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Asymptotic behavior of the warm inflation scenario with viscous pressure

José P. Mimoso,1,* Ana Nunes,1,† and Diego Pavón2,‡

1Department of Physics, Faculdade de Ciências da Universidade de Lisboa,
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We analyze the dynamics of models of warm inflation with general dissipative effects. We consider
phenomenological terms both for the inflaton decay rate and for viscous effects within matter. We provide
a classification of the asymptotic behavior of these models and show that the existence of a late-time
scaling regime depends not only on an asymptotic behavior of the scalar field potential, but also on an
appropriate asymptotic behavior of the inflaton decay rate. There are scaling solutions whenever the latter
evolves to become proportional to the Hubble rate of expansion regardless of the steepness of the scalar
field exponential potential. We show from thermodynamic arguments that the scaling regime is associated
with a power-law dependence of the matter-radiation temperature on the scale factor, which allows a mild
variation of the temperature of the matter/radiation fluid. We also show that the late-time contribution of
the dissipative terms alleviates the depletion of matter, and increases the duration of inflation.
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I. INTRODUCTION

There is a widespread belief that our Universe, or at least
a sufficiently large part of it causally connected to us,
experienced an early period of accelerated expansion,
called inflation. This happened before the primordial nu-
cleosynthesis era could take place and likely after the
Planck period. Many inflationary scenarios have been pro-
posed over the years (see [1] and references therein). Most
of them rely on the dynamics of a self-interacting scalar
field (the ‘‘inflaton’’), whose potential overwhelms all
other forms of energy during the relevant period. They
generally share the unsatisfactory feature of driving the
Universe to such a supercooled state that it becomes nec-
essary to introduce an ad hoc mechanism—termed ‘‘re-
heating’’—in order to raise the temperature of the
Universe to levels compatible with primordial nucleosyn-
thesis. Therefore this reheating phase appears as a subse-
quent, separate stage mainly justified by the need to
recover from the extreme effects of inflation [2] during
which a rather elaborate process of multifield parametric
resonances followed by particle production [3–5] takes
place.

As an alternative some authors have looked for infla-
tionary scenarios leading the Universe to a moderate tem-
perature state at the end of the superluminal stage so that
the reheating phase could be dispensed with altogether. It
was advocated that this can be accomplished by coupling
the inflaton to the matter fields in such a way that the
decrease in the energy density of the latter during inflation
is somewhat compensated by the decay of the inflaton into
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radiation and particles with mass. This would happen when
the inflaton rolls down its potential, but keeping the com-
bined pressure of the inflaton and radiation negative
enough to have acceleration. This kind of scenario, known
as ‘‘warm inflation’’ as the radiation temperature never
drops dramatically, was first proposed by Berera [6,7]. It
now rests on solid grounds since it has been forcefully
argued in a series of papers that indeed the inflaton can
decay during the slow roll (see, e.g. [8–10] and references
therein). Besides, this scenario has other advantages,
namely: (i) the slow-roll condition _�2 � V��� can be
fulfilled for steeper potentials, (ii) the density perturbations
generated by thermal fluctuations may be larger than those
of quantum origin [11–13], and (iii) it may provide a very
useful mechanism for baryogenesis [14].

To simplify the study of the dynamics of warm inflation,
previous works treated the particles created in the decay of
the inflaton purely as radiation, thereby ignoring the ex-
istence of particles with mass in the decay fluid. Here, we
will go a step beyond by taking into account the presence
of particles with mass as part of the decay products, and
give a hydrodynamical description of the mixture of mass-
less and nonmassless particles by an overall fluid with
equation of state p � ��� 1��, where the adiabatic index
� is bounded by 1 � � � 2.

On very general grounds, this fluid is expected to have a
negative dissipative pressure, �, that somewhat quantifies
the departure of the fluid from thermodynamical equilib-
rium, which we will consider to be small but still signifi-
cant. This viscous pressure arises quite naturally via two
different mechanisms, namely: (i) the interparticle inter-
actions [15], and (ii) the decay of particles within the
matter fluid [16].

A well-known example of mechanism (i) of prime cos-
mological interest is the radiative fluid, a mixture of mass-
-1 © 2006 The American Physical Society
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less and nonmassless particles, as it plays an essential role
in the description of the matter-radiation decoupling in the
standard cosmological model [17–19].

A sizable viscous pressure also arises spontaneously in
mixtures of different particle species, or of the same spe-
cies but with different energies—a typical instance in
laboratory physics is the Maxwell-Boltzmann gas [20].
One may think of � as the internal ‘‘friction’’ that sets
in as a consequence of the diverse cooling rates in the
expanding mixture, something to be expected in the matter
fluid originated by the decay of the inflaton.

As for mechanism (ii), it is well known that the decay of
particles within a fluid can be formally described by a bulk
dissipative pressure �. This is only natural because the
decay is an entropy-producing scalar phenomenon associ-
ated with the spontaneous enlargement of the phase space
(we use the word ‘‘scalar’’ in the sense of irreversible
thermodynamics) and the bulk viscous pressure is also a
scalar entropy-producing agent. There is an ample body of
literature on the cosmological applications of this analogy;
see e.g. [16,21]. In the case of warm inflation, it is natural
to expect that, at least, some species of particles directly
produced by the decay of the inflaton will, in turn, decay
into other, lighter species. In this connection, it has been
proposed that the inflaton may first decay into a heavy
boson � which subsequently decays in two light fermions
 d [22]. This is an obvious source of entropy, and therefore
it can be modeled by a dissipative bulk pressure �.

Our purpose in this paper is to generalize the usual warm
inflationary scenario by introducing the novel elements
mentioned above, namely, the decay of the scalar field
into a fluid of adiabatic index � rather than just radiation,
and especially the dissipative pressure of this fluid, irre-
spective of the underlying mechanism. We will not dwell
on the difficult question of the quantum, nonequilibrium
thermodynamical problem underlying warm inflation
[8,23–28], but rather take a phenomenological approach
similar to that considered in several works [29–33] (which
can be traced back to the early studies of inflation [34]).
Instead of adopting a model building viewpoint and look-
ing for the implications of specific assumptions, we aim at
identifying typical features of models that yield interesting
asymptotic behavior. We resort to a qualitative analysis of
the corresponding autonomous system of differential equa-
tions using the approach developed in [35] that allows the
consideration of arbitrary scalar field potentials. We will
characterize the implications of allowing for various forms
of the rate of decay of the scalar field, as well as for various
forms for the dissipative pressure. We consider, for in-
stance, models with scalar field potentials displaying an
asymptotic exponential behavior. These arise naturally in
generalized theories of gravity emerging in the low-energy
limits of unification proposals such as supergravity theories
or string theories [36]. On the one hand, after the dimen-
sional reduction to an effective 4-dimensional space-time
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and the subsequent representation of the theories in the so-
called Einstein frame typical polynomial potentials be-
come exponential [37,38]. On the other hand, the theories
are then characterized by the existence of a scalar field that
couples to all nonradiation fields, with the coupling de-
pending, in general, on the scalar field. The simplest ex-
ample of these features can be found in the so-called
nonminimal coupling theories. We provide a classification
of the relevant global dynamical features of the cosmologi-
cal model associated with those possible choices. A limited
account of some of the results of the present work was
reported in [39].

One question we address is whether nontrivial scaling
solutions [33,35,40,41] (hereafter simply termed scaling
solutions) exist, i.e., solutions where the ratios of energies
involving the matter fluid and scalar field keep a constant
ratio. Another class of solutions referred in the literature as
having a scaling asymptotic behavior are those for which
both the energy density of the scalar field and that of the
matter fluid decay with different power laws of the scale
factor of the Universe [40,42,43]. In this latter case one of
the components eventually dominates and thus the ratio of
their energy densities becomes evanescent, in clear con-
trast to the case of the nontrivial scaling solutions. We shall
term these solutions as trivial scaling solutions to contrast
them with the previous ones sometimes dubbed tracker
solutions. The trivial case arises in association with scalar
field potentials of a power-law type and, as we shall see,
they occur when the scalar field decays have the same type
of time dependences as those required by the (nontrivial,
tracking) scaling solutions.

One of the reasons why nontrivial scaling solutions are
important is that they provide an asymptotic stationary
regime for the energy transfer between the scalar field
and radiation. This stationary (sometimes termed ‘‘quasi-
static’’) regime is an assumption in the standard treatment
of warm inflation [11] to evaluate the temperature of matter
in the final stages. On the other hand, introducing this class
of solutions in the kinetic analysis of interacting fluids
[44,45] leads to an alternative to the usual �� 3H case,
generalizing the example of Ref. [46] where temperature of
the matter (radiation) bath is nearly constant.

We show that this class of scaling behavior depends not
only on the asymptotic form of the inflaton [35], but also on
having an appropriate time-dependent rate for the scalar
field decay. The additional consideration of bulk viscosity,
besides being a natural ingredient in models with one or
more matter components as well as in models with inter-
particle decays, facilitates the Universe to have a late-time
de Sitter expansion.

An outline of this work is as follows. Section II studies
the model underlying the original idea of the warm infla-
tion proposal, namely, the model in which the inflaton field
decays into matter during inflation thus avoiding the need
for the postinflationary reheating. This decay is character-
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ized by a rate � which we shall initially assume to be a
constant. Our results though will argue in favor of a vary-
ing � and we shall thus consider the case where � / H.
This yields late-time scaling solutions whenever the scalar
field potentials asymptotes to an exponential behavior. This
happens regardless of the slope of the potential.
Subsequently, Sec. III analyzes more realistic models
where a bulk viscous pressure term � is also present in
the equation of state of matter. We first envisage the usual
form � � �3�H for that pressure and, subsequently,
analyze a general model with both a varying rate of decay
and a general form for the bulk viscosity � � �3���H�,
where 2�� � � 2 on dimensional grounds. Finally,
Sec. IV provides a discussion of our results.
II. THE DYNAMICS OF WARM INFLATION

A. Warm inflation with constant �

We consider a spatially flat Friedmann-Robertson-
Walker universe filled with a self-interacting scalar field
and a perfect fluid consisting of a mixture of matter and
radiation, such that the former decays into the latter at
some constant rate �. For the time being we ignore the
dissipative pressure. We also neglect radiative corrections
to the inflaton potential [12,24]. The corresponding system
of equations reads

3H2 � ��
_�2

2
� V���; (1)

_H � �1
2�

_�2 � ���; (2)

�� � ��3H � �� _�� V 0���; (3)

where here and throughout we use units in which 8�G �
c � 1. The first two are Einstein’s equations, the third
describes the decay of the inflaton. From these, it follows
the energy balance for the matter fluid,

_� � �3�H�� � _�2: (4)

As usual H 	 _a=a denotes the Hubble factor.
To cast the corresponding autonomous system of four

differential equations it is expedient to introduce the set of
normalized variables

x2 �
_�2

6H2 ; (5)

y2 �
V���

3H2 ; (6)

r �
�

3H
; (7)

along with the new time variable N � lna. Thus we get

x0 � x�Q� 3�1� r�� �W���y2; (8)
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y0 � �Q�W���x�y; (9)

r0 � rQ; (10)

�0 �
���
6
p
x; (11)

where a prime means derivative with respect to N, and the
definitions

W��� �

���
3

2

s �@�V
V

�
(12)

and

Q � 3
2
2x

2 � ��1� x2 � y2��; (13)

as well as �=�3H2� � 1� x2 � y2 were used.
Equation (11) was first considered in [35], and is crucial
for the consideration of general potentials V��� besides the
particular case of the exponential potential. The functionQ
defined by Eq. (13) is related to the deceleration parameter
q � � �aa= _a2 by Q � 1� q.

The special case where r � 0, naturally, corresponds to
the absence of interaction between the scalar field and the
perfect fluid, and it is an invariant manifold of the dynami-
cal system (8)–(11). It is appropriate to refer here its major
features in order to better appreciate the implications of the
decay of the scalar field (see Table I).

We distinguish the fixed points of the system into those
occurring for finite values of � and those associated with
the asymptotic limit, �! 1. In the former case, i.e., for
finite � � ��, the fixed points always require the vanish-
ing of the kinetic energy of the scalar field (x � 0). They
are located at the origin (x � y � 0), and at �x � 0; y �
1�, on the frontier of the phase-space domain x2 � y2 � 1,
which is an invariant manifold. For x � 0, y � 0, the
potential must have a vanishing critical point at ��, a
case that cannot be dealt with the variables in use, but it
is well known that if �� is a minimum at the origin, then it
is a stable point and the scale factor evolves as a�t� /
t2=�3�� [43,47]. The fixed points on x2 � y2 � 1 are given
by x � 0, y � 1 and require that W � 0. This means that
they can only occur in association with extrema of the
potential. Their stability is defined by the sign of W0����,
where �� is the value of � where V 0��� (and hence W)
vanishes. When V has a nonvanishing minimum and, hence
W0 > 0, the critical point is a stable node. When V has a
maximum and, hence W0 < 0, we have a saddle point (an
unstable fixed point). These fixed points correspond to the
de Sitter exponential behavior and are accompanied by the
depletion of the matter component (� � 0).

To study the critical points that occur at �! 1 (which
we shall label �1), we carry out the regularization pro-
duced by the change of variable  � 1=�. Then Eq. (11)
becomes

 0 � �
���
6
p
x 2; (14)
-3



TABLE I. The properties of the asymptotic behavior of the � � 0 model. In this table, S stands
for stable, U for unstable, MD for matter dominated, SFD for scalar field dominated, min for
minimum, max for maximum, and Scal. Sol. for scaling solution.

r x� y� � V��� Equation of state Stability

0 0 �� V� � 0 min�V� � � � S/MD
0 0 �� V� � 0 � � � U/MD
0 1 �� V� � 0 min�V� �� � 0 S/SFD

0 0 1 �� V� � 0 max�V� �� � 0 U/SFD
0 0 �1 V1 � 0 � � � U/MD
0 1 �1 V1 � 0 �� � 0 S/SFD
1 0 �1 V � e�	� �� � 2 U (saddle)/SFD
	=

���
6
p ��������������������

1� 	2=6
p

�1 V � e�	� �� � 	2=3 S (node)/SFD

	=
���
6
p ��������������������

1� 	2=6
p

�1 V � e�	� �� � 	2=3 U (saddle)/SFD��
3
2

q
��	�

��������������
3�2����

2	2

q
�1 V � e�	� � S/Scal. Sol., 3� < 	2 < 24�2

9��2��
3
2

q
��	�

��������������
3�2����

2	2

q
�1 V � e�	� � S/Scal. Sol., 	2 > 24�2

9��2
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and the critical points correspond to either x � 0, as pre-
viously seen, or to  � 0. The �1 critical points depend
on the asymptotic behavior of V��� [35]. If V��� exhibits
some nonvanishing asymptotic value we have again x � 0,
y � 1 corresponding to a cosmological constant and,
hence, to a de Sitter late-time behavior. If V��� asymptotes
towards the exponential potential, say V / e�	�, with 	
constant, there are several possible fixed values dependent
on the ratio between 	2 and � (see, for instance, [48] for
details). There are unstable fixed points on the invariant
manifolds bounding the phase-space domain for all pos-
sible choices of both W � �

��������
3=2

p
	 and �, namely: (i) a

matter dominated solution at x � 0 and y � 0, which is a
saddle and corresponds to a�t� / t2=�3��, (ii) two solutions
dominated by the scalar field kinetic energy at x � 1 and
y � 0 which are either unstable nodes or saddles, and
correspond to the stiff behavior a�t� / t1=3, �1�t� �
lntK0 , where K0 is an arbitrary constant defining the scalar
field initial velocity. There is another fixed point on the
x2 � y2 � 1 boundary representing a scalar field domi-
nated solution, when W2 < 9. This fixed point is stable
when W2 < 9�=2, and unstable otherwise (saddle). Thus
for W2 > 9�=2 (i.e., 	2 > 3�), there is a stable fixed point
in the interior of the phase-space domain. This latter point
corresponds to scaling behavior between the matter and
scalar field energy densities [38,40,41,48–50]. This attrac-
tor solution is characterized by a�t� / t2=3� and ���0 �

lnt2=	.
There are also trivial scaling solutions for which �� /

a�n and � / a�m, where n > m are positive constants,
when [43]

V��� � A2

�
1�

n
m

�
2
�
6� n

2n

��
�
A

�
$

(15)

where

$ �
2n

n�m
: (16)
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Coming back to the model that includes the interaction
and thus letting r be nonvanishing, we immediately see
from Eq. (10) that, along the r direction, all the points are
singular points if and only if Q � 0. For finite values of �,
as x � 0 at the fixed points, this requires once more y2 � 1
so that the singular points are associated with � � 0, i.e.,
with the depletion of the matter component. Moreover, as
in the r � 0 case, these singular points are extrema of the
potential V���. They correspond to a de Sitter behavior

[a�t� / e
�������������
V��0�=3
p

�t, � � �0 constant] and are either stable
or unstable depending on the extremum being a minimum
(W0 > 0) or a maximum (W0 < 0). In fact, at the singular
points corresponding to extrema of the potential V���, the
eigenvalues found in the linear stability analysis are


y � �3�; (17)


x;� � �
3�1� r�

2

2
41

���������������������������������
1�

4
���
6
p
W0��0�

9�1� r�2

s 3
5: (18)

On the other hand, we no longer have fixed points at x � 0,
y � 0 (unless � � 0 which corresponds to the perfect fluid
being a cosmological constant). This happens because the
system then evolves along the r axis towards r! 1, a
behavior that can only be prevented by the existence of a
positive minimum of the potential V���. At �! 1 the
system does not exhibit scaling solutions anymore. The
only fixed points allowed in this asymptotic limit are those
associated with a nonvanishing, asymptotically flat poten-
tial, which thus corresponds to the de Sitter exponential
behavior.

Accelerated expansion corresponds to the region of the
phase space where Q< 1, so that

3�y2 � 3�2� ��x2 > 3�� 2: (19)

This condition does not carry any dependence either on r or
�. Thus we may restrict our discussion to a �x; y� projec-
-4
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FIG. 1 (color online). Inflationary region of the models without bulk viscosity. Inflation occurs in the shaded region between the
hyperbole and the boundary of the phase space. The figure on the left depicts the variation of the region with �, whereas in the figure on
the right we have taken � � 4=3.
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tion of the phase space. The condition (19) defines for 1<
�< 2 the region between the upper branch of the hyper-
bolae 3�y2 � 3�2� ��x2 � �3�� 2� and the boundary
x2 � y2 � 1 of the phase-space domain (see Fig. 1). The
asymptotes of the hyperbolae are y � 

����������������������
�2� ��=�

p
, and

we see that, as � increases, the inflationary region becomes
progressively smaller. In fact the region shrinks vertically
towards the x � 0, y � 1 point and it reduces to it in the
limit case of � � 2.

In Ref. [11] the end of inflation is given by the condition
�� ’ �� and this event is associated with the beginning of
the matter (radiation) domination. As it becomes apparent
from the above discussion, the condition for the end of
inflation, Q � 1, is more general and does not strictly
require matter domination. Taylor and Berera’s condition
[11] corresponds to the end of slow-roll inflation (i.e., _�2 ’
0 ’ x) and is extended, in the present study, to general
� fluids as

�m ’
2

3�� 2
��: (20)

The independence on r of the size of the inflationary
region should not though be understood as the interaction
having no effect on inflation. From Eqs. (17) and (18) we
see that the eigenvalues of the linearized system at the fixed
points carry a dependence on rwhich is such that it renders
the minima of the potential more stable and the maxima
less unstable (as if the potential became shallower). Thus
the transfer of energy from the scalar field to the perfect
fluid favors inflation in that the system spends a longer time
in the neighborhood of the extrema of the potential. This is
exactly what is meant to happen in the warm inflation
scenario where it is assumed that slow roll holds and
argued that r allows for steeper potentials than those
required in its absence. As discussed in [11], it is a simple
matter to see that the slow-roll condition on _�

_� � �
V0

3H�1� r�
’ �

V0

3rH
; (21)

is easier to satisfy if the scalar field decays, that is, if r > 1
and much easier if r� 1.
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The fact that r increases indefinitely in the present model
is a consequence of its definition, and merely translates the
fact that, unless the system is trapped at a nonvanishing
minimum of V���, H decreases towards zero. Since this is
a direct result of assuming a constant �, we consider in the
next section a more appropriate model where � decreases
as the Universe’s expansion proceeds.

B. Warm inflation with � / H

We assume that �� � 3��H where �� is a dimension-
less, positive constant. As H is expected to be a non-
increasing function of time in an expanding universe, this
is a simple choice for the time dependence of �� such that
the decays have a stage of maximum intensity (when
inflation occurs) followed by a progressive attenuation
until it vanishes altogether.

Now r � �� is a constant parameter and the dynamical
system reduces to the three equations

x0 � x
Q� 3�1� r�� �W���y2; (22)

y0 � 
Q�W���x�y; (23)

�0 �
���
6
p
x; (24)

where Q is still given by Eq. (13). We see that these
equations are analogous to those of the r � 0 case of the
previous section with a different coefficient on the linear
term in x of Eq. (22). Thus the basic qualitative dynamical
features remain the same as those found for that model (see
Table II). The decay of the scalar field though introduces
two major consequences worthy to be emphasized.

Besides the fact that the origin x � 0, y � 0 is again a
fixed point associated with the vanishing of the scalar
field’s energy and, hence, corresponds to the matter domi-
nation, the interaction given by a nonvanishing r has the
relevant effect (already found in the constant � model) that
the stability of the minima is reinforced and that the
maxima become less unstable. Moreover, the scalar field
decay prevents the existence of the fixed points at x � 1,
y � 0, that would correspond to a behavior completely
dominated by the scalar field’s kinetic energy (and which
-5



TABLE II. The properties of the asymptotic behavior of the � / H model. In this table, S
stands for stable, U for unstable, MD for matter dominated, SFD for scalar field dominated, min
for minimum, max for maximum, and Scal. Sol. for scaling solution. The �eff index is defined by
�eff � 2=�3A� where A characterizes the power-law expansion a / tA.

x� y� � V��� Equation of state Stability

0 0 �� V� � 0 min�V� � � � S/MD
0 0 �� V� � 0 � � � U/MD
0 1 �� V� � 0 min�V� �� � 0 S/SFD
0 1 �� V� � 0 max�V� �� � 0 U/SFD
0 0 �1 V1 � 0 � � � U/MD
0 1 �1 V1 � 0 �� � 0 S/SFD
0< x0 < 1 0< y0 < 1 �1 V � e�	� �eff < � S/Scal. Sol., 	2 > 3�
0< x0 < 1 0< y0 < 1 �1 V � e�	� �eff > � S/Scal. Sol., 	2 < 3�
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was, therefore, associated with a stiff behavior in the r � 0
case).

The other major effect of the interaction arises when we
look for fixed points with x2 � y2 < 1 at �! 1. Now, we
find that there are always attracting scaling solutions for
potentials that have an asymptotic exponential behavior,
that is, for potentials for which W ! const when �! 1
[35]. Moreover, this happens independently of the steep-
ness of the late-time exponential behavior which is a
remarkable effect of the present model for the transfer of
energy from the scalar field to the matter.

Indeed the latter solutions are given by the roots of the
system of equations

�u� 1�
�
u�

a
b

�
� ru � 0; (25)

and

cos 2� �
	2

6�1� r�2
�2; (26)

where u � �2 and � are polar coordinates, x � � cos� and
y � � sin�, and where we have defined

a �
�
2
; (27)

b �
	2

6�1� r�2
; (28)

as well as W1 � �
��������
3=2

p
	. It is a simple matter to con-

clude that the effect of a nonvanishing r is such that
Eqs. (25) and (26) always have one nonvanishing root
within the range of allowed values for � and for cos�,
and hence there are scaling solutions regardless of the ratio
between 	2 and 3�. Furthermore linear stability analysis
shows that the scaling solutions are stable. It is important
nevertheless to remark that although scaling solutions
emerge for any ratio of 	2=�, the way that the �eff index
associated with the effective equation of state inducing the
power-law scaling behavior is shifted from the correspond-
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ing � value of the scaling solutions in the absence of
decays depends on 	2 being larger or smaller than �.

Assuming the potential to be asymptotically given by
V / e�	�, the latter solutions are a�t� / tA, ���0 �

lnt2=	, where A is given in implicit form by

3�
�
A�

2

3�

��
A�

2

	2 �1� r�
�
�

4r

	2 � 0: (29)

Notice that we can define �eff � 2=�3A�. A linear expan-
sion about r � 0 in the neighborhood of the scaling solu-
tion (for 	2 � 3�) yields

A �
2

3�

�
1�

2
	2

� 2
3��

2
	2�
r
�
; (30)

when 	2 � 3�. So the decays have the effect of increasing
(respectively, decreasing) the scale factor rate of expansion
with regard to the r � 0 case if 	2 > 3� (respectively,
	2 < 3�). In particular we can see that the scaling behavior
can be inflationary, for cases where this would not happen
in the absence of decays. For instance, taking � � 4=3 and
	2 > 4, the condition for the scaling solution to be infla-
tionary is 1� r > 	2=4> 1. Thus, in this model, the so-
lutions yield endless power-law inflation even for a modest
scalar field decay, provided that the asymptotic behavior of
the potential is steep enough, i.e., 	2 > 3� (> 4 in the
present example).

Naturally, besides the scaling solutions, there can also be
fixed points corresponding to de Sitter behavior x � 0, y �
1, whenever the scalar field potential exhibits an asymp-
totic, nonvanishing constant value. However, when the
potential is asymptotically exponential, there are no fixed
points on the boundary x2 � y2 � 1 at �1 in contrast to
what happens in the r � 0 case.

From a thermodynamical viewpoint, the above scaling
solutions are particularly interesting. In a universe with two
components, it can be shown [44,45] that the temperature
of each of the components satisfies the equation
-6
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_Ti
Ti
� �3

_a
a

�
1�

�i
3H

�
@pi
@�i
�

ni _si
@�i=@Ti

; (31)

where i � 1 or 2, ni denotes the number density of parti-
cles of the i species, �i their rate of decay, and Ti the
temperature of this component. In the important case of
particle production with constant entropy per particle, _si �
0, we also have ��1 � p1��1 � ���2 � p2��2. Thus, tak-
ing the first component to be the matter/radiation fluid and
the second to be the inflaton scalar field, we have

�� �
��� p�

_�2
�m=r / �m=r: (32)

As ��� p�= _�2 � ��1� x2 � y2�=2x2 is a constant in the
scaling solutions, �� � 3rH, with r a constant, implies
�m=r � 3H, where  is another constant that depends
both on r and on the location of the scaling solution. This
yields a temperature of the matter/radiation component
evolving as a power law T / a�3���1��1��. Thus for 
close to 1, the temperature of the matter/radiation remains
quasistatic, whereas for > 1 (respectively, < 1), it
increases (respectively, decreases). Notice also that for ’
0, we recover the temperature law for perfect fluids without
dissipative effects. Provided we guarantee enough infla-
tion, r need not be very large (contrary to what is usually
assumed to facilitate slow rolling). Indeed, the temperature
of the radiation at the end of inflation is

Tend � Tbeginninge�N�1��; (33)

where N is the number of e-foldings. Thus, a value of
sigma lower but sufficiently close to 1 has the potential to
avoid a serious decrease of the temperature of the
Universe. As

 �
3x2
�

2�1� x2
� � y2

��
r; (34)

at the scaling solutions, we see that r need not be very large
to ensure that � 1.

Trivial scaling solutions generalizing those given in
Eq. (15) in the r � 0 case arise in these models for scalar
field potentials of the form

V��� � A2

�
1�

n
m

�
2
�
6�1� r� � n

2n

��
�
A

�
$
; (35)

where $ is still given by Eq. (16) and A � Ar�0=
������������
1� r
p

.
For the potential to be positive one also requires 0<m<
n< 6�1� r�. The only difference with respect to the r � 0
case lies in the dependence on r of the constant factor
multiplying �$, and translates to the fact that there is now
a different distribution of the scalar field energy density
between its kinetic and potential parts. Indeed, we have
that

V��� �
�

6�1� r�
n

� 1
�

_�2 (36)
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which shows that the extra damping of the kinetic energy
parts when r � 0, as expected. As in the r � 0 case, the
possible emergence of the trivial scaling behavior in asso-
ciation with monomial potentials (that might or might not
be part of double wells) happens when the matter fluid is
already dominating and is thus of a lesser importance in the
context of warm inflation.

III. WARM INFLATION WITH BULK VISCOSITY

One of the main purposes of the present work is to assess
the implications for warm inflation of the presence of a
viscous pressure, �, in the matter component, so that the
total fluid pressure is p � ��� 1����. We may assume
the expression � � �3�H which, albeit some causality
caveats, is the simplest one may think of and has been
widely considered in the literature [51–53]. If the mixture
of massive particles and radiation is taken as a radiative
fluid, it is admissible to adopt � / ���, where � denotes
the relaxation time of the dissipative process. For the
hydrodynamic approach to apply the condition tcolH < 1
should be fulfilled. Since � / tcol (a reasonable assump-
tion) and the most obvious time parameter in this descrip-
tion is H�1, one concludes that � ’ ����, with
0<�< 1.

This modifies the field equations (2) and (4) which now
read

_H � �
_�2 � ����

2
; (37)

_� � �3
�
��

�

�

�
H�� � _�2; (38)

while Eqs. (1) and (3) remain in place and thus the dy-
namical system is now

x0 � x
Q� 3�1� r�� �W���y2; (39)

y0 � 
Q�W���x�y; (40)

�0 � �
��

�0

�

�
� 2Q

�
; (41)

r0 � rQ; (42)

�0 �
���
6
p
x; (43)

where

� � �=�3H2�; (44)

and

Q � 3
2
2x

2 � ��1� x2 � y2� � ��: (45)

Apart from raising the order of the system, the main
difference with regard to the previous cases lies in the
modification introduced in Q. In fact the bulk viscosity
-7
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term contributes an additional term to it, and this changes
the properties of some of the fixed points of the warm
inflation model. These implications naturally depend on
the functional form of �, and next we consider some
specific choices.

A. Warm inflation with bulk viscosity � � �3�H

Our first choice is the ‘‘classical’’ assumption already
mentioned, � � �3�H, where � is a positive constant
ensuring that the second law of thermodynamics holds.
We also assume that �� is constant as in Sec. II A.

Given the definition of � in the dynamical system (39)–
(43), we see that � � ��=H / r. Therefore, defining the
constant �r � ��=3� so that we have r � �r�, not only
Eq. (41) considerably simplifies, but also we do not need
the r Eq. (42). The resulting dynamical system is

x0 � x
Q� 3�1� �r��� �W���y2; (46)

y0 � 
Q�W���x�y; (47)

�0 � �Q; (48)

�0 �
���
6
p
x: (49)

We see from Eq. (48) that this system has fixed points
with vanishing bulk viscosity, � � 0, which send us back
to the cases already studied in Sec. II. The novel situations,
however, arise when the fixed points occur with � � 0,
which requires Q � 0 (meaning that H � H� is constant).

For finite values of �, say at ��, the fixed points are
defined by x� � 0, W����y2

� � 0. So we have a fixed point
at x� � 0, y� � 0, � � ��, � � ��, where �� is given by

�� � ��: (50)

Being associated with the vanishing of both _� and V���,
this is, remarkably, a matter dominated de Sitter solution. It
is stable if the potential has a vanishing minimum.
Alternatively, we have a line of fixed points given by x� �
0 and by ��1� y2

�� � ���, in accordance to the Q� � 0
condition. This solution corresponds again to a de Sitter
exponential behavior and has the remarkable feature that
the energy densities of the scalar field and of the matter
remain in a fixed proportion. It arises in association with an
extremum of the potential V��� and its stability depends
on the extremum being a maximum or a minimum, the
maximum being unstable and the minimum stable. The
presence of r � �r� will again contribute to render the
minima more stable and the maxima less unstable, as
already found in the study of the cases devoid of viscous
pressure.

It is appropriate to emphasize that, for these classes of
fixed points, the matter energy density is not depleted by
the inflationary behavior. This is due, of course, to the well-
known fact that the bulk viscosity contributes a negative
pressure and induces inflationary behavior.
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Now, regarding the fixed points arising at �! 1, the
situation is similar to that considered in Sec. II A. In fact
the functional forms adopted both by � and � prevent the
existence of scaling solutions. The only fixed points asso-
ciated with the asymptotic behavior of V��� are analogous
to those at finite �. If V��� has a vanishing asymptotic
value, we have again both the x � 0 and y � 0, � � ��
de Sitter solutions dominated by matter, and when V���
exhibits a nonvanishing asymptotic value at infinity, we
have the x � 0, � � ���1� y2� de Sitter solutions char-
acterized by a constant ratio between the energies of matter
and of the scalar field. Incidentally, one may remark that
now the parameter r that represents the decay of the scalar
field takes a fixed value determined by the r � �r� relation
at the fixed points.

We conclude this section commenting that if we were to
assume the type of decay considered in Sec. II B, i.e., a
constant r, the features of the dynamical system would be
the same as in the case just considered. This means that the
remarkable effect we found there that attractor scaling
solutions would always emerge when the potential has an
asymptotic exponential behavior is destroyed by the addi-
tion of bulk viscosity of the type � � �3�H.

B. Warm inflation with general bulk viscosity
and decay terms

We now extend our previous analysis to ascertain the
implications of more general functional dependences of
both �� and �.

We assume, quite generally, �� � ~����H� and � �
�3���H�, where � > 0, � , � and � are constants and
moreover 2�� �� 2 � 0 on dimensional grounds. The
latter condition on the parameters � and � implies that the
dimensionless variable � becomes � � �3����=3H2��

and, hence, it reduces to � � �3���1� x2 � y2��, since,
as previously, we still have �=3H2 � 1� x2 � y2. The �
free parameter controls how fast �� decreases with de-
creasing H during slow-roll inflation [see Eq. (37)].
Moreover, for � > 1, r decreases with decreasing H, and
that for � < 1 it increases.

The dynamical system is 4-dimensional and reads

x0 � x�Q� 3�1� r�� �W���y2; (51)

y0 � �Q�W���x�y; (52)

r0 � r
� ���

6
p �@�~�

~�

�
x�Q�1� ��

�
; (53)

�0 �
���
6
p
x; (54)

where Q is now given by

Q � 3
2
2x

2 � ��1� x2 � y2� � 3���1� x2 � y2���:

(55)
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In what follows it seems reasonable to further assume that
0<�< 1 so that �> 0 which amounts to having a bulk
viscosity pressure whose importance diminishes with the
expansion and with the dilution of matter.

Inspection of Eqs. (51)–(55) shows that it becomes
possible to avoid the restrictive Q � 0 condition previ-
ously found in the � � const and � � �3�H models
that implied a de Sitter behavior at the fixed points. We
have now a wider range of possibilities (our results for the
scaling solutions are summarized in Table III).

At finite values of � we find a line of fixed points x �
y � r � 0, and another line of fixed points characterized
by x � 0,� � �0, �1� y2�1�� � 3��=� and any value of
r. In the latter case �0 is the value of � at an extremum of
V���, i.e., where W��0� � 0, and in order to guarantee
that y2 � 1 we require that

3�� < �: (56)

[Notice that this amounts to having �� p��> 0, hence
ensuring _� < 0, regardless of the ratio �=�3H2�. It is, thus,
a condition akin to the usual weak energy condition.]

The linear stability analysis shows that the singular
points x � y � r � 0 corresponding to matter domination
are unstable. In fact the eigenvalues are

	� � 0; (57)

	r �
3
2�1� ����� 3���; (58)

	y �
3
2��� 3���> 0; (59)

	x � 3
�
�� 3��

2
� �1� r�

�
; (60)

and we see that 	y is positive.
Regarding the line of singular points with r � 0, linear

stability analysis reveals that, besides the vanishing eigen-
value associated with r (	r � 0), the stability is once more
determined by the nature of the extremum of V���. Indeed,
the eigenvalue corresponding to y is

	y � 2�y2
���� 1�< 0; when �< 1; (61)

where y� is a solution of �1� y2
��

1�� � 3��=�, and the
eigenvalues along x and � are given by
TABLE III. The properties of the scaling, asy
�3���H2�1��� model: In this table S stands for st
The �eff index is defined by �eff � 2=�3A� where
tA.

x� y� � V���

0< x0 < 1 0< y0 < 1 �1 V � e
�	�, ���� � V�1

0< x0 < 1 0< y0 < 1 �1 V � e
�	�, ���� � V�1
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	x;� � �
3�1� r�

2


1

2

������������������������������������������������������
9�1� r�2 � 4

���
6
p
y2
�W0��0�

q
:

(62)

We see from the latter equation that 	x;� > 0 requires that
W0����< 0, that is a maximum at V����. Otherwise, in the
case of a minimum of V���, we have either a stable node
[when 0<W0��0�< 9�1� r�2=�4

���
6
p
y2
��] or a stable sink

[when W0��0�> 9�1� r�2=�4
���
6
p
y2
��> 0].

As is well known, some authors have resorted to the
cooperative action of many scalar fields—the so-called ‘‘c
inflation’’—both in cool inflation [54] and in warm infla-
tion [55], to get a sufficiently flat effective potential ca-
pable of driving power-law accelerated expansion. Here we
note that this can be achieved with just a single inflationary
field provided the dissipative bulk viscosity is not ignored.
Indeed, this can be seen from Eq. (62). An increase in the
parameter r as well as a decrease of y� induces an effective
reduction of the steepness of the potential at the maxima
and a greater stability of the minima. Since y2

� �

1� �3��=��1=�1���, a decrease in y� translates to an in-
crease in � within the admissible range (3��=� < 1). The
net effect is that the system spends a longer time in the
neighborhood of a fixed point associated with a maximum
of the potential (alternatively, the minima become more
stable). This is helpful for setting the conditions for slow-
roll inflation. In fact, this alleviates the need for a large rate
of decay of the scalar field. We just need 
3�1� r�=y��2 >
1.

At �! 1, labeled �1, Eq. (53) shows that we may
have the usual fixed points corresponding to a nonvanish-
ing, flat asymptotic behavior of the potential (late-time
approach to a cosmological constant) if Q � 0, �0=� � 0
and �0=� � 0 simultaneously. However, we also find
asymptotic scaling behavior in the case where W��� ap-
proaches an exponential behavior [W��1� � �

��������
3=2

p
	,

with constant 	 > 0], provided

W��� �

���
6
p

1� �

�@�~�
~�

�
; (63)

which amounts to having, at �! 1, ~���� /
�V�����1���=2 and ~� must be asymptotically exponential.
Notice that for � � 1 we recover the � / H rate of decay
considered in Sec. II B. The scaling solutions are then
mptotic behavior of the � / ����H�, � �
able and Scal. Sol. stands for scaling solution.
A characterizes the power-law expansion a /

Equation of state Stability

1���=2 �eff < � S/Scal. Sol., 	2 > 3�
1���=2 �eff > � S/Scal. Sol., 	2 < 3�
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FIG. 2 (color online). Inflationary region of the models with
bulk viscosity for � � 1. Inflation occurs in the shaded regions
between the border lines and the x2 � y2 � 1 boundary of the
phase space. The lowest line corresponds to � � 1=3, the inter-
mediate line to � � 1=5, and the upper line to � � 1=8. We see
that the size of the inflationary region decreases with � .
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characterized in polar coordinates, x � � cos�, y � � sin�,
by

cos�� �
	���

6
p
�1� r�

���
u
p
; (64)

where u 	 �2 is a root of the equation

�1� u��a� bu� � rbu�
3��

2
�1� u�� � 0: (65)

The quantities a and b were defined above.
We see from Eqs. (64) and (65) that there is always one

(and only one) scaling solution, provided the condition
(56) holds. (Notice that this was precisely the condition
that was required for the existence of fixed points at finite
�.) Indeed, the first two terms of Eq. (65) are a second-
order polynomial P2�u� with P2�0�> 0 and P2�1�< 0, so
that it has one, and only one zero, in that interval (0,1).
Thus the addition (subtraction) of the �3��=2��1� u�� has
the net effect of making the root of P2 approach the origin
u � 0, and the latter remains in the (0,1) interval provided
(56) is valid. We also find that the location of the singular
points corresponding to the scaling behavior is now closer
to x2 � y2 � 0, having a smaller y1 value than in the
models without bulk viscosity. Moreover, linear stability
analysis reveals that under the conditions (56) and �< 1
the scaling solutions are stable, i.e., are attractors. These
results mean that the late-time contribution of the matter
component is enhanced by the viscous pressure. This is a
most convenient feature for the warm inflation scenario,
since it further alleviates the depletion of matter during
inflation and the subsequent need for reheating.

The power-law behavior of these solutions is a / tA,
�� lnt2=	 with A given in implicit form by

�3�A� 2�
�
A�

2

	2 �1� r�
�
�

4

	2 r� 31���A2��

�

�
A�

2

	2 �1� r�
�
�
; (66)

where r is here the asymptotic value of this parameter at
the scaling solution (where, r / y�1���=2

� ). A linear expan-
sion in both r and � in the neighborhood of the scaling
solution when r � 0, � � 0, and 	2 � 3�, yields

A��; 	; r; �� ’
2

3�

�
1�

� 2
	2�

2
3��

2
	2

r�
31��

2

�
2

3�

�
2��

�

�
2

3�
�

2

	2

�
��1

�
�
: (67)

Naturally, these equations reduce to the Eqs. (29) and (30)
when � � 1 and � � 0. As found in Sec. II B, it is possible
to define in the same manner a �eff � 2=�3A�. We see that
now it might be possible to have 	2 < 3� if � is, for
instance, a rational of the type � � m=�2n� with m�<2n�
and n integers. However for � � m=�2n� 1�, 	2 can be
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both larger or smaller than 3�, respectively, yielding �eff

smaller or larger than �. In other words, larger or smaller
values of A with regard to the case without either decays or
bulk viscosity.

It is interesting to look at the modifications of the
regions of the phase space that correspond to inflationary
behavior arising from the consideration of the viscous
pressure. In particular, it is important to assess how they
depend on the choice of the parameters. From Fig. 2 we see
that the size of the inflationary region is larger than in the
corresponding models without viscous pressure (models
with the same �). This was expected as the bulk viscosity
term amounts to a negative pressure. We also see, in good
agreement with this, that the size of the inflationary region
decreases with decreasing � , as the importance of the
viscous pressure diminishes.

We conclude this section by briefly commenting on the
trivial scaling solutions. The scalar field potentials that
yield trivial scaling solutions when the matter fluid domi-
nates are still given by Eq. (35). The requirement that r be a
constant now translates into

~���� / 
�V�������1�=2��2�$�=$; (68)

and in addition we have a consistency condition

1

3

�
m� �

3�

�
1=���1�

� 1: (69)

Once again, the inequalities 0<m< n< 6�1� r� must
be satisfied if the potential is to be positive. Moreover, as in
the � / H case, these scaling solutions happen when mat-
ter dominates so that they are not important for warm
inflation.
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IV. DISCUSSION AND CONCLUSIONS

In this work we have analyzed the dynamical implica-
tions for the warm inflation scenario of the existence of a
viscous pressure in the matter content of the Universe. The
dissipative pressure may arise either because the fluid in
which the inflaton decays may be treated as a radiative fluid
or because the different particles making up the fluid cool
at different rates or because the particles in which the
inflaton decays experience a subsequent decay in another
particles species. We have adopted a phenomenological
approach and have classified the asymptotic behavior of
models associated with possible choices of the inflaton
potential, as well as those arising from various functional
dependences both of the rate of decay of the scalar field and
of the viscous pressure on the matter/radiation component.
In general terms we have considered �� � ����H�, where
� is a constant, and � � �3���H2�1���, �< 1 being a
constant.

Relevant asymptotic regimes arise in association with
maxima and minima of the inflaton potential, at finite �,
and with the asymptotic exponential behavior of the po-
tential at �1. In the latter case, we have found that the
existence of scaling solutions depends on the form of the
decay rate of the scalar field. Indeed, a necessary and
sufficient condition to have scaling solutions is that the
rate of decay �� / ����H� becomes proportional to H
and, thus, ���� is required to become asymptotically ex-
ponential, as �1 / �V1�

���1�=2. In contrast to the scaling
solutions found in the models without decays (the r � 0
models), here we find scaling solutions regardless of the
steepness of the potential, that is for any combination of
V 0=V � �	 and �. However the ratio between these val-
ues defines whether the effective value of the � index
characterizing the scaling behavior, and hence the behavior
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of the scalar field itself, is larger or smaller than the
corresponding value of � for the models without decays.
Indeed, �eff <� when 	2 > 3� and, conversely, �eff >�
when 	2 < 3�.

Moreover inflation may be facilitated and is of the
power-law type. On the one hand, inflationary behavior
emerges in association with small values of the r parame-
ter. On the other hand, the additional presence of bulk
viscosity helps in avoiding a difficulty faced by the warm
inflation scenario that was raised by Yokoyama and Linde
[24]. Their argument was that if, on the one hand, to
enhance slow roll and simultaneously avoid the depletion
of matter, one should have a sufficiently high rate of decay
of the scalar field, on the other hand, this would make
inflation stop earlier, since the transfer of energy from the
scalar field to matter would make the conditions for the
domination of the scalar field cease swiftly.

Overall, the presence of dissipative pressure in the mat-
ter component (which arises on very general physical
grounds) lends strength to the warm inflationary proposal.
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