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Precision measurement of the mean curvature
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Very small mean curvature is a robust prediction of inflation worth rigorous checking. Since current
constraints are derived from determinations of the angular-diameter distance to the CMB last-scattering
surface, which is also affected by dark energy, they are limited by our understanding of the dark energy.
Measurements of luminosity or angular-diameter distances to redshifts in the matter-dominated era can
greatly reduce this uncertainty. With a 1% measurement of the distance to z � 3, combined with the CMB
data expected from Planck, one can achieve ���kh

2� � 10�3. A nonzero detection at this level would be
evidence against inflation or for unusually large curvature fluctuations on super-Hubble scales.
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I. INTRODUCTION.

One of the great triumphs of inflation has been the
inference from CMB observations that �tot � �=�c ’ 1
[1,2]. Here � is the mean total density of the Universe
today and �c is the critical density that is a function of the
expansion rate. As always in general relativity, matter
properties determine metric properties. In particular,
from � � �c it follows that the mean curvature is zero.

The triumphant verification of the zero mean curvature
prediction was especially rewarding for inflation theorists
given the decades of strong observational evidence that the
density of matter (both baryonic and dark) is only about
1=3 of the critical density; i.e., �m ’ 0:3. For example, the
ratio of dark matter mass to baryonic mass (inferred to be
about 6 from x-ray observations of the hot baryons in the
dark matter-dominated potential wells of galaxy clusters)
combined with nucleosynthesis determinations of �b ’
0:05 [3] lead to �m ’ 0:3 [4].

We can understand the difference between �tot ’ 1 and
�m as due to an additional component, called ‘‘dark en-
ergy,’’ that is causing the expansion of the Universe to
accelerate [5,6]. The dark energy, and our lack of under-
standing of it, is actually what currently limits the precision
with which the mean curvature is determined.

Even if we make the strong assumption that the dark
energy is a cosmological constant, it is not possible to
separately determine the cosmological constant and the
mean curvature from CMB data alone [7,8]. However,
with this assumption, measurements to distances in the
low-redshift (dark energy dominated) era, for example, as
inferred from supernovae, can be used to break the CMB
parameter degeneracy and thereby allow simultaneous de-
termination of the cosmological constant and the mean
curvature [9,10].

If we assume the dark energy is a cosmological constant
then current constraints from Wilkinson Microwave
Anisotropy Probe (WMAP) data alone are �tot �
1:09�0:06

�0:13 [11]. The main source of uncertainty here is
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due to the uncertain value of the cosmological constant.
Including the power spectrum of galaxies from the Sloan
Digital Sky Survey and luminosity distances to SNe Ia
improves the determination of the cosmological constant,
tightening up the curvature constraint somewhat to �tot �
1:054�0:048

�0:041 [11]. The best constraint on the mean curvature
(once again assuming the dark energy is a cosmological
constant) comes from the distance determination to z�
0:35 made possible by the detection of the acoustic oscil-
lation feature in the galaxy correlation function [12]; they
find �tot � 1:01� 0:009. Again with the assumption of a
cosmological constant, supernova data alone can be used to
constrain the mean curvature [13].

While the determination of the curvature to �0:01 is a
remarkable achievement, the assumption of the dark en-
ergy as a cosmological constant is a very strong one.
Indeed, whether the dark energy is a cosmological constant
or something else is perhaps one of the most important
questions in fundamental physics today. Given the low
level of our theoretical understanding of the dark energy
[14], we cannot draw robust conclusions if they depend on
the assumption that the dark energy is a cosmological
constant. Dropping this assumption would greatly weaken
all of the above constraints on the mean curvature.

Very small mean curvature is a highly robust prediction
of inflation. During inflation the Universe is in a nearly
time-translation invariant state. Perfect time-translation
invariance would mean inflation lasts forever. With infla-
tion lasting forever, the mean curvature is sent to zero. The
near time-translation invariance is responsible for the near
scale-invariance of the power spectrum of curvature fluc-
tuations produced during inflation. The near scale-
invariance of the power spectrum[15] is evidence that
inflation indeed lasted a long time and therefore that the
mean curvature is very close to zero. The absence of order
unity fluctuations on large scales, as evidenced by the small
anisotropy of the CMB, is further indication that inflation
lasted for a long time.

Exactly how small do we expect this mean curvature to
be? Roughly speaking, we expect the ensemble average of
the curvature to be such that �kh2 & 10�60. However, no
-1 © 2006 The American Physical Society
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observations are sensitive to this ensemble average. The
best we can do is determine the mean curvature as averaged
over our Hubble volume. Because of the nearly scale-
invariant spectrum of fluctuations, we expect the curvature
averaged over our Hubble volume to be such that j�kh2j �
10�5.

Detecting j�kh
2j * 10�5 would have important conse-

quences for our understanding of the early Universe and
the origin of all structure. Within the context of inflation, it
would imply unusually large fluctuation power on super-
Hubble scales. Other probes of super-Hubble scales
[16,17] are sensitive to gradients across our Hubble patch
and thus suppressed by factors of �k=H0�. The probe we
consider here is sensitive to the average departure in our
Hubble volume of the curvature from its mean value; it is
not suppressed by factors of k=H0.

Although one could design an inflaton field effective
potential to produce extra super-Hubble fluctuation power,
it is far from what is generically expected. Generically, the
fluctuations are better described by a power law at earlier
times, with departure from a power law occurring as one
approaches the end of inflation. Within a broader context,
such a detection might be evidence for some alternative to
inflation.

Recent CMB observations have revealed some puzzling
properties of the largest scales [18–25]. These peculiar
features may have their origin in systematic error.
Exploring the possibility of a cosmological origin, by
acquiring more and relevant data, is difficult due to the
small number of large scale modes in our Hubble volume.
It is therefore highly desirable to probe beyond our Hubble
volume. Measuring mean curvature provides us with such a
probe. By exploiting the prediction of the ensemble aver-
age, the average measured over our local Hubble volume is
then a measure of fluctuations on scales larger than the
Hubble radius.

Anthropic arguments can alter one’s intuition about the
likelihood of detectably nonzero mean curvature. If the
final epoch of inflation, prior to the hot big bang, begins
from a tunneling event one no longer needs long inflation
to explain homogeneity on large scales. The tunneling
event itself creates a highly homogeneous open universe
[26,27]. Inflation following tunneling is a natural conse-
quence of the string theory landscape which has many
metastable vacua [28,29]. Adopting a particular prior on
the distribution of inflaton effective potential shapes, and
including anthropically-motivated constraints on the
amount of structure growth, [30] finds a limit on the
allowable magnitude of the curvature comparable to the
current observational limit which they take to be �total >
0:98. Further, they find a significant probability that the
curvature is near the upper-bound, with 10% of the proba-
bility lying between 1��tot � 0:02 and 4	 10�4.
Universes with small but nonzero mean curvature also
have been discussed recently in [31].
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On the other hand, detection of a positive mean curva-
ture would severely challenge this picture of inflation in the
string theory landscape.

For the above reasons, precision measurement of the
mean curvature is very well motivated. We therefore con-
sider here the challenge of increasing the precision. Given
our lack of understanding of the dark energy, the answer is
straightforward: constrain the contribution from the low-
redshift, dark energy-polluted universe by directly measur-
ing it; i.e., measure distances from here into the matter-
dominated era. In the following we expand upon this idea,
work out the resulting uncertainties in the curvature for
given CMB data and measurements into the matter-
dominated era, and discuss how these distances might be
measured.

II. THE PROBLEM

Defining r
s as the comoving extent of the sound horizon
at the time of last scattering, we can write the angle it
subtends as

�s � r
s=DA�z
� (1)

by definition of the angular-diameter distance to redshift z,
DA�z� [32] and use of the small angle approximation. This
angular size can be determined to very high accuracy from
analysis of cosmic microwave background data. It sets the
scale for the acoustic peaks, lA � �=�s [33]. Thus if we
can calculate r
s , and howDA depends on curvature, we can
determine the curvature.

To see howDA depends on curvature we turn to the line-
element for the Friedmann-Robertson-Walker metric:

ds2 � dt2 � a2�t�
�

dr2

1� kr2 � r
2�d�2 � sin2�d�2�

�
; (2)

where k � �kH2
0 and �k � 1��tot. The comoving

length from the origin to a point with coordinate value r is

� 1=
������
jkj

p
sinh�1 �

������
jkj

p
r� �k < 0�; (3)

l �
Z dr����������������

1� kr2
p � r �k � 0�; (4)

� 1=
������
jkj

p
sin�1 �

������
jkj

p
r� �k > 0�: (5)

We can now calculate the angular-diameter distance as a
function of l by recognizing that an object at distance r
subtending an angle d� has length rd�. Therefore,

DA � r � l� kl3=6 (6)

to lowest order in k.
If we knew the comoving distance to z, l�z�, and mea-

sured DA, we could solve for the geometry, k. Of course,
we do not know l�z�. We could calculate it though if we
knew the matter content. Using the Friedmann equation we
find that a photon suffers a redshift z in the course of
-2
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traveling a comoving distance

l�z� �

����������
3

8�G

s Z z

0

dz0������������������������������������������������������������������������������
�m;0�1� z0�3 � �k;0�1� z0�2 � �x�z0�

q ;

(7)

where we have defined �k;0 � �3k=�8�G�. Thus we see
the sensitivity of DA�z� to the matter content in addition to
geometry. Allowing arbitrary freedom in �x�z� destroys
our ability to use DA�z� to determine geometry.
III. A SOLUTION

Despite contamination from dark energy, we can use the
angular-diameter distance to the CMB last-scattering sur-
face, which we will now call DOL, to determine the curva-
ture, as long as we can measure some angular-diameter
distance, DOM, to some redshift, in the matter-dominated
era, zM. The measurement of DOM effectively controls the
dark energy contribution to DOL so that their difference
only depends on the curvature and the matter density.
Starting from lOL � lOM � lML and solving for k we find

k � 6
�
DOL � �DOM � lML�

D3
OL �D

3
OM

�
(8)

to lowest order in k where

lML �
Z z


zM
dz=H�z� (9)

’

�������������������
3

8�G�m;0

s
��1� zM�

�1=2 � �1� z
�
�1=2�; (10)

and in the final line we have assumed only the matter
density contributes to lML.

Our goal now is to understand how well k can be
determined assuming that we have some measurement of
DOM with error ��DOM� and DOL and !m constrained by
CMB measurements. The result is displayed in the left
panel of Fig. 1. We first discuss the inference from CMB
data and then speculate about how DOM might be mea-
sured. Depending on how DOM is measured one will get
different values for ���kh

2� as shown in the center and
right panels, to be explained below.

Since �s can be determined with very high accuracy, the
fractional error in DOL is simply equal to the fractional
error in the sound horizon. The sound horizon depends on
the baryon-to-photon ratio, because of how this affects the
sound speed, and the matter and radiation densities because
of how these affect the expansion rate. Assuming the
standard radiation content the only degrees of freedom
can be taken to be the baryon density today and the matter
density today. A fit of the sound horizon at last scattering
(defined as the epoch at which the optical depth reaches
unity) is given in [34] as
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r
s=Mpc � 144:4�!m=0:14��0:252�!b=0:024��0:083: (11)

Here we have used the common notation for densities,
!m � �m;0=�scale and !b � �b;0=�scale where �scale �
3�100 km= sec =Mpc�2=�8�G� � 1:8791	 10�29 g=cm3.

Thus to calculate k, we need to know �s (which we will
assume we know perfectly),!m,!b, and a distance into the
matter-dominated era, DOM. With !m, !b, and �s we can
calculate DOL, and with!m we can calculate lML. Thus we
have what we need to use Eq. (8) to get k � �kH

2
0 . To

express it in more convenient units, we calculate �kh
2

where h � H0=�100 km= sec =Mpc�.
The matter and baryon densities can be determined from

the acoustic peak morphology [33]. We took the three
independent elements of their error covariance matrix,
forecasted for 4 years of WMAP and 1 year of Planck,
from [35]. ForDOM we simply assume a measurement with
some variance �2�DOM�. We discuss these measurements
in the next section.

To calculate the error in �kh
2 we create 1000 realiza-

tions of the error in !m and !b from their assumed error
covariance matrix, assuming a normal distribution, and add
these errors to their fiducial value. We also create 1000
samples of the error in the distance to zM assuming the
distance error is a Gaussian with variance �2�DOM� and
add these errors to our fiducial value of DOM. For each
sample of DOM;!b;!m we calculate �kh

2 using Eq. (8)
and the other equations as described above. The statistical
error in �kh

2 is then taken to be the square root of the
variance of our derived �kh2 values.

Of course the strategy depends on there being a redshift
range zM < z < z
 during which the contribution of dark
energy to comoving distances is negligible. To estimate the
level of contamination one expects from dark energy at z >
zM, we have calculated it for the case of a cosmological
constant and plotted the resulting systematic error in �kh

2

as the horizontal lines in Fig. 1. Since our fiducial model
was a cosmological constant, the systematic error is simply
�kh2 averaged over all the samples.

For constant w models consistent with current data,
taking w>�1 will increase the level of contamination
slightly. More worrisome are models with more compli-
cated time-dependence, such as the oscillating model of
[36]. Unexpectedly large contamination by dark energy in
the zM < z < z
 redshift range can be guarded against by
measuring the growth of the matter power spectrum from
last scattering to z � zM. If dark energy is making a
significant contribution to the expansion rate in this range,
then it will suppress growth.

As seen in Fig. 1, at high ��D0M� the statistical error
increases as zM increases. We expect this since in the limit
that zM � z
, the redshift of last scattering, our measure-
ment of DOM brings us no new information. At lower
values of ��D0M� the trend with zM is more complicated
due to a cancellation between the DOL error and the lML
error. In the limit that the only uncertain parameter is !m
-3



FIG. 1 (color online). Uncertainty in �kh
2 for WMAP (higher curves) and Planck (lower curves) as a function of the fractional error

in D0M (left panel), D0M=r
s (middle panel), and
�������
!m
p

D0M (right panel) for zM � 2 (solid line), zM � 3 (dotted line), zM � 4 (dashed
line), and zM � 10 (dotted-dashed line). The straight lines show the amount of error resulting from neglecting the dark energy
contribution at z > zM assuming our fiducial model with the dark energy as a cosmological constant.
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we have

���kh2� � 6
h2=H2

0

D3
OL �D

3
OM

�a1DOL � a2lML�
��!m�

!m
;

(12)

with a1 � �0:252 and a1 � 0:5. In this limit, the error
goes to zero at DOL � �a2=a1lML ’ 2lML.

The chief benefit of increasing zM is a reduced system-
atic error from dark energy at z > zM. The statistical error
is also smaller for 1 year of Planck than for 4 years of
WMAP as long as DOM is measured well enough that
uncertainties in the matter and baryon densities are
important.

As we will discuss in the next session, a variety of
techniques can be used to get distances from standard
rulers in the matter power spectrum. These standard rulers
are r
s and the size of the comoving horizon at matter-
radiation equality, rEQ / !�1

m . The measurements thus
determine the combinations DOM=r
s and !mD0M. Thus
we also plot in the middle and right panels of Fig. 1 results
from two more calculations, just like the first one, except
we assume independent errors in DOM=r



s and then

!mD0M. These assumptions lead to correlations between
the DOM error and the DOL error, and therefore we get
different results when the DOL errors are significant.

Although the above analysis only assumes a measure-
ment to one redshift, any particular methodology for dis-
tances measurements will result in distances to a series of
redshifts, some of which may be heavily contaminated by
dark energy. The actual analysis of the data will involve
simultaneous fitting for dark energy and mean curvature.
The calculations here are done in two illustrative limits: no
dark energy at z > zm and completely neglected cosmo-
logical constant at z > zm. Any conclusions about mean
curvature from future precision measurements will be
complicated with arguments about the possibility of resid-
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ual amounts of dark energy. Going to high redshifts miti-
gates this confusion greatly but does not completely
remove it. Thus distances to more than one redshift in
the matter-dominated era will be useful.

Using our idealized calculation as a rough guide though,
it appears that distance measurements in the z� 3 to z� 4
range will be most helpful. Lower redshifts are too suscep-
tible to errors arising from modeling the dark energy
(estimated by the horizontal lines in the figures) and the
statistical errors for zM > 4 become large since they must
diverge as zM ! z
, the redshift of last scattering.

Another solution was recently proposed in [37] that
exploits the fact that rML is not the angular-diameter
distance from zM to zL. Thus, although rOL � rOM �
rML, DOL � �DOM �DML� / �k. Cosmic shear observ-
ables are sensitive to all three of these distances.

IV. DISTANCE MEASUREMENTS

We have provided motivation for measurement of dis-
tances into the matter-dominated era. In this section we
briefly discuss different methods for obtaining these
distances.

A. Supernovae

The distance-redshift relation at z & 1 is currently de-
termined best from observations of type Ia supernovae
[38]. Although these are luminosity distances, in the ab-
sence of unknown scattering or absorption effects, DL �
�1� z�2DA. However, the prospects for percent level de-
termination of distances at z * 2 are not good. Difficulties
arise from the �1� z�4 cosmological dimming and the
challenge of determining the amount of reddening (in order
to correct for dust extinction in the host galaxy) with light
that was bluer in the rest frame than is the case for lower z
supernovae. Further, gravitational lensing of the light from
the supernovae will add additional dispersion to the ob-
-4
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served fluxes, increasing the number needed to obtain a
given level of precision [39–42]. Finally, current super-
nova constraints on �m and �� come from distance ratios,
rather than absolute distance determinations, due to the
(nearly) constant but unknown luminosity of the standard
candle. The supernova absolute luminosity calibration
would have to improve dramatically in order for percent
level determination of absolute distances. A sufficient
calibration would be possible with a 1% determination of
H0, which may be achievable with square kilometer array
observations of water masers [43].

Linder [44] has recently considered the impact of allow-
ing for nonzero curvature on the ability of a space-based
supernova mission such as Supernova/Acceleration Probe
(combined with CMB data) to constrain dark energy pa-
rameters. He assumes a distribution of supernovae in the
interval 0< z< 1:7. He finds that dropping the assumption
of zero mean curvature greatly weakens the constraints on
w0 and wa when it is assumed that the equation of state
parameter as a function of scale factor is given by w�a� �
w0 � �1� a�wa.

Experiments will not just determine the distance to a
single redshift, as assumed above, but to a range of red-
shifts. Thus it is interesting to see how an actual experi-
ment, making these multiple distance measurements, can
constrain the curvature. Since the supernovae measure-
ments do not go beyond z � 1:7, we expect the results to
be dependent on assumptions made about the dark energy.
Indeed, Linder [44] finds this to be the case. If one assumes
wa � 0 then ���K� � 0:011 but if one allows for nonzero
wa (still assuming the form for w�a� above) then the
curvature error weakens by more than a factor of 4 to
���K� � 0:047. We see here in this result a quantification
of the degradation of curvature constraints due to uncer-
tainty about the dark energy, as expected qualitatively from
the discussion and idealized calculations above.

B. Cosmic shear

The statistical properties of cosmic shear are sensitive to
both the distance-redshift relation and the growth of the
matter power spectrum as a function of redshift. Of course
they are also sensitive to the shape and amplitude of the
primordial power spectrum, the matter density, and the
baryon density. With these parameters constrained by
CMB observations, and with sufficient knowledge of the
redshift of the source galaxies (such as from
photometrically-determined redshifts) one can use cosmic
shear data to simultaneously reconstruct distance as a
function of redshift and growth as a function of redshift
[45]. The combination of Planck’s measurement of the
CMB and a deep multiband ground-based survey of half
the sky, such as planned with the large-aperture synoptic
survey telescope, can determine the distance to z � 3 with
an error of about 1% [46]. The errors in the z � 3 mea-
surements are highly correlated with the errors in the z < 1
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measurements. The combination of the cosmic shear data
with low-redshift distance measurements (for example,
from supernovae) can therefore improve the z � 3 distance
determination.

The standard ruler that allows for cosmic shear data to be
sensitive to the distance-redshift relation is the turnover in
the matter power spectrum at the comoving size of the
horizon at matter-radiation equality [46] which is propor-
tional to 1=!m. The distance determination is only possible
to the extent that!m has been determined. The errors in the
distance will thus be correlated with errors in !m and
therefore with the errors in DOL and lML. Errors in the
product DOM!m will, in contrast, be only very weakly
correlated with those in DOL and lML.

The error in �kh
2 in the limit of perfect knowledge of

!b and a perfect measurement of DOM!m (instead of
DOM) is again given by Eq. (12) but now with a1 �
0:748 and a2 � �0:5. The increased magnitude in a1

means a larger contribution from the error in DOL and
the impossibility of any significant cancellation with the
error in lML. As a result, one can see in the right panel of
the figure at low values of ��DOM!m�=�DOM!m� the
greatly increased errors in ���kh

2) compared to the case
of the left panel.

C. High-z galaxy power spectra

Acoustic oscillations prior to recombination create a
feature in the matter correlation function with a length
scale of r
s [47–50]. This feature can be used as a standard
ruler to infer distances from measurement of DA=r
s [7,51–
55] and has recently been used to do so [12,56]. Seo and
Eisenstein [54] find that a photometric redshift survey with
redshift errors �z over a survey spanning z � 2:5 to z �
3:5 with solid angle � could achieve an angular-diameter
distance determination to z � 3 of

��DOM�=r


s

DOM=r


s
� :01

��������������������������
2000 sq deg

�

s �����������������������
�z=�1� z�

0:04

s
: (13)

With spectroscopic redshifts, clustering in the redshift
direction also can be used to determine H�1�z�=r
s [54]
and thereby provide a check on the prediction that H�z� �
8�G�m;0�1� z�

3 where �m;0 is determined by the CMB
observations.

Achieving a 1% determination of D0M=r
s to zM � 3
would reduce the statistical error on the �K determination,
as reported in [12], by a factor of 10. It would also greatly
reduce the level of systematic error due to their assumption
of a cosmological constant to a level roughly about that of
the dotted horizontal lines in the figures.

Using baryon oscillations to determine distances also
mitigates a potential source of systematic error [57]. Rather
than �m;0, the quantity well determined from CMB obser-
vations is the redshift of matter-radiation equality, zEQ,
because of how it affects the evolution of gravitational
-5
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potentials (for a review, see [58]). If there were a non-
standard radiation content, then �m;0 might be erroneously
inferred from zEQ. This would then lead to an error in lML
and therefore possibly a nonzero k, by Eq. (8), even for a
flat cosmology.

However, as pointed out in [59], CMB observations
robustly determine the combination

���������
�m;0
p

r
s independent
of the value of �m;0. Therefore, since baryon oscillations
are sensitive to DA=r



s , they robustly determine

���������
�m;0
p

DA.
A check for nonzero

���������
�m;0
p

D0L � �
���������
�m;0
p

D0M ����������
�m;0
p

lML� is thus a robust check for nonzero curvature.
Note that

���������
�m;0
p

lML has no cosmological parameter depen-
dence (assuming complete matter domination); in particu-
lar, it does not depend on �m;0.

D. 21 cm radiation from intergalactic neutral hydrogen

Perhaps the best prospect for measuring distances to
redshifts very deep into the matter-dominated era comes
from fluctuations in the brightness temperature of 21 cm
radiation from neutral hydrogen prior to the complete
reionization of the intergalactic medium [60,61]. By re-
quiring statistical isotropy of the fluctuations, in particular,
that correlation lengths along the line of sight are equal to
correlation lengths perpendicular to the line of sight, one
determines the ratio DA�z�=H�1�z� [62,63]. With H�z�
determined from the CMB then this can be converted to
a measurement of DA�z�. The DA�z� might also be deter-
mined from observing baryon oscillations in the 21 cm
power spectra [64]. The meter wavelength signals from
redshifted 21 cm radiation are much smaller than contami-
nation from a number of other astrophysical sources, e.g.
[65,66]. Quantitative studies show a good prognosis for the
ability to clean out these foregrounds based on their high
coherence across frequency, e.g. [67–69].

Such high-z measurements would have the benefit of
very low dark energy model dependence; e.g., the horizon-
tal zM � 10 curve is off-scale low. Unfortunately, these
measurements are restricted to redshifts in the prereioniza-
tion era (zM > 6) which have the drawback of larger sta-
tistical errors as discussed above.

V. DISCUSSION

Given the prediction of zero mean curvature, we can use
any detection of curvature averaged over our Hubble vol-
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ume as evidence of curvature fluctuations on even larger
length scales. Indeed, inflationary models predict the ex-
istence of these fluctuations, since inflationary models
predict a spectrum of nearly scale-invariant fluctuations.
These predictions are consistent with determinations of the
subhorizon scale power spectrum from which we infer an
rms amplitude of about 10�5.

We have not calculated the dependence of the mean
curvature in our Hubble volume, as measured by the means
described above, on the power spectrum on super-Hubble
scales. This would be interesting to do in order to more
completely understand the implications of a nonzero de-
termination of mean curvature. A useful starting point for
such a calculation can be found in [70] and most recently in
[71] who consider spatial fluctuations in the luminosity
distance due to scalar perturbations.

VI. CONCLUSIONS

We have emphasized the importance of testing the ro-
bust prediction of inflation that the mean curvature is zero.
We have pointed out that it is our uncertainty in the dark
energy that limits our current determinations of the mean
curvature and that precise measurements of the distance to
redshifts in the matter-dominated era can circumvent this
problem. Thus, measurements of the distance-redshift re-
lation are not only probes of the dark energy, but also of
inflation.

Important as some experiments are that expect null
results, it is always attractive to have a nonzero signal to
chase. It may actually be possible to reach the level of
precision necessary to see a signal from super-Hubble
curvature fluctuations. Unfortunately this prospect is a
long shot since the signal will have to be 2 orders of
magnitude larger than naı̈ve expectations. Such a detection
would be a unique datum on these largest scales, allowing
us to reach back a bit further toward the onset of inflation.
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