to con-
sider are astrophysical ones related to the formation of dark
matter halos, galaxies and stable solar systems. Moreover,
as discussed in the next section, we have specific well-
motivated prior distributions for �� and (for the case of
axion dark matter) �c. Making detailed dark matter pre-
dictions is interesting and timely given the major efforts
underway to detect dark matter both directly [53] and
indirectly [54] and the prospects of discovering supersym-
metry and a weakly interacting massive particle (WIMP)
dark matter candidate in Large Hadron Collider operations
from 2008.

For simplicity, we do not include any of the currently
optional cosmological parameters, i.e., we take ns �
�tot � 1, �n � r � nt � 0, w � 	1. The remaining two
nonoptional cosmological parameters in Table I are the
density parameters �� for neutrinos and �b for baryons. It
would be fairly straightforward to generalize our treatment
below to include �� along the lines of [55,56], since it too
affects fselec only through astrophysics and not through
subtleties related to biochemistry. Here, for simplicity,
we will ignore it; in any case, it has been observed to be
rather unimportant cosmologically (�� � �c). When com-
puting cosmological fluctuation growth, we will also make
the simplifying approximation that �b � �c (so that ��
�c), although we will include �b as a free parameter when
discussing galaxy formation and solar system constraints.
(For very large �b, structure formation can change quali-
tatively; see [57].) We will see below that �c=�b � 1 is not
only observationally indicated (Table I gives �c=�b � 6),
but also emerges as the theoretically most interesting re-
gime if �b is considered fixed.

The rest of this paper is organized as follows. In Sec. II,
we discuss theoretical predictions for the first term of
Eq. (1), the prior distribution fprior. In Sec. III, we discuss
the second term fselec, computing the selection effects
corresponding to halo formation, galaxy formation and
solar system stability. We combine these results and
make predictions for dark-matter-related parameters in
Sec. IV, summarizing our conclusions in Sec. V. A number
of technical details are relegated to the appendix.
023505
II. PRIORS

In this section, we will discuss the first term in Eq. (1),
specifically how the function fprior�p� depends on the
parameters �c, �� and Q. In the case of �c, we will
consider two dark matter candidates, axions and WIMPs.

A. Axions

The axion dark matter model offers an elegant example
where the prior probability distribution of a parameter (in
this case �c) can be computed analytically.

The strongCP problem is the fact that the dimensionless
parameter �qcd in Table I, which parameterizes a potential
CP-violating term in quantum chromodynamics (QCD),
the theory of the strong interaction, is so small. Within the
standard model, �qcd is a periodic variable whose possible
values run from 0 to 2�, so its natural scale is of order
unity. Selection effects are of little help here, since values
of �qcd far larger than the observed bound j�qcdj & 10	9

would seem to have no serious impact on life.
Peccei and Quinn [58] introduced microphysical models

that address the strong CP problem. Their models extend
the standard model so as to support an appropriate (anoma-
lous, spontaneously broken) symmetry. The symmetry is
called Peccei-Quinn (PQ) symmetry, and the energy scale
at which it breaks is called the Peccei-Quinn scale.
Weinberg [59] and Wilczek [60] independently realized
that Peccei-Quinn symmetry implies the existence of a
field whose quanta are extremely light, extremely feebly
interacting particles, known as axions. Later it was shown
that axions provide an interesting dark matter candidate
[61–63].

Major aspects of axion physics can be understood by
reference to a truncated toy model where �qcd is the com-
plex phase angle of a complex scalar field � that develops
a potential of the type

V��� � �j�j2 	 f2
a�

2 ��4
qcd�1	 f

	1
a Re��; (2)

where �qcd � 200 MeV is ultimately determined by the
parameters in Table I; roughly speaking, it is the energy
scale where the strong coupling constant �s��qcd� � 1.

At the Peccei-Quinn (PQ) symmetry breaking scale fa,
assumed to be much larger than �qcd, this complex scalar
field � feels a Mexican hat potential and seeks to settle
toward a minimum h�i � faei�qcd . In the context of cos-
mology, this will occur at temperatures not much below fa.
Initially the angle �qcd � �0 is of negligible energetic
significance, and so it is effectively a random field on
superhorizon scales. The angular part of this field is called
the axion field a � fa�qcd. As the cosmic expansion cools
our universe to much lower temperatures approaching the
QCD scale, the approximate azimuthal symmetry of the
Mexican hat is broken by the emergence of the second
term, a periodic potential 1	 f	1

a Re� � 1	 cos�qcd �

2sin2�qcd (induced by QCD instantons) whose minimum
-6
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corresponds to no strong CP violation, i.e., to �qcd � 0.
The axion field oscillates around this minimum like an
underdamped harmonic oscillator with a frequency ma
corresponding to the second derivative of the potential at
the minimum, gradually settling toward this minimum as
the oscillation amplitude is damped by Hubble friction.
That oscillating field can be interpreted as a Bose conden-
sate of axions. It obeys the equation of state of a low-
pressure gas, which is to say it provides a form of cold dark
matter.

By today, �qcd is expected to have settled to an angle
within about 10	18 of its minimum [63], comfortably
below the observational limit j�qcdj & 10	9, and thus dy-
namically solving the strong CP problem. (The exact
location of the minimum is model-dependent, and not quite
at zero, but comfortably small in realistic models [64].)

The axion dark matter density per photon in the current
epoch is estimated to be [61–63]

�c � ��sin2 �0

2
; �� � f4

a: (3)

If axions constitute the cold dark matter and the Peccei-
Quinn phase transition occurred well before the end of
inflation, then the measurement �c � 3� 10	28 thus im-
plies that

fa � 10	7

�
sin
�0

2

�
	1=2
� 1012 GeV�

�
sin
�0

2

�
	1=2

; (4)

where �0 is the initial misalignment angle of the axion field
in our particular Hubble volume.

Frequently it has been argued that this implies fa �
1012 GeV, ruling out GUT scale axions with fa �
1016 GeV. Indeed, in a conventional cosmology the hori-
zon size at the Peccei-Quinn transition corresponds to a
small volume of the universe today, and the observed
universe on cosmological scales would fully sample the
random distribution �0. However, the alternative possibil-
ity that j�0j � 1 over our entire observable universe was
pointed out already in [61]. It can occur if an epoch of
inflation intervened between Peccei-Quinn symmetry
breaking and the present; in that case the observed universe
arises from within a single horizon volume at the Peccei-
Quinn scale, and thus plausibly lies within a correlation
volume. Linde [31] argued that if there were an anthropic
selection effect against very dense galaxies, then models
with fa � 1012 GeV and j�0j � 1 might indeed be per-
fectly reasonable. Several additional aspects of this sce-
nario were discussed in [32,33]. Much of the remainder of
this paper arose as an attempt to better ground its astro-
physical foundations, but most of our considerations are of
much broader application.

We now compute the axion prior fprior��c�. Since the
symmetry breaking is uncorrelated between causally dis-
connected regions, �0 is for all practical purposes a random
variable that varies with a uniform distribution between
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widely separated Hubble volumes. Without loss of general-
ity, we can take the interval over which �0 varies to be 0 �
�0 � �. This means that the probability of � being lower
than some given value �0 � �� is

P�� < �0� � P
�
��sin2 �0

2
< �0

�
� P

�
�0 < 2sin	1 �

1=2
0

�1=2
�

�

�
2

�
sin	1 �

1=2
0

�1=2
�

: (5)

Differentiating this expression with respect to �0 gives the
prior probability distribution for the dark matter density ��:

f���� �
1

������
1=2�1	 �

��
�

(6)

For the case at hand, we only care about the tail of the prior
corresponding to unusually small �0, i.e., the case �� ��,
for which the probability distribution reduces to simply

f���� /
1���
�
p : (7)

Although this may appear to favor low �, the probability
per logarithmic interval /

���
�
p

, and it is obvious from
Eq. (5) that the bulk of the probability lies near the very
high value �� ��.

A striking and useful property of Eq. (7) is that it
contains no free parameters whatsoever. In other words,
this axion dark matter model makes an unambiguous pre-
diction for the prior distribution of one of our 31 parame-
ters, �c. Since the axion density is negligible at the time of
inflation, this prior is immune to the inflationary measure-
related problems discussed in [3], and no inflation-related
effects should correlate �c with other observable parame-
ters. Moreover, this conclusion applies for quite general
axion scenarios, not merely for our toy model—the only
property of the potential used to derive the �	1=2

c scaling is
its parabolic shape near any minimum. Although many
theoretical subtleties arise regarding the axion dark matter
scenario in the contexts of inflation, supersymmetry and
string theory [65–68], the �	1=2

c prior appears as a robust
consequence of the hypothesis fa � 1012 GeV.

We conclude this section with a brief discussion of
bounds from axion fluctuations. Like any other massless
field, the axion field a � fa� acquires fluctuations of order
H during inflation, where H � E2

inf=mpl � E2
inf and Einf is

the inflationary energy scale, so 
�0 � E2
inf=fa. For our

j�0j � 1 case, Eq. (3) gives �0 � �
1=2
c =f2

a, so we obtain the
axion density fluctuations amplitude

Qa �

�c

�c
�

2
�0

�0
�
E2

inffa
�1=2

c

: (8)

Such axion isocurvature fluctuations (see, e.g., [69] for a
review) would contribute acoustic peaks in the cosmic
-7



3If only two microphysical parameters from Table I vary by
many orders of magnitude across an ensemble and are anthropi-
cally selected, one might be tempted to guess that they are �� �
10	123 and �2 �	10	33, since they differ most dramatically
from unity. A broad prior for 	�2 would translate into a broad
prior for v that could potentially provide an anthropic solution to
the so-called ‘‘hierarchy problem’’ that v� 10	17 � 1.
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microwave background (CMB) out of phase with the those
from standard adiabatic fluctuations, allowing an observa-
tional upper bound Qa & 0:3Q� 10	5 to be placed
[70,71]. Combining this with the observed �c value from
Table I gives the bound E2

inffa �Qa�
1=2
c & 10	19, bound-

ing the inflation scale. The traditional value fa �
1012 GeV� 10	7 gives the familiar bound Einf & 10	6 �
1013 GeV [69,72]. A higher fa gives a tighter limit on the
inflation scale: increasing fa to the Planck scale (fa � 1)
lowers the bound to Einf & 10	9 � 1010 GeV—the con-
straint grows stronger because the denominator in 
�0=�0

must be smaller to avoid an excessive axion density.
For comparison, inflationary gravitational waves have

amplitude rQ�H � E2
inf , so they are unobservably small

unless Einf * 1016 GeV. Although various loopholes to the
axion fluctuation bounds have been proposed (see e.g.,
[69,72–74]), it is interesting to note that the simplest axion
dark matter models therefore make the falsifiable predic-
tion that future CMB experiments will detect no gravita-
tional wave signal [72].

B. WIMPs

Another popular dark matter candidate is a stable WIMP,
thermally produced in the early universe and with its relic
abundance set by a standard freeze-out calculation. See,
e.g., [75,76] for reviews. Stability could, for instance, be
ensured by the WIMP being the lightest supersymmetric
particle.

At relevant (not too high) temperatures the thermally
averaged WIMP annihilation cross section takes the form
[75]

h�vi � �
�2

w

m2
wimp

; (9)

where � is a dimensionless constant of order unity. In our
notation, the WIMP number density is nwimp �

�wimp=mwimp � n��wimp=mwimp. The WIMP freeze-out is
determined by equating the WIMP annihilation rate � �
h�vinwimp � h�vin��wimp=mwimp with the radiation-
dominated Hubble expansion rate H � �8���=3�1=2.
Solving this equation for �wimp and substituting the ex-
pressions for �w, n� and �� from Tables II and III gives

�wimp �

������������
29�11

45

s
m3

wimp

��3��g4T
� 1522

m3
wimp

�g4T
: (10)

The WIMP freeze-out temperature is typically found to be
of order T �mwimp=20 [75]. If we further assume that the
WIMP mass is of order the electroweak scale (mwimp � v)
and that the annihilation cross section prefactor �� 1,
then Eq. (10) gives
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�wimp � 105
m2

wimp

g4 � 105 v
2

g4 � 10	28 (11)

for the measured values of v and g from Table I. This well-
known fact that the predicted WIMP abundance agrees
qualitatively with the measured dark matter density �c is
a key reason for the popularity of WIMP dark matter.

In contrast to the above-mentioned axion scenario, we
have no compelling prior for the WIMP dark matter den-
sity parameter �wimp. Let us, however, briefly explore the
interesting scenario advocated by, e.g., [77], where the
theory prior determines all relevant standard model pa-
rameters except the Higgs vacuum expectation value v,
which has a broad prior distribution.3 (It should be said,
however, that the connection mwimp � v is somewhat arti-
ficial in this context.) It has recently been shown that v is
subject to quite strong microphysical selection effects that
have nothing to do with dark matter, as nicely reviewed in
[78]. As pointed out by [79,80], changing v up or down
from its observed value v0 by a large factor would corre-
spond to a dramatically less complex universe because the
slight neutron-proton mass difference has a quark mass
contribution �md 	mu� / v that slightly exceeds the extra
Coulomb repulsion contribution to the proton mass:
(1) F
-8
or v=v0 & 0:5, protons (uud) decay into neutrons
(udd) giving a universe with no atoms.
(2) F
or v=v0 * 5, neutrons decay into protons even
inside nuclei, giving a universe with no atoms ex-
cept hydrogen.
(3) F
or v=v0 * 103, protons decay into ��� (uuu)
particles, giving a universe with only heliumlike
��� atoms.
Even smaller shifts would qualitatively alter the synthesis
of heavy elements: For v=v0 & 0:8, diprotons and dineu-
trons are bound, producing a universe devoid of, e.g.,
hydrogen. For v=v0 * 2, deuterium is unstable, drastically
altering standard stellar nucleosynthesis.

Much stronger selection effects appear to result from
carbon and oxygen production in stars. Revisiting the issue
first identified by Hoyle [81] with numerical nuclear phys-
ics and stellar nucleosynthesis calculations, [82] quantified
how changing the strength of the nucleon-nucleon interac-
tion altered the yield of carbon and oxygen in various types
of stars. Combining their results with those of [83] that
relate the relevant nuclear physics parameters to v gives
the following striking results:
(1) F
or v=v0 & 0:99, orders of magnitude less carbon is
produced.
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(2) F
Constr

Need n
Avoid
Primor
Need c
Avoid
Go non
Need e
Avoid
Need d
or v=v0 * 1:01, orders of magnitude less oxygen
is produced.
Combining this with Eq. (11), we see that this could
potentially translate into a percent level selection effect
on �wimp / v2.

In the above-mentioned scenario where v has a broad
prior whereas the other particle physics parameters (in
particular g) do not [77], the fact that microphysical se-
lection effects on v are so sharp translates into a narrow
probability distribution for �wimp via Eq. (11). As we will
see, the astrophysical selection effects on the dark matter
density parameter are much less stringent. We should
emphasize again, however, that this constraint relies on
the assumption of a tight connection between �wimp and v,
which could be called into question.

C. �� and Q

As discussed in detail in the literature (e.g., [3,11,44,84–
88]), there are plausible reasons to adopt a prior on �� that
is essentially constant and independent of other parameters
across the narrow range where j��j & Q3�4 � 10	123

where fselec is non-negligible (see Sec. III). The conven-
tional wisdom is that since �� is the difference between
two much larger quantities, and �� � 0 has no evident
microphysical significance, no ultrasharp features appear
in the probability distribution for �� within 10	123 of zero.
That argument holds even if �� varies discretely rather
than continuously, so long as it takes � 10123 different
values across the ensemble.

In contrast, calculations of the prior distribution for Q
from inflation are fraught with considerable uncertainty
[3,89,90]. We therefore avoid making assumptions about
this function in our calculations.
III. SELECTION EFFECTS

We now consider selection effects, by choosing our
‘‘selection object’’ to be a stable solar system, and focusing
on requirements for creating these. In line with the preced-
ing discussion, our main interest will be to explore con-
straints in the 4-dimensional cosmological parameter space
TABLE IV. These constraints (see

aint Generally

onlinear halos j��j & ��
line cooling freeze-out Q * �2
dial black hole excess Q & 10	1

ooling in Hubble time Q3�2
b�

2 * �	3 ln��	2	16=

close encounters
linear after decoupling �Q & 10	3�2m
quality before decoupling? � * 0:05�2mp

severe Silk damping fb & 1=2
isk instability fb & 102
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��b; �c; ��; Q�. Since we can only plot only one or two
dimensions at a time, our discussion will be summarized
by a table (Table IV) and a series of figures showing
various 1- and 2-dimensional projections: ��b; �c�,
���; Q��, Q3�4, �, ��=Q

3�4, ��;Q�.
Many of the physical effects that lead to these con-

straints are summarized in Figs. 2–4, showing tempera-
tures and densities of galactic halos. The constraints in this
plane from galaxy formation and solar system stability
depend only on the microphysical parameters �mp; �; �
and sometimes on the baryon fraction �b=�c, whereas
the banana-shaped constraints from dark matter halo
formation depend on the cosmological parameters
��b; �c; ��; ��; Q�, so combining them constrains certain
parameter combinations. Crudely speaking, fselec�p� will
be non-negligible only if the cosmological parameters are
such that part of the ‘‘banana’’ falls within the ‘‘observer-
friendly’’ (unshaded) region sandwiched between the gal-
axy formation and solar system stability constraints.

In the following three subsections, we will now discuss
the three above-mentioned levels of structure formation in
turn: halo formation, galaxy formation and solar system
stability.

A. Halo formation and the distribution of halo
properties

Previous studies (e.g., [3,11,44,84–88]) have computed
the total mass fraction collapsed into halos, as a function of
cosmological parameters. Here, however, we wish to apply
selection effects based on halo properties such as density
and temperature, and will compute the formation rate of
halos (the banana-shaped function illustrated in Fig. 3) in
terms of dimensionless parameters alone.

1. The dependence on mass and time

As previously explained, we will focus on the dark-
matter-dominated case �c � �b, �c � ��, so we ignore
massive neutrinos and have � � �b � �c � �c. For our
calculations, it is convenient to define a new dimensionless
time variable
text) are summarized in Fig. 12.

Fixing ��;;mp� Fixing all but �Q; ��

j��j=�
4Q3 & 1 Q * 10	5��=�0�

	4=3

Q * 10	8 Q * 10	8

Q & 10	1 Q & 10	1

34m6
p=125 Q3�2

b�
2 * 10	129 Q * 10	6��=�0�

	2=3

Q3�b�
3 & 10	123 Q & 10	4��=�0�

	1

p �Q & 10	30 Q & 10	2��=�0�
	1

� * 10	28 ��=�0� * 1=3
�=�b * 2 ��=�0� * 1=3
�c=�b & 102 ��=�0� & 20
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FIG. 3 (color online). Same as the previous figure, but includ-
ing the banana-shaped contours showing the halo formation/
destruction rate. Solid/greenish contours correspond to positive
net rates (halo production) at 0.5, 0.3, 0,2, 0.1, 0.03 and 0.01 of
maximum, whereas dashed/reddish contours correspond to nega-
tive net rates (halo destruction from merging) at -0.3, -0,2, -0.1, -
0.03 and -0.01 of maximum, respectively. The heavy black
contour corresponds to zero net formation rate. The cosmologi-
cal parameters ��b; �c; ��; ; Q; ��� have a strong effect on this
banana: �b and �c shift this banana-shape vertically, Q shifts if
along the parallel diagonal lines and �� cuts it off below 16��

(see the next figure). Roughly speaking, there are stable habit-
able planetary systems only for cosmological parameters where
a greenish part of the banana falls within the allowed white
region from Fig. 2.

FIG. 2 (color online). Many selection effects that we discuss
are conveniently summarized in the plane tracking the virial
temperatures and densities in dark matter halos. The gas cooling
requirement prevents halos below the heavy black curve from
forming galaxies. Close encounters make stable solar systems
unlikely above the downward-sloping line. Other dangers in-
clude collapse into black holes and disruption of galaxies by
supernova explosions. The location and shape of the small
remaining region (unshaded) is independent of all cosmological
parameters except the baryon fraction.

4Although the baryon density affects � mainly via the sum
� � �b � �c, there is a slight correction because fluctuations in
the baryon component do not grow between matter-radiation
equality and the drag epoch shortly after recombination [92].
Since the resulting correction to the fluctuation growth factor (�
15% for the observed baryon fraction �b=�c � 1=6) is negligible
for our purposes, we ignore it here.
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x �
��

�m
�

��

�m
� �	1

m 	 1 (12)

and a new dimensionless mass variable

� � �2M: (13)

In terms of the usual cosmological scale factor a, our new
time variable therefore scales as x / a3. It equals unity at
the vacuum domination epoch when linear fluctuation
growth grinds to a halt. The horizon mass at matter-
radiation equality is of order �	2 [4], so � can be inter-
preted as the mass relative to this scale. It is a key physical
scale in our problem. It marks the well-known break in the
matter power spectrum; fluctuation modes on smaller
scales entered the horizon during radiation domination,
when they could not grow.

We estimate the fraction of matter collapsed into dark
matter halos of mass M 
 �	2� by time x using the
standard Press-Schechter formalism [91], which gives

F��; x� � erfc
�


c�x����
2
p
���; x�

�
: (14)

Here ���; x� is the rms fluctuation amplitude at time x in a
023505
sphere containing mass M � �	2�, so F is the probability
that a fluctuation lies 
c standard deviations out in the tail
of a Gaussian distribution. As shown in Sec. 2 of the
appendix, � is well approximated as4

���; x� � ��
Q�4=3

�1=3
�

s���G��x�; (15)

where

�� �
45 � 21=3��3�4=3

�14=3�1� 21
8 �

4
11�

4=3
� 0:206271 (16)
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and the known dimensionless functions s��� and G��x� do
not depend on any physical parameters. s��� and G��x�
give the dependence on scale and time, respectively, and
appear in Eqs. (A1) and (A13) in the appendix. The scale
dependence is s��� ��	1=3 on large scales �� 1, satu-
rating to only logarithmic growth toward small scales for
�� 1. Fluctuations grow as G��x� � x1=3 / a for x� 1
and then asymptote to a constant amplitude corresponding
to G1 � 5��23���

5
6�=3

����
�
p
� 1:437 28 as a! 1 and dark

energy dominates. (This is all for �� > 0; we will treat
�� < 0 in Sec. III A 3 and find that our results are roughly
independent of the sign of ��, so that we can sensibly
replace �� by j��j.)

Returning to Eq. (14), the collapse density threshold

c�x� is defined as the linear perturbation theory overden-
sity that a top-hat-averaged fluctuation would have had at
the time x when it collapses. It was computed numerically
in [55], and found to vary only very weakly (by about 3%)
with time, dropping from the familiar cold dark matter
value 
c�0� � �3=20��12��2=3 � 1:686 47 early on to the
limit 
c�1� � �9=5�2	2=3G1 � 1:629 78 [84] in the infi-
nite future. Here we simply approximate it by the latter
value:


c�x� � 
c�1� �
9��23���

5
6�

3�1=222=3
� 1:629 78: (17)

Substituting Eqs. (15) and (17) into Eq. (14), we thus
obtain the collapsed fraction

F��; x� � erfc
�

A�1=3
�

�4=3QG��x�s���

�
; (18)

where

A �

c�1����

2
p
��
�
�1� 42

224=3��25=6��23���
5
6�

30
���
2
p
��3�4=3

� 5:586 94: (19)

Below we will occasionally find it useful to rewrite
Eq. (18) as

F��; x� � erfc
�
A���=���1=3

G��x�s���

�
; �� � �4Q3: (20)

Let us build some intuition for Eq. (18). It tells us that
early on when x� 0, no halos have formed (F � 0), and
that as time passes and x increases, small halos form before
any large ones since s��� is a decreasing function.
Moreover, we see that since G��x� and s��� are at most
of order unity, no halos will ever form if �� � �4Q3. We
recognize the combination �� � �4Q3 as the characteristic
density of the universe when halos would form in the
absence of dark energy [4]. If �� � ��, then dark energy
dominates long before this epoch and fluctuations never go
nonlinear. Figure 5 illustrates that the density distributions
corresponding to Eq. (20) are broadly peaked around
�vir � 102�� when �� � ��, are exponentially sup-
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pressed for �� � ��, and in all cases give no halos with
�vir < 16��.

2. The dependence on temperature and density

We now discuss how our halo mass � and formation
time x transform into the astrophysically relevant parame-
ters �Tvir; nvir� appearing in Fig. 3.

As shown in Sec. 3 of the appendix, halos that virialize
at time x have a characteristic density of order

�vir � 16��

��
9�2

8x

�
107=200

� 1
�

200=107
; (21)

i.e., essentially the larger of the two terms 16�� and
18�2�m�x�. For a halo of total (baryonic and dark matter)
massM in Planck units, this corresponds to a characteristic
size R� �M=�vir�

1=3, velocity vvir � �M=R�1=2 �

�M2�vir�
1=6 and virial temperature Tvir �mpv2

vir �

mpM
2=3�1=3

vir , so

Tvir �mp

�
16���2

�4

�
1=3
��

9�2

8x

�
107=200

� 1
�

200=321
: (22)

Inverting Eqs. (21) and (22) gives

��

��������������
�4T3

vir

m3
p�vir

vuut ; (23)

x�
9�2

8

��
�vir

16��

�
107=200

	 1
�
	200=107

: (24)

For our applications, the initial gas temperature will be
negligible and the gas density will trace the dark matter
density, so until cooling becomes important (Sec. III B 1),
the proton number density is simply

nvir �
�b

�mp
�vir: (25)

According to the Press-Schechter approximation, the
derivative 	 @F

@ lg� ��; x� can be interpreted as the so-called
mass function, i.e., as the distribution of halo masses at
time x. We can therefore interpret the second derivative

f�x��; x� � 	
@2F

@�lg��@�lgx�
(26)

as the net formation rate of halos as a function of mass and
time. Transforming this rate from �lg�; lgx� space to
�lgTvir; lg�vir� space, we obtain the function whose
banana-shaped contours are shown in Fig. 3:

f�Tvir; nvir� � jJjf�x��; x� � jJj
@2F

@�lg��@�lgx�
; (27)
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where J is a Jacobian determinant that can be ignored
safely.5

Let us now build some intuition for this important
function f�Tvir; nvir�. First of all, since Eq. (21) shows
that �vir / nvir decreases with time and is � independent,
we can reinterpret the vertical nvir axis in Fig. 3 as simply
the time axis: as our Universe expands, halos can form at
lower densities further and further down in the plot. Since
nothing ever forms with �vir < 16��, the horizontal line
nvir � 16���b=�mp corresponds to t! 1. Second, f is
the net formation rate, which means that it is negative if the
rate of formation of new halos of this mass is smaller than
the rate of destruction from merging into larger halos. The
destruction stems from the fact that, to avoid double count-
ing, the Press-Schechter approximation counts a given
proton as belonging to at most one halo at a given time,
defined as the largest nonlinear structure that it is part of.6

Figure 3 shows that halos of any given mass (defined by the
lines of slope 3) are typically destroyed in this fashion
some time after its formation unless �� domination termi-
nates the process of fluctuation growth.

We will work out the detailed dependence of this banana
on physical parameters in the next section. For now, we
merely note that Fig. 3 shows that the first halos form with
characteristic density �vir � �� � �4Q3, nvir �

�b�3Q3=mp, and (assuming �� � ��) the largest halos
approach virial velocities vvir �Q1=2c and temperatures
Tvir �Q�mpc

2 [4].

3. How mp, �b, �c, Q and �� affect ‘‘the banana’’

Substituting the preceding equations into Eq. (27) gives
the explicit expression
5It makes sense to treat f�x as a distribution, sinceRR
f�xd�ln��d�lnx� equals the total collapsed fraction. When

transforming it, we therefore factor in the Jacobian of the trans-
formation from �lg�; lgx� to �lgTvir; lg�vir�,

J �
@ lg�
@ lgT

@ lg�
@ lg�

@ lgx
@ lgT

@ lgx
@ lg� ;

0
@

1
A � 3

2 	 1
2

0 	

�
1	

�
16��

�vir

�
159=200

�
	1

0
B@

1
CA; (28)

with determinant

J � jJj � 	
3

2

�
1	

�
16��

�vir

�
159=200

�
	1
� 	

3

2

�
�virx

18�2��

�
159=200

:

(29)
So the Jacobian is an irrelevant constant J � 	3=2 for �vir �
16��. Since the entire function f vanishes for �vir < 16��, the
Jacobian only matters near the �vir � 16�� boundary, where it
has a rather unimportant effect (the divergence is integrable).
Equation (28) shows that away from that boundary, the
�lgTvir; lg�vir� banana is simply a linear transformation of the
�lg�; lgx� banana @2F=@ lg�@ lgx, with slanting parallel lines of
slope 3 in Fig. 3 corresponding to constant � values.

6Our treatment could be improved by modeling halo substruc-
ture survival, since subhalos that harbor stable solar systems may
be counted as part of an (apparently inhospitable) larger halo.
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f�Tvir; nvir;mp; �b; �c; Q; ���

�
3a�G��x�2s���2 	 2a2xG0��x��s

0�������
�
p

G��x�4s���4 exp�� a
G��x�s���

�2

�

�
�virx

18�2��

�
159=200

;

a �
A�1=3

�

Q�4=3
;

(30)

where � and x are determined by Tvir and nvir via
Eqs. (23)–(25). This is not very illuminating. We will
now see how this complicated-looking function f of seven
variables can be well approximated and understood as a
fixed banana-shaped function of merely two variables,
which gets translated around by variation of mp, �b, �c

and Q, and truncated from below at a value determined by
��.

Let us first consider the limit �� ! 0 where dark energy
is negligible. Then x� 1 so that G��x� � x1=3 �

���=�m�
1=3, causing Eq. (18) to simplify to

F��; x� � erfc
�

A�1=3
m

�4=3Qs���

�
: (31)

In the same limit, Eq. (21) reduces to �vir � 18�2�m, so
using Eq. (25) gives �m � �vir=18�2 � �mpnvir=18�2�b.
Using this and Eq. (23), we can rewrite Eq. (31) in the form

F � erfc
� A�

mpnvir

�b�3Q3�
1=3

�18�2�1=3s�� Tvir

mpQ
�3=2�

mpnvir

�b�3Q3�
	1=2

�

� B
� mpnvir

�b�3Q3 ;
Tvir

mpQ

�
; (32)

where the ‘‘standard banana’’ is characterized by a func-
tion of only two variables,

B�X; Y� � erfc
�

AX1=3

�18�2�1=3s�Y3=2X	1=2

�
: (33)

Thus B�X; Y� determines the banana shape, and the pa-
rameters mp, �b, � and Q merely shift it on a log-log plot:
increasing mp shifts it down and to the right along lines of
slope	1, increasing �b shifts it upward, increasing � shifts
it upward 3 times and increasing Q shifts it upward and to
the right along lines of slope 3. The halo formation rate
defined by its derivatives [Eq. (27)] and plotted in Fig. 3
clearly scales in exactly the same way with these four
parameters, since in the �� ! 0 limit that we are consid-
ering, the Jacobian J is simply a constant matrix.

Let us now turn to the general case of arbitrary ��. As
discussed above, time runs downward in Fig. 3 since the
cosmic expansion gradually dilutes the matter density �m.
The matter density completely dwarfs the dark energy
-12
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FIG. 4 (color online). Same as Fig. 3, but showing the effect of
changing the cosmological parameters. Increasing the matter
density parameter � shifts the banana up by a factor �4 (top
left panel), increasing the fluctuation levelQ shifts the banana up
by a factor Q3 and to the right by a factor Q (top right panel),
increasing the baryon fraction fb � �b=� shifts the banana up by
a factor fb and affects the cooling and 2nd generation constraints
(bottom left panel), and increasing the dark energy density ��

bites off the banana below �vir � 16�� (bottom right panel). In
these four panels, the parameters have been scaled relative to
their observed values as follows: up by 1=4; 2=4; . . . ; 9=4 orders
of magnitude (�), up by 1=3, 2=3; . . . ; 9=3 orders of magnitude
(Q), down by 1 and 2 orders of magnitude (fb), and down by 0,
7, 12 and 1 orders of magnitude (��; other panels have �� �
0).
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density at very early times. The key point is that since ��

has no effect until our Universe has expanded enough for
the matter density to drop near the dark energy density, the
part of the banana in Fig. 3 that lies well above the vacuum
density �� will be completely independent of ��. As the
matter density �m drops below �� (i.e., as x grows past
unity), fluctuation growth gradually stops. This translates
into a firm cutoff below �vir � 16�� in Fig. 3 (i.e., below
nvir � 16�b��=mp�), since Eq. (21) shows that no halos
ever form with densities below that value.

Viewed at sensible resolution on our logarithmic plot,
spanning many orders of magnitude in density, the tran-
sition from weakly perturbing the banana to biting it off is
quite abrupt, occurring as the density changes by a factor of
a few. For the purposes of this paper, it is appropriate to
approximate the effect of �� as simply truncating the
banana below the cutoff density.

Putting it together, we can approximate the nonintuitive
equation (30) by the much simpler
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f�Tvir;nvir;mp;�b;�c;Q;����b
�
Tvir

mpQ
;
mpnvir

�b�
3Q3

�

��
�
nvir	

16�b��

mp�

�
; (34)

where � is the Heaviside step function (��x� � 0 for x < 0,
��x� � 1 for x 
 0) and b is the differentiated ‘‘standard
banana’’ function

b�X; Y� �
@2

lgX lgY
B�X; Y�: (35)

This is useful for understanding constraints on the cosmo-
logical parameters: the seemingly complicated dependence
of the halo distribution on seven variables from Eq. (30)
can be intuitively understood as the standard banana shape
from Fig. 3 being rigidly translated by the four parameters
mp, �b, � and Q and truncated from below with a cutoff
nvir > 16�b��=mp�. All this is illustrated in Fig. 4, which
also confirms numerically that the approximation of
Eq. (35) is quite accurate.

4. The case �� < 0

Above we assumed that �� 
 0, but for the purposes of
this paper, we can obtain a useful approximate general-
ization of the results by simply replacing �� by j��j in
Eq. (34). This is because �� has a negligible effect early on
when j��j � �m and a strongly detrimental selection
effect when j��j � �m, either by suppressing galaxy for-
mation (for �� > 0) or by recollapsing our universe (for
�� < 0), in either case causing a rather sharp lower cutoff
of the banana. As pointed out by Weinberg [84], one
preferentially expects �� > 0 as observed because the
constraints tend to be slightly stronger for negative ��. If
�� > 0, observers have time to evolve long after j��j �
�m as long as galaxies had time to form before while ��

was still subdominant. If �� < 0, however, both galaxy
formation and observer evolution must be completed be-
fore �� dominates and recollapses the universe; thus, for
example, increasing Q so as to make structure form earlier
will not significantly improve prospects for observers.

B. Galaxy formation

1. Cooling and disk formation

Above we derived the time-dependent (or equivalently,
density-dependent) fraction of matter collapsed into halos
above a given mass (or temperature), derived from this the
formation rate of halos of a given temperature and density,
and discussed how both functions depended on cosmologi-
cal parameters. For the gas in such a halo to be able to
contract and form a galaxy, it must be able to dissipate
energy by cooling [93–96]—see [97] for a recent review.
In the shaded region marked ‘‘No cooling’’ in Fig. 2, the
-13



FIG. 5. Halo density distribution for various values of �̂�=��,
where �̂� � �s���=A3�� �Q3�4. The dashed curves show the
cumulative distribution F � erfc����=�̂��

1=3=G��x��vir� and
the solid curves show the probability distribution 	@F=@ lg�vir

for (peaking from right to left) �̂�=�� � 105, 104, 103, 102, 10, 1
(heavy curves), 0:1 and 0:05. Note that no halos with �vir <
16�� are formed.

TEGMARK, AGUIRRE, REES, AND WILCZEK PHYSICAL REVIEW D 73, 023505 (2006)
cooling time scale T= _T exceeds the Hubble time scale
H	1.7 We have computed this familiar cooling curve as
in [4] with updated molecular cooling from Tom Abel’s
code based on [98] (see Ref. [99]). From left to right, the
processes dominating the cooling curve are molecular
hydrogen cooling (for T & 104 K), hydrogen line cooling
(1st trough), helium line cooling (2nd trough),
7This criterion is closely linked to the question of whether
observers can form if one is prepared to wait an arbitrarily long
time. First of all, if the halo fails to contract substantially in a
Hubble time, it is likely to lose its identity by being merged into
a larger halo on that time scale unless x� 1 so that �� has
frozen clustering growth. Second, if Tvir & 104 K so that the gas
is largely neutral, then the cooling time scale will typically be
much longer than the time scale on which baryons evaporate
from the halo, and once less than 0:08M� of baryons remain, star
formation is impossible. Specifically, for a typical halo profile,
about 1% of the baryons in the high tail of the Bolzmann velocity
distribution exceed the halo escape velocity, and the halo there-
fore loses this fraction of its mass each relaxation time (when
this high tail is repopulated by collisions between baryons). In
contrast, the cooling time scale is linked to how often such
collisions lead to photon emission. This question deserves more
work to clarify whether all Tvir � 104 K halos would cool and
form stars eventually (providing their protons do not have time to
decay). However, as we will see below in Sec. IV, this question is
unimportant for the present paper’s prime focus on axion dark
matter, since once we marginalize over ��, it is rather the upper
limit on density in Fig. 3 that affects our result.
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Bremsstrahlung from free electrons (for T * 105 K) and
Compton cooling against cosmic microwave background
photons (horizontal line for T * 109 K). The curve corre-
sponds to zero metallicity, since we are interested in
whether the first galaxies can form.

The cooling physics of course depends only on atomic
processes, i.e., on the three parameters ��;;mp�.
Requiring the cooling time scale to not exceed some fixed
time scale would therefore give a curve independent of all
cosmological parameters. Since we are instead requiring
the cooling time scale ( / n	1 for all processes involving
particle-particle collisions) not to exceed the Hubble time
scale [ / �	1=2

m / �n=fb�
	1=2], our cooling curve will de-

pend also on the baryon fraction fb, with all parts except
the Compton piece to the right scaling vertically as f	1

b .

2. Disk fragmentation and star formation

We have now discussed how fundamental parameters
determine whether dark matter halos form and whether gas
in such halos can cool efficiently. If both of these condi-
tions are met, the gas will radiate away kinetic energy and
settle into a rotationally supported disk, and the next
question becomes whether this disk is stable or will frag-
ment and form stars. As described below, this depends
strongly on the baryon fraction fb � �b=�, observed to
be fb � 1=6 in our universe. The constraints from this
requirement propagate directly into Fig. 12 in Sec. IV D
rather than Fig. 3.

First of all, stars need to have a mass of at least Mmin �
0:08M� for their core to be hot enough to allow fusion.
Requiring the formation of at least one star in a halo of
mass M therefore gives the constraint

fb >
Mmin

M
: (36)

An interesting point [100] is that this constraint places an
upper bound on the dark matter density parameter. Since
the horizon mass at equality is Meq � �

	2 [4], the baryon
mass within the horizon at equality is Meq�b=�� �b=�3,
which drops with increasing �. This scale corresponds to
the bend in the banana of Fig. 3, so unless [100]

fb * Mmin�2; (37)

one needs to wait until long after the first wave of halo
formation to form the first halo containing enough gas to
make a star, which in turn requires a correspondingly small
�� value. The ultimate conservative limit is requiring that
Mh

b � �bH
	3, the baryon mass within the horizon, exceeds

Mmin. Since Mh
b increases during matter domination and

decreases during vacuum domination, taking its maximum
value Mh

b � fb�
	1=2
� when x� 1, the Mh

b >Mmin require-
ment gives

fb * Mmin�
1=2
� : (38)
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However, these upper limits on the dark matter parameter
density parameter �c are very weak: for the observed
values of �b and �� from Table I, Eqs. (37) and (38)
give �c < � & ��b=Mmin�

1=3 � 10	22 and �c < � &

�b=Mmin�
1=2
� � 10	4, respectively, limits many orders of

magnitude above the observed value �c � 10	28.
It seems likely, however, that Mmin is a gross under-

estimate of the baryon requirement for star formation. The
fragmentation instability condition for a baryonic disc is
essentially that it should be self-gravitating in the ‘‘verti-
cal’’ direction. This is equivalent to requiring the baryonic
density in the disc exceed that of the dark matter back-
ground it is immersed in. The first unstable mode is then
the one that induces breakup into spheres of radius of order
the disc thickness. This conservative criterion is weaker
than the classic Toomre instability criterion [101], which
requires the disc to be self-gravitating in the radial direc-
tion and leads to spiral arm formation. If the halo were a
singular isothermal sphere, then [102] instability would
require

fb * �
�
Tmin

Tvir

�
1=2
: (39)

Here Tmin is the minimum temperature that the gas can cool
to and � is the dimensionless specific angular momentum
parameter, which has an approximately lognormal distri-
bution centered around 0.08 [102]. For an upper limit on
the dark matter parameter �c, what matters is thus the
upper limit on �, the upper limit on Tvir and the lower
limit on Tmin, all three of which are quite firm. Ignoring
probability distributions, taking Tmin � �2mp=6 ln�	1 �

104 K� 1 eV (atomic hydrogen line cooling) and Tvir �
500 eV (Milky Way) gives Tvir=Tmin � 500, �c & 300�b

from Eq. (39). Taking the extreme values Tmin � 500 K
(H2-cooling freeze-out) and Tvir �mpQ� 20 keV (largest
clusters) gives Tvir=Tmin � 1010Q and � & 106Q1=2�b �
104�b. On the other extreme, if we argue that Tvir � Tmin

for the very first galaxies to form, then Eq. (39) gives
�=�b & 12, which is interestingly close to what we
observe.

For NFW potentials [103], � dependence is more com-
plicated and the local velocity dispersion of the dark matter
near the center is lower than the mean Tvir.

Even if the baryon fraction were below the threshold of
Eq. (39), stars could eventually form because viscosity
(even just ‘‘molecular’’ viscosity) would redistribute
mass and angular momentum so that the gas becomes
more centrally condensed. The condition then becomes
that the mass of spherical blob of radius R�Md=Tmin

exceed the dark mass Md within that radius. For the iso-
thermal sphere, this would automatically happen, but for a
realistic flat-bottomed or NFW potential, then this gives a
nontrivial inequality. For instance, in a parabolic potential
well, the requirement would be that
023505
fb *

�
Tmin

Tvir

�
3=2
: (40)

Although a weaker limit than Eq. (39), giving �c & 104�b

for the above example with Tvir=Tmin � 500, it is still
stronger than those of Eqs. (37) and (38). A detailed treat-
ment of these issues is beyond the scope of the present
paper; it should include modeling of the t! 1 limit as
well as merger-induced star formation and the effect of
dark matter substructure disturbing and thickening the
disk.

C. Second generation star formation

Suppose that all the above conditions have been met so
that a halo has formed where gas has cooled and produced
at least one star. The next question becomes whether the
heavy elements produced by the death of the first star(s)
can be recycled into a solar system around a second
generation star, thereby allowing planets and perhaps ob-
servers made of elements other than hydrogen, helium and
the trace amounts of deuterium and lithium left over from
big bang nucleosynthesis.

The first supernova explosion in the halo will release not
only heavy metals, but also heat energy of order

E � 10	3m	2
p � 1046J � 1051 erg: (41)

Here m	2
p is the approximate binding energy of a

Chandrashekar mass at its Schwarzschild radius, with the
prefactor incorporating the fact that neutron stars are usu-
ally somewhat larger and heavier and, most importantly,
that about 99% of the binding energy is lost in the form of
neutrinos.

By the virial theorem, the gravitational binding energy E
of the halo equals twice its total kinetic energy, i.e.,

E � Mv2
vir �

��������������
T5

vir

m5
p�vir

vuut ; (42)

where we have used Eq. (23) in the last step. If Esn � E,
the very first supernova explosion will therefore expel
essentially all the gas from the halo, precluding the for-
mation of second generation stars. Combining Eqs. (41)
and (42), we therefore obtain the constraint

�vir & 106 T
5
vir

mp
: (43)

Figure 2 illustrates this fact that lines of constant binding
energy have slope 5, and shows that the second generation
constraint rules out an interesting part of the �nvir; Tvir�
plane that is allowed by both cooling and disruption
constraints.

While we have ignored the important effect of cooling
by gas in the supernova’s immediate environment, this
constraint is probably nonetheless rather conservative,
and a more detailed calculation may well move it further
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to the right. First of all, many supernovae tend to go off in
close succession in a star formation site, thereby jointly
releasing more energy than indicated by Eq. (42). Second,
it is likely that many supernovae are required to produce
sufficiently high metallicity. Since�1 supernova forms per
100M� of star formation, releasing �1M� of metals, rais-
ing the mean metallicity in the halo to solar levels (�
10	2) would require an energy input of order
E=�100m?=mp� � 10	5mp � 10 keV per proton. A careful
calculation of the corresponding temperature would need
to model the gas cooling occurring between the successive
supernova explosions.

D. Encounters and extinctions

The effect of halo density on solar system destruction
was discussed in [4] making the crude assumption that all
halos of a given density had the same characteristic veloc-
ity dispersion. Let us now review this issue, which will play
a key role in determining predictions for the axion density,
from the slightly more refined perspective of Fig. 2.
Consider a habitable planet orbiting a star of mass M
suffering a close encounter with another star of mass My,
approaching with a relative velocity vy and an impact
parameter b. There is some ‘‘kill’’ cross section
�y�M;My; vy� � �b2 corresponding to encounters close
enough to make this planet uninhabitable. There are sev-
eral mechanisms through which this could happen:
(1) I
t could become gravitationally unbound from its
parent star, thereby losing its key heat source.
(2) I
t could be kicked into a lethally eccentric orbit.

(3) T
he passing star could cause disastrous heating.

(4) T
he passing star could perturb an Oort cloud in the

outer parts of the solar system, triggering a lethal
comet impact.
8Encounters have a negligible effect on our orbit if they are
adiabatic, i.e., if the impact duration r=v� torb so that the solar
system returned to its unperturbed state once the encounter was
over. Encounters are adiabatic for

v &
r

ctorb
�
�5=2

m1=4
p

� 0:0001� 30 km=s; (46)

the typical orbital speed of a terrestrial planet. As long as the
impact parameter & rau, however, the encounter is guaranteed to
be nonadiabatic and hence dangerous, since the infalling star will
be gravitationally accelerated to at least this speed.
The probability of the planet remaining unscathed for a
time t is then e	�yt, where the destruction rate is �y is
n?�yvy appropriately averaged over incident velocities vy
and stellar masses M and My. Assuming that n? / nvir,
vy / vvir / T

1=2
vir and �y is independent of nvir and Tvir,

contours of constant destruction rate in Fig. 2 are thus lines
of slope 	1=2. The question of which such contour is
appropriate for our present discussion is highly uncertain,
and deserving of future work that would lie beyond the
scope of the present paper. Below we explore only a couple
of crude estimates, based on direct and indirect impacts,
respectively.

1. Direct encounters

Lightman [104] has shown that if the planetary surface
temperature is to be compatible with life as we know it, the
orbit around the central star should be fairly circular and
have a radius of order

rau � �	5m	3=2
p 	2 � 1011 m; (44)
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roughly our terrestrial ‘‘astronomical unit,’’ precessing
1 rad in its orbit on a time scale

torb � �
	15=2m	5=4

p 	3 � 0:1 yr: (45)

An encounter with another star with impact parameter r &

rau has the potential to throw the planet into a highly
eccentric orbit or unbind it from its parent star.8 For n?,
what matters here is not the typical stellar density in a halo,
but the stellar density near other stars, including the baryon
density enhancement due to disk formation and subsequent
fragmentation. Let us write

n? �
f?nvir

N?
; (47)

where N? �m	3
p � 1057 is the number of protons in a star

and the dimensionless factor f? parametrizes our uncer-
tainty about the extent to which stars concentrate near other
stars. Substituting characteristic values nvir � 103=m3 for
the Milky Way and n? � �1 pc�	3 for the solar neighbor-
hood gives a concentration factor f? � 105. Using this
value, vy � vvir and �y � �r2

au excludes the dark shaded
region to the upper right in Fig. 2 if we require �	1

y to

exceed tmin � 109 yr� �2�	3=2
g 	2, the lifetime of a

bright star [5]. It is of course far from clear what is an
appropriate evolutionary or geological time scale to use
here, and there are many other uncertainties as well. It is
probably an overestimate to take vy � vvir since we only
care about relative velocities. On the other hand, our value
of �y is an underestimate since we have neglected gravi-
tational focusing. The value we used for f? is arguably an
underestimate as well, stellar densities being substantially
higher in giant molecular clouds at the star formation
epoch.

2. Indirect encounters

In the above-mentioned encounter scenarios 1–3, the
incident directly damages the habitability of the planet.
In scenario 4, the effect is only indirect, sending a hail of
comets toward the inner solar system which may at a later
time impact the planet. This has been argued to place
potentially stronger upper limits on Q than direct encoun-
ters [89].
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Although violent impacts are commonplace in our par-
ticular solar system, large uncertainties remain in the sta-
tistical details thereof and in the effect that changing n?
and vy would have. It is widely believed that solar systems
are surrounded by a rather spherical cloud of comets
composed of ejected leftovers. Our own particular Oort
cloud is estimated to contain of order 1012 comets, extend-
ing out to about a light-year (� 105 AU) from the Sun.
Recent estimates suggest that the impact rate of Oort cloud
comets exceeding 1 km in diameter is between 5 and 700
per 1� 106 yr [105]. These impacts are triggered by gravi-
tational perturbations to the Oort cloud sending a small
fraction of the comets into the inner solar system. About
90% of these perturbations are estimated to be caused by
Galactic tidal forces (mainly related to the motion of the
Sun with respect to the Galactic midplane), with random
passing stars being responsible for most of the remainder
and random passing molecular clouds playing a relatively
minor role [105–107].

It is well known that Earth has suffered numerous vio-
lent impacts with celestial bodies in the past, and the 1994
impact of comet Shoemaker-Levy on Jupiter illustrated the
effect of comet impacts. Although the nearly 10 km wide
asteroid that hit the Yucatan 65� 106 yr ago [108] may
actually have helped our own evolution by eliminating
dinosaurs, a larger impact of a 30 km object 3:47�
109 yr ago [109] may have caused a global tsunami and
massive heating, killing essentially all life on Earth. (For
comparison, the Shoemaker-Levy fragments were less than
2 km in size.) We therefore cannot dismiss out of hand the
possibility that we are in fact close to the edge in parameter
space, with only a modest increase in comet impact rates
on planets causing a significant drop in the fraction of
planets evolving observers. This possibility is indicated
by the light-shaded excluded region in the upper right of
Fig. 2.

However, there are large uncertainties here of two types.
First, we lack accurate risk statistics for our own particular
solar system. Although the lunar crater radius distribution
is roughly power law of slope	2 at high end, we still have
very limited knowledge of the size distribution of comet
nuclei [110] and hence cannot accurately estimate the
frequency of extremely massive impacts. Second, we
lack accurate estimates of what would happen in denser
galaxies. There, the more frequent close encounters with
other stars could rapidly strip stars of much of their danger-
ous Oort cloud, so it is far from obvious that the risk rises
as n?vy. One interesting possibility is that the inner Oort
cloud at radii & 1000 AU contributes a substantial fraction
of our impact risk, in which case such tidal stripping of
most of the cloud by volume will do little to reduce risk.

An indirect hint that comet impacts are anthropically
important may be the observation [111] that the orbit of our
Sun through the galaxy appears fine-tuned to minimize
Oort cloud perturbations and resulting comet impacts:
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compared to similar stars, its orbit has an unusually low
eccentricity and small amplitude of vertical motion relative
to the Galactic disk.

3. Nearby explosions

A final category of risk that deserves further exploration
is that from nearby supernova explosions and gamma-ray
bursts. Since these are independent of stellar motion and
thus depend only on n?, not on Tvir, they would correspond
to a horizontal upper cutoff in Fig. 2. For example, the
Ordovician extinction 440� 106 years ago has been
blamed on a nearby gamma-ray burst. This would have
depleted the ozone layer causing a massive increase in
ultraviolet solar radiation exposure and could also have
triggered an ice age [112].

E. Black hole formation

There are two potentially rather extreme selection ef-
fects involving black holes.

First, Fig. 2 illustrates a vertical constraint on the right
side corresponding to large Tvir values. Since the right edge
of the halo banana is at vvir �Q

1=2c, typical halos will
form black holes forQ values of order unity as discussed in
[4]. Specifically, typical fluctuations would be of black
hole magnitude already by the time they entered the hori-
zon, converting some substantial fraction of the radiation
energy into black holes shortly after the end of inflation and
continually increasing this fraction as longer wavelength
fluctuations entered and collapsed. For a scale-invariant
spectrum, extremely rare fluctuations that areQ	1 standard
deviations out in the Gaussian tail can cause black hole
domination if [4]

Q * 10	1: (48)

This constraint is illustrated in Fig. 12 below rather than in
Fig. 3.

A second potential hazard occurs if halos form with high
enough density that collapsing gas can trap photons. This
makes the effective � factor close to 4=3 so that the Jeans
mass does not fall as collapse proceeds, and collapse
proceeds in a qualitatively different way because there
will be no tendency to fragment. This might lead to pro-
duction of single black hole (instead of a myriad of stars) or
other pathological objects, but what actually happens
would depend on unknown details, such as whether angular
momentum can be transported outward so as to prevent the
formation of a disk.

F. Constraints related to the baryon density

To conclude our discussion of selection effects, Fig. 6
illustrates a number of constraints that are independent of
Q and ��, depending on the density parameters �b and �c
-17



FIG. 6 (color online). Qualitatively different parts of the
��b; �c� plane. Our observed universe corresponds to the star,
and altering the parameters to leave the white region corresponds
to qualitative changes. The hatched regions delimit baryon
fractions fb � �b=�c > 300 and fb < 1, which may suppress
galaxy formation by impeding disk fragmentation and by Silk
damping out Galaxy-scale matter clustering, respectively. The
shaded regions delimit interesting ranges of constant total matter
density parameter � � �b � �c —to what extent these qualita-
tive transitions are detrimental to galaxy formation deserves
further work.
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for baryonic and dark matter either through their ratio or
their sum � � �b � �c.

As we saw in Sec. III B 2, a very low baryon fraction
fb � �b=� & 300 may preclude disk fragmentation and
star formation. On the other hand, a baryon fraction of
order unity corresponds to dramatically suppressed matter
clustering on Galactic scales, since Silk damping around
the recombination epoch suppresses fluctuations in the
baryon component and the fluctuations that created the
Milky Way were preserved through this epoch mainly by
dark matter [113].

Recombination occurs at T � Ry=50�mp�2=100�
3000 K, whereas matter domination occurs at Teq � 0:2�.
If � & 0:05mp�

2, recombination would therefore pre-
cede matter-radiation equality, occurring during the
radiation-dominated epoch. It is not obvious whether this
would have detrimental effects on galaxy formation, but it
is interesting to note that, as illustrated in Fig. 6, our
universe is quite close to this boundary in parameter space.

If we instead increase �, a there are two qualitative
transitions.

In the limit x � ��=�m � 1, using Eq. (15), Eq. (A4)
and �m � �n� gives
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� �
�
�2

2��3�

�
1=3
��s���

�Q
T
� 0:330 28s���

�Q
T
: (49)

This means that the first Galactic mass structures [s��� �
28] go nonlinear at T � 9�Q, i.e., before recombination if
� * 10	3mp�2mp=Q. A baryonic cloud able to collapse
before or shortly after recombination while the ionization
fraction remained substantial would trap radiation and, as
mentioned above in Sec. III E, potentially produce a single
black hole instead of stars.

Big bang nucleosynthesis (BBN) occurs at T �mpn �
1 MeV, so if we further increase � so that � * mpn, then
the universe would be matter-dominated before BBN, pro-
ducing dramatic (but not necessarily fatal [57]) changes in
primordial element abundances.
IV. PUTTING IT ALL TOGETHER

As discussed in the introduction, theoretical predictions
for physical parameters are confronted with observation
using Eq. (1), where neither of the two factors fprior�p� and
fselec�p� are optional. Above we discussed the two factors
for the particular case study of cosmology and dark matter,
covering the prior term in Sec. II and the selection effect
term in Sec. III. Let us now combine the two and inves-
tigate the implications for the parameters �, Q and ��.

A. An instructive approximation

For this exercise, we would ideally want to compute, say,
the function fselec�p� defined as the fraction of protons
ending up in stable habitable planets as function of
���; �; �b; Q�, leaving the particle physics parameters
fixed at their observed values. Figure 3 shows that this is
quite complicated, for two reasons. First, as discussed
above we have computed only certain integrated versions
of fselec. Second, the other selection effects discussed in-
volve substantial uncertainties. To provide useful qualita-
tive intuition, let us therefore start by working out the
implications of the simple approximation that there are
sharp upper and lower halo density cutoffs, i.e., that ob-
servers only form in halos within some density range
�min � �vir � �max, where these two density limits may
depend onQ, � and �b. Based on the empirical observation
that typical galaxies lie near the right side of the cooling
curve in Fig. 2, one would expect �min to be determined by
the bottom of the cooling curve and �max by the intersec-
tion of the cooling curve with the encounter constraint.

Equation (20) showed that the fraction of all protons
collapsing into a halo of mass � is
erfc�A���=���

1=3=s���G1, where �� � Q3�4 can be
crudely interpreted as the characteristic density of the first
halos to form. Roughly, A=s���G1 � 1, �4 is the matter-
radiation equality density andQ3 is the factor by which our
Universe gets diluted between equality (when fluctuations
start to grow) and galaxy formation. More generally, of
-18



FIG. 7 (color online). The fraction of all protons that end up in
halos with density in the range �min < �vir < �max is shown as a
function of the cosmological parameters �� and �� � Q3�4.
The contours show fractions 0:3, 0:05 and 0:003 for the example
�min � 10	128, �max � 10	120 (the two dashed lines) and � �
10	5 [corresponding roughly to 1012M� halos and giving
s��� � 28]. When �� � Q3�4, essentially no halos at all are
formed. When Q3�4 & 10	3�min, essentially all halos have
�vir < �min. When Q3�4 * 102�max, essentially all halos have
�vir > �max. The star shows our observed parameter values.
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these protons, the fraction fh in halos within a density
range �min � �vir � �max is

fh���; �; �b; Q� � erfc
�
���=�̂��

1=3

G��x��min��

�

	 erfc
�
���=�̂��

1=3

G��x��max��

�
; (50)

where the function x��� is given by Eq. (24) extended so
that x��� � 1 for � � 16��. For convenience, we have
here defined the rescaled density

�̂ � �
�
s���
A

�
3
��: (51)

Figure 7 is a contour plot of this function, and illustrates
that in addition to classical constraint �� & Q3�4 dating
back to Weinberg and others [11,44,84–88], we now have
two new constraints as well: ��-independent upper and
lower bounds on �� � Q3�4.

B. Marginalizing over ��

As mentioned in Sec. II, there is good reason to expect
the prior fprior���; �; Q� to be independent of �� across the
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tiny relevant range j��j & Q3�4 where fselec���; �; Q� is
non-negligible. This implies that we can write the pre-
dicted parameter probability distribution from Eq. (1) as

f���;�;�b;Q�/fprior��;�b;Q�fo��;�b;Q�fh���;�;�b;Q�;

(52)

where fo��; �b; Q� is the product of all other selection
effects that we have discussed—we saw that these were
all independent of ��.

The key point here is that the only �� dependence in
Eq. (52) comes from the fh term, i.e., from selection effects
involving the halo banana. It is therefore interesting to
marginalize over �� and study the resulting predictions
for Q and �. Thus integrating Eq. (52) over ��, we obtain
the theoretically predicted probability distribution

f��;Q� / fprior��; �b; Q�fo��; �b; Q�fh��; �b; Q�;

where fh��; �b; Q� �
Z 1

0
fh���; �; �b; Q�d��:

(53)

Note that if �min and �max are constants, then fh��;Q� is
really a function of only one variable: since Eq. (50) shows
that � and Q enter in fh���; �; Q� only in the combination
�� � Q3�4, the marginalized result fh��;Q� will be a
function of �� alone. Figure 8 shows this function eval-
uated numerically for various values of �min and �max, as
well as the following approximation (dotted curves) which
becomes quite accurate for �� �min and �� �max:

fh �
�
724:9

�̂1=3
�

�4=3
max

�

����
�
p

G3
1�̂�erfc�� �min

18�2�̂�
�1=3

�
	1

(54)

This approximation is valid also when �min and �max are
functions of the cosmological parameters, as long as they
are independent of ��. To understand this result qualita-
tively, consider first the simple case where we count bary-
ons in all halos regardless of density, i.e., �min � 0,
�max � 1. Then a straightforward change of variables in
Eq. (52) gives fh���� / �� � Q3�4, as was previously
derived in [3]. This result troubled the authors of both
[3,89], since any weak prior on Q from inflation would
be readily overpowered by the Q3 factor, leading to the
incorrect prediction of a much larger CMB fluctuation
amplitude than observed. The same result would also spell
doom for the axion dark matter model discussed in
Sec. II A, since the �	1=2 prior would be overpowered by
the �4 factor from the selection effect and dramatically
overpredict the dark matter abundance.

Figure 8 shows that the presence of selection effects on
halo density has the potential to solve this problem. Both
the problem and its potential resolution can be intuitively
understood from Fig. 7. Note that fh���� is simply the
-19



FIG. 10 (color online). Same as previous figure, but showing
the probability distribution for �1=2, the quantity which has a
uniform prior in our axion model. The shape of this curve
therefore reflects the selection effect alone.

FIG. 9 (color online). Probability distribution for the axion
dark matter density parameter � measured from a random
1012M� halo with virial density below 5000 times the present
cosmic matter density. Green/light shading indicates the 95%
confidence interval. The dotted vertical line shows our observed
value � � 4 eV, in good agreement with the prediction. The
dashed curves show the analytic asymptotics �9=2 and �	5=6,
respectively.

FIG. 8 (color online). The probability factor fh���� after mar-
ginalizing over ��. The black line of slope 1 is for �min � 0,
�max � 1. Increasing �min shifts the exponential cutoff on the
left side progressively further the right: �min � 10	5, 10	4, 10	3

and 10	2 times the density at the dotted horizontal line gives the
four curves on the left. Decreasing �max shifts left the break to a
	1=3 slope further to the right: �max � 100, 10, 1 and 0:1 times
the density at the dotted horizontal line gives the four downward-
sloping curves on the right, respectively.
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horizontal integral of this two-dimensional distribution.
For �min � �� � �max, the integrand� 1 out to the �� �
�� line marked ‘‘NO HALOS,’’ giving fh���� / ��. In the
limit �� � �max, however, we are integrating across the
region marked ‘‘TOO DENSE’’ in Fig. 8, and the result
drops as fh���� / �

4=3
max=�

1=3
� � �4=3

max=Q�4=3. This is why
Fig. 8 shows a break in slope from �1 to 	1=3 at a
location �� � �max=200, as illustrated by the four curves
with different �max values. Conversely, in the limit �� �
�min, we are integrating across the exponentially sup-
pressed region marked ‘‘TOO DIFFUSE’’ in Fig. 7, caus-
ing a corresponding exponential suppression in Fig. 7 for
�� � �min.

Figures 9 and 10 illustrate this for the simple example of
using the Sec. II A axion prior fprior��� / �

	1=2, treating Q
as fixed at its observed value, ignoring additional selection
effects [fo��� � 1], and imposing a halo density cutoff
�max of 5000 times the current cosmic matter density.

The key features of this plot follow directly from our
analytic approximation of Eq. (54). First, for �� � �max,
we saw that fh / �� / �4, so Eq. (53) gives the probability
growing as f / �	1=2�4� � �9=2 (the last � factor comes
from the fact that we are plotting the probability distribu-
tion for log� rather than �). This means that imposing a
023505-20



FIG. 11 (color online). Probability distribution for the quantity
R � ��=�4Q3 measured from a random 1012M� halo, using a
uniform prior for R and ignoring other selection effects. This is
equivalent to treating � and Q as fixed. Green/light shading
indicates the 95% confidence interval, the dotted line indicates
the observed value R � 15.
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lower density cutoff �min would have essentially no effect.
This also justifies our approximation of using the total
matter density parameter � as a proxy for the dark matter
density parameter �c: we have a baryon fraction �b=�c �
1 in the interesting regime, with a negligible probability for
�c & �b � 0:6 eV (the probability curve continues to drop
still further to the left even without the fh factor). Second,
for �� � �max, we saw that fh / �

	1=3
� / �	4=3, so

Eq. (53) gives the probability falling as f�ln�� /
�	1=2�	4=3� � �	5=6.

Although this simple example was helpful for building
intuition, a more accurate treatment is required before
definitive conclusions about the viability of the axion
dark matter model can be drawn. One important issue, to
which we return below in Sec. IV, is the effect of the
unknown Q prior, since the preceding equations only con-
strained a combination of Q and �. A second important
issue, to which we devote the remainder of this subsection,
has to do with properly incorporating the constraints from
Fig. 3. If we only consider the encounter constraint and
make the unphysical simplification of ignoring the effect of
halo velocity dispersion, then our upper limit should be not
on dark matter density (�max constant) but on baryon
density (�max�b=� constant). Inserting this into Eq. (54)
makes the term �̂1=3

� =�4=3
max independent of � as �! 1,

replacing the fh / Q	1�	4=3 cutoff by fh / Q	1�	4=3
b ,

which is constant if �b is. The axion prior would then
predict a curve f�ln�� / �1=2 rising without bound. This
failure, however, results from ignoring some of the physics
from Fig. 3. Considering a series of nominally more likely
domains with progressively larger �, they typically have
more dark energy (�� / �) and higher characteristic halo
baryon density (nvir / �3�b), so stable solar systems are
found only in rare galaxies that formed exceptionally late,
just before �� domination, with nvir / �vir�b=� *

16���b=� / �b roughly � independent and below the
maximum allowed value. Since the increased dark matter
density boosts virial velocities, this failure mode corre-
sponds to moving from the star in Fig. 3 straight to the
right, running right into the constraints from cooling and
velocity-dependent encounters. In other words, a more
careful calculation would be expected to give a prediction
qualitatively similar to that of Fig. 9. The lower cutoff
would remain visually identical to that of Fig. 9 as long
as �min can be neglected in the calculation, whereas the
upper cutoff would become either steeper or shallower
depending on the details of the encounter and cooling
constraints. This interesting issue merits further work
going well beyond the scope of the present paper, extend-
ing our treatment of halo formation, halo mergers and
galaxy formation into a quantitative probability distribu-
tion in the plane of Fig. 3, i.e., into a function
f�Tvir; nvir;Q;��; �; �b� that could be multiplied by the
plotted constraints and marginalized over �Tvir; nvir� to
give fselec�Q;��; �; �b�.
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C. Predictions for ��

This above results also have important implications for
the dark energy density ��. The most common way to
predict its probability distribution in the literature has been
to treat all other parameters as fixed and assume both that
the number of observers is proportional to the matter
fraction in halos (which in our notation means fselec�p� �
erfc�A���=Q

3�4�1=3=s���G1) and that fprior���� is con-
stant across the narrow range j��j & Q3�4 where fselec is
non-negligible. This gives the familiar result shown in
Fig. 11: a probability distribution consistent with the ob-
served �� value but favoring slightly larger values. The
numerical origin of the predicted magnitude �� � 10	123

is thus the measured value of �� � Q3�4.
Generalizing this to the case where Q and/or � can vary

across an inflationary multiverse, the predictions will de-
pend on the precise question asked. Figure 11 then shows
the successful prediction for �� given (conditionalized on)
our measured values for Q and �. However, when testing a
theory, we wish to use all opportunities that we have to
potentially falsify it, and each predicted parameter offers
one such opportunity. For our axion example, the theory
predicts a 2-dimensional distribution in the ���; �� plane of
which Fig. 9 is the marginal distribution for �. The corre-
sponding marginal distribution for �� (marginalized over
�) will generally differ from Fig. 11 in both its shape and in
the location of its peak. It will differ in shape because the
���; �� distribution is not generally separable: the selection
effects (as in Fig. 11) will not be a function of �� times a
function of �; in other words, a uniform prior on �� will
not correspond to a uniform prior on the quantity R �
��=Q3�4 plotted in Fig. 7 once nonseparable selection
-21



FIG. 12 (color online). Crude summary of constraints
��;Q�-plane constraints from Table IV. The star shows our
observation ��;Q� � �4 eV; 2� 10	5�. The parallel dotted lines
are lines of constant characteristic halo density, so the constraint
that dark matter halos form (that they go nonlinear before
vacuum domination freezes fluctuation growth) rules out every-
thing to the lower left of these lines, which from left to right
correspond to ��=�

obs
� � 10	3, 1, 103. This means that if � is

fixed, marginalizing over �� pushes things to the triangle at
larger Q (the ‘‘smoothness problem’’ [3]), but if � too can vary,
marginalizing over �� instead pushes things to the square at
smaller Q.
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effects such as ones on the halo density parameter �� �
Q3�4 are included. Moreover, the distribution will in gen-
eral not peak where that in Fig. 11 does because the
predicted magnitude �� � 10	123 no longer comes from
conditioning on astrophysical measurements of Q and �,
but from other parameters like �,  and mp that determine
the selection effects in Fig. 3 and the maximum halo
density �max. In this case, whether the observed �� value
agrees with predictions or not thus depends sensitively on
how strong the selection effects against dense halos are.

In summary, the prediction of �� given Q and � is an
unequivocal success, whereas predictions for Q, � and the
entire joint distribution for ���; �; Q� are fraught with the
above-mentioned uncertainties. Since a uniform �� prior
does not imply a uniform R � ��=Q3�4 prior, we cannot
conclude that anthropic arguments succeed in predicting
R � ��=Q3�4 [89] without additional hypotheses.

D. Constraint summary

Table IV summarizes the constraints that we have dis-
cussed above. Those not superseded by other stronger ones
are also illustrated in Fig. 12, with �b fixed at its observed
value. Let us briefly comment on how they all fit together.

The first key point to note in Fig. 12 is that the various
constraints involve many different combinations of Q and
�, thereby breaking each other’s degeneracies and provid-
ing interesting constraints on both � and Q separately. The
fragmentation constraint (requiring disk instability) con-
strains � alone when �b is given whereas there are con-
straints on Q alone from both line cooling freeze-out and
primordial black hole trouble. The encounter and cooling
constraints both have different slopes (	 1 and 	2=3,
respectively) because they involve different powers of the
baryon fraction. Whereas the nonlinear halo constraint
depends on the total halo density / Q3�4, the encounter
constraint depends on the halo baryon density / Q3�3�b.
The cooling constraint [which is Eq. (11) in [4] after
changing variables to reflect the notation in this paper]
comes from equating the cooling time scale (given by the
inverse of the baryon density / Q3�3�b) and the dynamical
time scale (given by the total density as / �	1=2

vir /

�Q3�4�	1=2, thus constraining the combination Q3�2�2
b.

The second key point in Fig. 12 is that this combination
of constraints reverses previously published conclusions
about Q. Where we should expect to find ourselves in
Fig. 12 depends on the priors for both Q and �. Recall
that halos form only above whichever dotted line corre-
sponds to the �� value. If the prior for �� is indeed
uniform, then it is a priori (before selection effects are
taken into account) 1000 times more likely for the halo
constraint to be the upper dotted line than the middle one,
and this is in turn 1000 more likely than the bottom dotted
line. In other words, marginalizing over �� relentlessly
pushes us toward the upper right in Fig. 12, toward larger
value of �� � Q3�4. This means that if � is fixed and only
023505
Q can vary across the ensemble, marginalizing over ��

pushes things toward the triangle at larger Q. This
‘‘smoothness problem’’ was pointed out in [4] and elabo-
rated in [3,114,115], suggesting that unless the fprior�Q�
falls off as Q	4 or faster, it is overpowered by the selection
effect and one predicts a clumpier universe than observed
(the star in Fig. 12 should be shifted vertically up against
the edge of the encounter constraint, to the triangle).
Figure 12 shows that if � too can vary, marginalizing
over �� instead pushes things toward smaller Q, to the
square, since this gives the greatest allowed halo density
/ Q3�4. In [3], it was found that certain low-energy in-
flation scenarios naturally predicted a rather flat priors for
lgQ—to determine whether they are ruled out or not thus
requires more detailed modeling of the effect of the dark
matter density on galaxy formation and encounters.

Table IV illustrates that (except for one rather unimpor-
tant logarithm), all constraints we have considered corre-
spond to hyperplanes in the 7-dimensional space
parametrized by

�lg�; lg; lgmp; lg��; lgQ; lg�; lg�b�; (55)

providing a simple geometric interpretation of the selection
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effects. This means that if all priors are power laws, the
preferred parameter values are determined by solving a
simple linear programming problem, and will generically
correspond to one of the corners of the convex 7-
dimensional allowed region. Above we have frequently
used such sharp inequalities to help build intuition for the
underlying physics. For future extensions of this work,
however, it should be borne in mind that such inequalities
are not necessarily sufficient to capture the key features of
the problem, and that they can either overstate or under-
state the importance of selection effects. The ultimate goal
is to test theories by computing the predicted probability
distribution from Eq. (1), and almost no selection effects
fselec�p� correspond to sharp cutoffs resembling a
Heaviside step function. Some (like the halo constraint)
are exponential and thus able to overpower any power law
prior. Others, however, may be softer, and it is therefore
crucial to check whether their functional form falls of
faster than the relevant prior grows—if not, the ‘‘con-
straint’’ will be penetrated, and the most likely parameter
values may lie in the allegedly ‘‘disallowed region.’’
Conversely, if f�p� � fprior�p�fselec�p� is rather flat in a
large ‘‘allowed region,’’ then the most likely parameter
values can lie well inside it, far from any edges, since it
corresponds to the peak of the probability distribution
rather than its edge.

V. CONCLUSIONS

We have discussed predictions for the 31-dimensional
vector p of dimensionless physical constants in the context
of ‘‘ensemble theories’’ producing multiple Hubble vol-
umes (‘‘universes’’) between which one or more of the
parameters can differ. The prediction is the probability
distribution of Eq. (1), where neither of the two factors is
optional. Although it is generally difficult to evaluate either
one of the terms, it is nonetheless crucial: if candidate
theories involve such ensembles, they are neither testable
nor falsifiable unless their probabilistic predictions can be
computed.

Although many scientists hope that fprior in Eq. (1) will
be a multidimensional Dirac 
 function, rendering selec-
tion effects irrelevant, to elevate this hope into an assump-
tion would, ironically, be to push the anthropic principle to
a hedonistic extreme, suggesting that nature must be de-
vised so as to make mathematical physicists happy. We
must therefore face some difficult questions both about
what, in principle, to select on, and how to quantitatively
calculate that selection effect. For both statistical mechan-
ics and quantum mechanics, it proved challenging to cor-
rectly predict probability distributions. If the analogous
challenge can be overcome for theories predicting dimen-
sionless constants, they too will become testable in the
same fashion. The fact that we can only observe once is
not a show-stopper: a single observation of a vertically
polarized photon passing through a polarizer � � 89:9�
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from vertical would rule out quantum mechanics at 1	
cos2� � 99:9997% confidence. The outstanding difficulty
is therefore not a ‘‘philosophical’’ problem that we cannot
observe the full ensemble, but rather that we generally do
not know how to compute the theoretical prediction f�p�.

A. Axion dark matter

We have tackled this problem quantitatively for a par-
ticular example where both factors in Eq. (1) are comput-
able: that of axion dark matter with its phase transition well
before the end of inflation. We found that fprior��� / �

	1=2,
i.e., that the prior dark matter distribution has no free
parameters even though the axion model itself does. We
saw that this useful predictability gain has the same basic
origin as that of the zero-parameter (flat) ��-prior of [84]:
the anthropically relevant range over which fselec is non-
negligible is much smaller than the natural range of fprior,
so only a particular property of fprior matters. For the
famous ��-case, the natural fprior range involves either
the supersymmetry-breaking scale or the Planck scale
j��j & �planck whereas the relevant range is j��j &

10	123�planck, so the property that fprior���� is smooth on
that tiny scale implies that it is for all practical purposes
constant. For our � case, the natural fprior range is 0 � � �

�� where �1=4
� lies somewhere between the inflation scale

and the Planck scale, whereas the relevant range is much
smaller, so the only property of fprior��� that matters is its
asymptotic scaling as �! 0.

In computing the selection effect factor fselec���; �; Q�,
we took advantage of the fact that none of these parameters
affect chemistry or biology directly. We could therefore
avoid poorly understood biochemical issues related to life
and consciousness, and could limit our calculations to
astrophysical selection effects involving halo formation,
galaxy, solar system stability, etc. The same simplifying
argument has been previously applied to �� and the neu-
trino density (e.g., [56]). We discovered that combining
various astrophysical selection effects with all three pa-
rameters ���; Q; �� as variables reversed previous conclu-
sions (Fig. 12), pushing toward lower rather than higher
Q values. In particular, we found that one can reach mis-
leading conclusions by simply taking fselec to be the matter
fraction collapsing into halos, neglecting the fact that very
dense halos limit planetary stability. In particular, we found
that if we impose a stiff upper limit on the density of
habitable halos, the predicted probability distribution for
the dark matter density parameter (Fig. 9) can be brought
into agreement with the measured �-value for reasonable
assumptions, i.e., that the preinflationary axion model is a
viable dark matter theory.

B. Multiple dark matter components

Suppose that supersymmetry were to be discovered at
the Large Hadron Collider, indicating the existence of a
-23
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WIMP with a relic density approximately equal to the
observed dark matter density, i.e., with �wimp � �c. There
would then be a strong temptation to declare the dark
matter problem solved. Based on our results, however,
that would be quite premature.

As detailed in Sec. II B, it is not implausible that the
function fprior��wimp� to be taken as input to the astrophys-
ics calculation is a sharply peaked function whose relative
width is much narrower than that of fselec��c�, perhaps only
a few percent. This situation could arise if the fundamental
theory predicted a broad prior only for the �2 parameter in
Table I (which controls the Higgs vacuum expectation
value), since this may arguably be determined to within a
few percent from selection effects in the nuclear physics
sector, notably stellar carbon and oxygen production. If the
preinflationary axion model is correct, we would then have

�c � �wimp � �axion; (56)

where fprior��axion� / �
	1=2
axion and �wimp would be for all

practical purposes a constant. This gives fprior��c� / ��c 	

�wimp�
	1=2 for �c 
 �wimp, zero otherwise, and the testable

prediction becomes this times the astrophysical factor
selection effects factor fselec��c� that we have discussed.
Repeating the calculation of [15], this implies that we
should expect to find roughly comparable densities of
WIMP and axion dark matter.

As shown in [15], removing the assumption that
fprior��wimp� is sharply peaked does not alter this qualitative
conclusion. This conclusion would also hold for any other
axionlike fields that were energetically irrelevant during
inflation, even unrelated to the strong CP problem. More
generally, string-inspired model building suggests the pos-
sibility that multiple species of ‘‘GIMPS’’ (gravitationally
interacting massive particles that do not couple through the
electromagnetic, weak or strong interactions) may be
present. According to recent understanding, their presence
may be expected for modular inflation, though not for
brane inflation [116]. If such particles exist and have
generic not-too-extreme priors (falling no faster than �	1

and rising no faster than the selection effect cutoff), then
our anthropic constraints on the sum of their densities
again predict a comparable density for all of species of
dark matter that have a rising prior [15].

Even before the LHC turns on, more careful calculation
of the astrophysical selection effects determining fselec

could give interesting hints. If the constraints on dense
halos turn out to be rather weak so that the improved
version of Fig. 9 predicts substantially more axion dark
matter than observed, this will favor an alternative model
such as WIMPs where fprior��c� is so narrow that �c is
effectively determined nonanthropically. Alternatively, if
Fig. 9 remains consistent with observation, then it will be
crucial to follow up an initial LHC SUSY or other WIMP
detection, if it occurs, with detailed measurements of the
023505
relevant parameters to establish whether the WIMP density
accounted for (which a linear collider might, in favorable
cases, pinpoint within a few percent [76]) is exactly equal
to the cosmologically measured dark matter density, or
whether a substantial fraction of the dark matter still
remains to be accounted for.
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APPENDIX: FITTING FUNCTIONS USED

In this appendix, we derive a variety of fitting functions
used in the paper, explicitly highlighting the dependence of
standard cosmological structure formation on the dimen-
sionless parameters �, ��, Q and �. Since some of our
approximations are quite accurate, we retain the exact
numerical coefficients where appropriate.

1. The fluctuation time dependence G�x�

As shown in [55], the function

G��x� � x1=3

�
1�

�
x

G3
1

�
�
�
	1=3�

; (A1)

where � � 159=200 � 0:795 and

G1 �
5��23���

5
6�

3
����
�
p � 1:437 28; (A2)

describes how, in the absence of massive neutrinos, fluc-
tuations in a �� > 0 �CDM universe grow as the cosmic
scale factor a as long as dark energy is negligible [G��x� �
x1=3 / a / �1� z�	1 for x� 1] and then asymptote to a
constant value as t! 1 and dark energy dominates
[G��x� ! G1 as x! 1].

Including the effect of radiation domination early on but
ignoring baryon-photon coupling, the total growth factor is
well approximated by [55]

G�x� � 1�
3

2
x	1=3

eq G��x�; (A3)

which is accurate to better than 1.5% for all x [55]. In
essence, fluctuations grow as 
 / a / x1=3 between matter
-24
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domination (x � xeq) and dark energy domination (x � 1),

giving a net growth of x	1=3
eq . Equation (A3) shows that they

grow by an extra factor of 1.5 by starting slightly before
matter domination and by an extra factorG��1� � 1:44 by
continuing to grow slightly after dark energy domination.

Let us now simplify this result further. From the defini-
tion of �, the matter density can be written �m � �n�,
where n� is the number density of photons. The latter is
given (in Planck units) by the standard black body formula

n� �
2��3�

�2 T3; ��3� � 1:202 06: (A4)

The corresponding standard formula for the energy density
is

�� �
�2

15
T4 (A5)

for photons and

��� �
21

8

�
4

11

�
4=3
�� � 0:68132�� (A6)

for three standard species of relativistic massless neutrinos.
The matter-radiation equality temperature where �m �

�� � �
�
� is thus

Teq �
30��3�

�4

�
1�

21

8

�
4

11

�
4=3
�
	1
� � 0:220 189�; (A7)

measured to be about 9400 K in our Hubble volume. Since
xeq � ��=�

eq
m � ��=�n��Teq�, we thus obtain

xeq �
�14

2 � 303��3�4

�
1�

21

8

�
4

11

�
4=3
�

3 ��

�4 � 384:554
��

�4 :

(A8)

The above relations are summarized in Tables II and III. In
all cases of relevance to the present paper, the growth
factor G�x� � 1, allowing initial fluctuations Q� 1 to
grow enough to go nonlinear. We can therefore drop the
first term in Eq. (A3), obtaining the useful result

G�x� �
45 � 21=3��3�4=3

�14=3

�
1�

21

8

�
4

11

�
4=3
�
	1 �4=3

�1=3
�

G��x�

� 0:206 271
�4=3

�1=3
�

G��x�: (A9)
2. The fluctuation scale dependence s���

The rms fluctuation amplitude � in a sphere of radius R
are given by [117]

�2 � 4�
Z 1

0

�
sinx	 x cosx

x3=3

�
2
P�k�

k2dk

�2��3
; (A10)

where x � kR. We are interested in the linear regime long
after the relevant fluctuation modes have entered the hori-
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zon, when all modes grow at the same rate (assuming a
cosmologically negligible contribution from massive neu-
trinos as per [118]. This means that � can be factored as a
product of a function of time x and a function of comoving
scale:

� � QG�x�s���: (A11)

Here Q is the amplitude of primordial fluctuations created
by, e.g., inflation, defined as the scalar fluctuation ampli-
tude 
H on the horizon. As our measure of comoving scale,
we use the dimensionless quantity

� � �2M; (A12)

where M is the comoving mass enclosed by the above-
mentioned sphere.

The horizon mass at matter-radiation equality is of order
�	2, so � can be interpreted as the mass relative to this
scale. This equality horizon scale is the key physical scale
in the problem, and the one on which the matter power
spectrum has the well-known break in its slope (fluctuation
modes on smaller scales entered the horizon before equal-
ity when they could not grow). For reference, the measured
vales from WMAP+SDSS give � � 3� 10	28, �	2 �
1017 solar masses and � � R=�60 h	1 Mpc�3 for a sphere
of comoving radius R. Numerically, using Eq. (A10) and
employing [113] to compute P�k�, we find that the scale
dependence s��� is approximately given by

s���� ��9:1�	2=3���50:5lg�834��	1=3�	92�1=;

(A13)

where  � 	0:27. This assumes that the primordial fluc-
tuations are approximately scale-invariant and that massive
neutrinos have no major effect, as indicated by recent
measurements [118–120]. For our observed � value a
galactic mass scale M � 1012M� thus corresponds to � �
�2M � 10	5 and s��� � 28. Again using measured pa-
rameter values, the common reference scale R � 8h	1Mpc
corresponds to � � 0:002 and s��� � 11.

3. The virial density �vir�x�

We will now derive the virial density of a halo formed at
time x in a �CDM universe, generalizing the standard
result �vir � 18�2�m�x�. Whereas past work on this sub-
ject [121,122] has focused on accurate numerical fits to the
observationally relevant present epoch and recent past
(x & 1), we need a formula accurate for all times x.

Consider first the evolution of a top hat overdensity in a
�CDM universe. By Birkhoff’s theorem, it is given by the
Friedman equation corresponding to a closed universe:

3H2

8�G
� �� � �m 	

k

a2 �

�
1	

�

A2 �
1

A3

�
��; (A14)
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FIG. 13 (color online). The top panel shows the turnaround
(minimum) matter density �turn of a top hat halo as a function of
the time x when its collapses. The virial density of the resulting
dark matter halo is �vir � 8�turn. The solid curve is the exact
result, with the asymptotic behavior �turn ! 9�2�m=4x as x! 0
and �turn ! 2�� as x! 1 (dotted lines). The three analytic fits
correspond to Eq. (A18) (short-dashed), Eq. (A19) (dotted) and
that of [121,122], which in our notation is �18�2=x� 18�2 	
82	 39x=�1� x��=8. The first two are seen to be accurate to
better than 18% and 4%, respectively (bottom panel).
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where we have defined a dimensionless scale factor A �
���=�m�

1=3 and a dimensionless curvature parameter � �
�A=a�2k. One readily finds that this will give H � 0 and
recollapse for any curvature � > �min � 3=22=3 � 1:8899,
so the scale factor Amax��� at turnaround is given by solv-
ing Eq. (A14) for H � 0, i.e., by numerically finding the
smallest positive root A of the cubic polynomial A3 	

�A� 1 � 0. Amax��min� � 2	1=3 � 0:79, falling off as
Amax��� � 1=� for �� 1.

The age of the universe tturn when the top hat turns
around is given by integrating dt � d lnA=�d lnA=dt� �
dA=�AH� using Eq. (A14), i.e.,

H�tturn��� �
Z Amax���

0

dA������������������������
A2 	 �� 1

A

q ; (A15)

where H� � �8�G��=3�1=2. For the unperturbed back-
ground �CDM universe where we used x as a more con-
venient time variable, we have � � 0 and A � x1=3

turn when
the overdensity turns around, giving tturn in terms of xturn:

H�tturn�xturn� �
Z x1=3

turn

0

dA������������������������
A2 � �1=A�

p : (A16)

Eliminating tturn between Eqs. (A15) and (A16) allows us
to numerically compute the function ��xturn�.

Putting everything together now allows us to numeri-
cally compute the density of our top hat overdensity at
turnaround: Since �m � ��=A

3, we have

�turn�xturn� �
��

Amax���xturn��
3 : (A17)

The result is shown in Fig. 13 together with three analytic
fitting functions. The simple fit

�turn�x� � 2
��

9�2

8x

�
107=200

� 1
�

200=107
�� (A18)

is accurate to better than 18% for all x and becomes exact
in the two limits x! 0 and x! 1. The fit

�turn�x� �
�
9�2

4x
�

6:6

x0:3 � 2
�
�� (A19)

is accurate to better than 4% for all x and also becomes
exact in both limits, but we will nonetheless use the less
accurate Eq. (A18) because it is analytically invertible and
still accurate enough for our purposes. Applying the virial
theorem gives a characteristic virial density �vir � 8�turn,
with a weak additional dependence on �� [123].9. This
9The detailed calculation of [123] shows that the standard
collapse factor of 2 varies at the 20% level with �� at the 20%
level. Qualitatively, positive (repulsive) �� increases the col-
lapse factor because shells have to fall further to acquire a
velocity which will bring the system into equilibrium. We will
not explicitly model this correction here given the larger un-
certainties pertaining to other aspects of our treatment.
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means that a halo that virialized at time x has

�vir���18�2�m�x��107=200��16���
107=200200=107; (A20)

i.e., essentially the larger of the two terms 18�2�m�x� and
16��. Inverting this, we obtain

x�
9�2

8

��
�vir

16��

�
107=200

	 1	200=107: (A21)

A familiar quantity in the literature is the collapse over-
density �c � �vir=�m � �virx=��, equaling 18�2 � 178
for a flat �� � 0 universe. Using Eqs. (A18) and (A19) and
the fit in [122] to the calculations of [121] gives

�c�x� � 18�2

�
1�

�
8x

9�2

�
107=200

�
200=107

; (A22)

�c�x� � 18�2 � 52:8x0:7 � 16x; (A23)

�c�x� � 18�2 � �18�2 	 82�x	 39
x2

1� x
; (A24)

respectively. Figure 13 shows that our approximations
substantially improve the accuracy, Eq. (A23) being good
to 4%. This improvement not surprising, since the approxi-
mation (A24) was not designed to work well for x� 1.
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