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Reduced shear power spectrum
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Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic
shear divided by �1� �� where � is the projected density field. We compute the difference between shear
and reduced shear both analytically and with simulations. The difference becomes more important on
smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple
recipe is presented to carry out the required correction.

DOI: 10.1103/PhysRevD.73.023009 PACS numbers: 98.62.Sb, 98.80.�k
I. INTRODUCTION

One of the most fascinating aspects of general relativity,
and the first triumph for the theory, is that gravitational
potentials can act as lenses for light from distant sources.
The presence of large-scale structure and its associated
potentials along the line-of-sight to distant galaxies implies
that the images of most distant galaxies are slightly sheared
compared to their intrinsic shapes. This shearing effect
encodes information about cosmological distances and
the evolution of large-scale structure. For this reason gravi-
tational lensing of background galaxies by large-scale
structure (cosmic shear) offers an excellent way to study
the distribution of matter in the universe [1–4].
Measurements of the cosmic shear are already enabling
us to constrain the dark matter abundance and clustering
amplitude among other parameters [5–8]. In the future,
large surveys may well uncover properties of dark energy,
such as its abundance and equation of state [9–12], and of
neutrinos [13,14]. This program will be successful only if
we can make very accurate theoretical predictions [15].

As experiments begin to go deeper and cover more and
more sky, theorists must make sure that predictions are
accurate enough to extract cosmological information in an
unbiased fashion. There is a quantitative way to phrase this
directive: the systematic errors on cosmological parame-
ters induced by theoretical uncertainties should be signifi-
cantly smaller than the anticipated statistical errors. Since
the latter hover near the percent level for the most ambi-
tious experiments, theorists clearly have their work cut out
for them.

Here we consider one correction to the standard theo-
retical predictions, the effect of reduced shear [16–18].
The observed ellipticities of galaxies (with two compo-
nents gi for each galaxy) are often used as estimates of the
cosmic shear (�i), but in fact they are sensitive to the
reduced shear:
06=73(2)=023009(6)$23.00 023009
gi �
�i

1� �
; j�j< 1 (1)

where � is the convergence or roughly the projected den-
sity field. We analyze the difference between shear and
reduced shear both analytically and with numerical simu-
lations [19,20], focusing on various two-point functions.
Then we map out the region in experiment-space where the
effects of reduced shear need to be included. Outside of
this region, the canonical prediction—which neglects the
1� � denominator—is sufficient.

Throughout we assume a flat, �CDM cosmology. Our
base model has �m � 0:28, �bh

2 � 0:024, h � 0:7, n �
1, and �8 � 0:9. We will let the galaxy density and sky
coverage of surveys vary, but we limit ourselves to all
background sources at z � 1. Our quantitative results
will change slightly for higher redshift sources, but our
two major conclusions—that we can compute these cor-
rections accurately and that we have to compute them if we
want to extract cosmological parameters—are only
strengthened (since the effect is larger) for higher redshift
sources.

II. SHEAR TWO-POINT FUNCTIONS

Here we briefly review a variety of definitions relating to
cosmic shear and its statistics. Cosmic shear can be repre-
sented by two numbers at any point in space, �1 and �2.
Similarly, the ellipticity of a background galaxy can be
described by g1 and g2. The latter are measurable, while
the former are related in a straighforward way to the
projected gravitational potential and therefore are simplest
to compute given a cosmological theory. On average, all
these components are zero; however their two-point func-
tions contain information about cosmic fluctuations.

We focus here on four sets of two-point functions, each
of which can be expressed as an integral over the 3D power
spectrum with different weightings.
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(i) S
moothed Variance Defining � � �1 � i�2, make
a map of � smoothed over a square pixel of side �.
The variance of the smoothed shear field, ��, is then

hj ��j2i��� � h ��2
1i��� � h ��

2
2i��� (2)

with a similar definition for the galaxy ellipticities,
g. Note that ‘‘ � ’’ denotes an average over a local
square while angle brackets denote an average over
the sky.
(ii) A
perture Mass At any sky position �0, this is a 2D
integral over the tangential shear, �t �
��1 cos�2�� � �2 sin�2��, where � is the angle
between �0 and a fixed x-axis. The weighting func-
tion in the integral depends on a smoothing scale �.
Here we use the smoothing function defined in [16].
The average value ofMap is zero, but its variance as
a function of smoothing scale contains information
about the underlying fluctuations.
(iii) C
orrelation Function Since there are two compo-
nents of shear, there are in principle 3 separate
correlation functions h�i��0��j��0 � ��i averaged
over all positions �0. These depend on the angular
difference � � j�j. Here we focus on the combina-
tion ���� � h���0��

���0 � ��i.

(iv) A
ngular Power Spectrum Write the �i field as a

sum of coefficients times spherical harmonics. In
the small angle limit in which we will work, this is
equivalent to a Fourier transform, ~�i�l�. One linear
combination of these Fourier coefficients (the so-
called ‘‘B-mode’’) vanishes if the underlying fluc-
tuations are due to scalar perturbations; the other,

~E�l� � �ijTi�l�~�j�l�; (3)

is sensitive to the projected gravitational potential.
Here �ij is the 2D antisymmetric tensor �12 �
��21 � 1; and the trigonometric weighting func-
tions are

T1�l� � � sin�2�l� T2�l� � cos�2�l� (4)

where �l is the angle of l with a fixed x-axis. The
angular power spectrum is roughly the variance of
these Fourier coefficents,

h ~E�l� ~E�l 0�i � �2��2	2�l� l 0�Cl: (5)
FIG. 1 (color online). Results from simulations (points with
error bars) and the perturbative calculation (smooth curves) for
the zero order power spectrum (top panel) and the fractional
change due to reduced shear (bottom panel). The error bars are
estimates of sample variance [18] and are not intended to
illustrate the agreement with the semianalytic result.
Each of these two-point functions can be computed from
a simulation using either shear or reduced shear. Thus, for
example, we can measure in a simulation both C�l and Cgl
and find the difference between the two. The simulations
we use to compute these functions are described in
Ref. [18]. We can also compute the two-point functions
semianalytically. The two-point functions of � can be ex-
pressed in terms of integrals over the 3D matter power
spectrum, which has been extremely well-studied [21–25].
The two-point functions of g can be computed perturba-
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tively by expanding the 1� � denominator around � � 0.
In Sec. III, we write the shear two-point functions as
integrals of the 3D matter power spectrum (these expres-
sions are well-known [1,4]) and the reduced shear correc-
tions in terms of the 3D three-point function, the matter
bispectrum.
III. PERTURBATIVE CALCULATION

The simplest two-point function to compute is the an-
gular power spectrum. The Fourier transformed shear can
be expressed in terms of the projected gravitational poten-
tial

~� i�l� � ��ijTj�l�
l2

2
~ �l� (6)

with

~ �l� �
Z 1

0

d



W�
�

Z dk3

2�
~��l=
; k3;
�: (7)

Here 
 is comoving distance; the lensing kernel W �
2
�1� 
=
s���
s � 
� with 
s the distance to the
source galaxy and � the Heaviside step function.

Inserting Eq. (6) into Eq. (3) to get ~E�l�, multiplying
~E�l� by ~E�l� 0, taking the expectation value, and then in-
tegrating over l 0 in the Limber approximation leads to

Cl �
l4

4

Z d
W2�
�


6
P��l=
;
� (8)

where P� is the 3D power spectrum of the gravitational
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FIG. 2 (color online). Angular two-point functions from simu-
lations and perturbatively. The error bars are estimates of sample
variance [18] and are not intended to illustrate the agreement
with the semianalytic result.
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potential. The top panel of Fig. 1 shows the power spec-
trum computed in this fashion as compared with that
measured in simulations. Agreement is excellent, confirm-
ing earlier work [26,27]. The one aberrant point on small
scales in the simulations is close to the Nyquist frequency,
so power in the simulation is artifically suppressed.

Equation (8) is an expression for the power spectrum of
cosmic shear, C�l . To lowest order, when �! 0 in Eq. (1),
the power spectrum of the observable reduced shear is
equal to this. We can perturbatively compute the correction
to the reduced shear: to leading order, g�1� � � and to
second order g�2� � ��. Therefore, the correction to the
two-point function due to reduced shear is

	h ~E�l� ~E�l 0�i��ij�klTi�l�Tk�l 0�h~g
�2�
j �l�~g

�1�
l �l

0�i��l$ l 0�

(9)

Plugging in for ~E and using �ij�jk � �	ik, we have

	h ~E�l� ~E�l 0�i �
�l2

8
Ti�l�

Z d2l1
�2��2

Ti�l 1�l21�l� l 1�
2

� h ~ �l 1� ~ �l� l 1� ~ �l 0�i � �l$ l 0� (10)

Using Eqs. (19), (20) and (22) in Ref. [28], we can reduce
this to

	Cl �
2Ti�l�

l4
Z d2l1
�2��2

Ti�l1�l
2
1�l� l 1�

2B��l 1; l� l 1;�l�

(11)

where B� is the bispectrum of the convergence. Just as the
power spectrum of the convergence can be written as an
integral of the 3D power spectrum along the line-of-sight
(Eq. (8)), the 2D bispectrum is an integral of the 3D
bispectrum [29]:

B��l 1; l 2; l 3� �
�l6

8

�
Z 1

0
d


W3�
�


10 B��l 1=
; l 2=
; l 3=
�:

(12)

The 3D bispectrum, B�, has been computed analytically
on large scales and measured on a wide range of scales in
simulations [24]. An accurate fit to the N-body results was
introduced in Ref. [30]; we use this fit to compute 	Cl, the
difference between cosmic shear and reduced shear power.
The power spectrum, P�, which is needed to compute B�,
was computed using the publicly available Halofit code
[25] which has also been calibrated by numerical simula-
tions. Figure 1 shows the results of this perturbative cal-
culation and of a similar measurement from simulations.
The perturbative results are in excellent agreement with the
simulations. This is extremely encouraging because it of-
fers an easy way to include reduced shear corrections
without resorting to expensive simulations.
023009
The conclusion that reduced shear differs from cosmic
shear most significantly on small scales follows from per-
turbation theory. On large scales, fluctuations in � and �
are small; since the difference between cosmic shear and
reduced shear is higher order in these perturbations �/ ���,
it is very small on large scales.

The angular two-point functions described in xII can all
be expressed as integrals over the power spectrum. The
smoothed variance is

hj ��2ji��� �
1

�2

Z
d2l~j0�l1�=2�j0�l2�=2�Cl: (13)

This variance can be computed for either shear or reduced
shear. The difference between the two is the same integral
over 	Cl from Eq. (11). The other spatial functions are

hM2
api��� �

288

��4

Z 1
0
dl
ClJ

2
4�l��

l3
(14)

and

���� �
1

2�

Z 1
0
dl lJ0�l��Cl: (15)

We have computed these three functions from simula-
tions and perturbatively; the results are shown in Fig. 2.
The simulations and perturbative calculations agree ex-
tremely well, as do the corrections.

IV. IMPACT ON COSMOLOGICAL PARAMETERS

When does one need to include the effects of reduced
shear when comparing models with observations?
-3
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Neglecting these effects results in an incorrect prediction
for the power spectrum; we computed a correction, 	Cl,
above. This incorrect prediction propagates to an incorrect
estimate of the cosmological parameters, pi, or a bias. The
bias on parameter i is

bi � ptrue
i � pi � F�1

ij

X
l

wl
@Cl
@pj

	Cl: (16)

Here wl is the weight, the inverse variance of the measure-
ment, and F is the Fisher matrix

Fij �
X
l

wl
@Cl
@pi

@Cl
@pj

: (17)

The variance depends on experimental specifications: sky
coverage and depth/resolution. Specifically,

w�1
l �

2

�2l� 1�fsky

�
Cl �

h�2
inti

neff

�
: (18)

The fraction of sky covered is fsky, while the rms of the
intrinsic ellipticity of galaxies, h�2

inti
1=2, is set to 0:25

[10,31], and neff is the effective galaxy density which
depends mainly on the depth and resolution of the
experiment.

We can compute the bias induced by neglecting the
difference between shear and cosmic shear for any experi-
ment. For concreteness, we allow three cosmological pa-
rameters to vary: the normalization of the power spectrum,
�8; the shape of the power spectrum, � ’ �mh; and the
matter density, �m. Figure 3 shows the bias induced in
these parameters by neglected the cosmic shear correc-
tions. This bias was computed including data out to l �
3000. The cut-off is necessary because baryons affect the
FIG. 3 (color online). The bias due to neglecting reduced shear
corrections as a function of galaxy density (per square arcminute
for a 1-component rms shear of 0:25) for the three cosmological
parameters varied. The bias on �8 is negative.
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theoretical predictions on small scales [32,33], and it is
very difficult to predict these effects accurately.

Since the reduced shear corrections on scales l < 3000
are of order a few percent (Fig. 1), it is not surprising that
the induced biases on the parameters are also of order a few
percent. Note from Eq. (16) that the bias scales as F�1wl.
Since wl / f�1

sky, and F�1 scales as fsky the bias is nearly
independent of sky coverage. Therefore, the bias depends
only on the galaxy density. At very large density, the
weight wl becomes independent of galaxy density, since
shape noise due to intrinsic ellipticity is inversely propor-
tional to galaxy density. In this limit, cosmic variance—
the first term in parentheses in Eq. (18)—becomes the
dominant source of noise. The largest bias is to the nor-
malization parameter �8.

How important is a one to 2% level bias in the cosmo-
logical parameters? We must compare the bias to the
anticipated statistical error in an experiment. With only
one free parameter, this comparison is straightforward: a
bias should not be greater than the uncertainty in the
parameter. Figure 4 shows the ratio of bias to statistical
error for the most severely affected cosmological parame-
ter (�8) as a function of survey width (fsky) and galaxy
density. We use the unmarginalized error, meaning that we
consider all other parameters fixed.

With several parameters allowed to vary, we use an
analogous touchstone: a bias must not cause the estimated
parameters to lie outside of the 1-� error ellipsoid in
parameter space. To discover whether this is the case, we
calculate a simple 
2 statistic [34],
FIG. 4 (color online). The ratio of the bias on �8 due to
neglecting reduced shear to the statistical error on �8. The ratio
depends on the width and galaxy density of the survey. Several
current and future surveys are shown for orientiation: CTIO
Lensing Survey [8]; Supernova Acceleration Probe (SNAP)
[39]; Dark Energy Survey (DES) [http://www.darkenergysur-
vey.org]; Large Scale Synaptic Survey (LSST) [40]. If the ratio
is larger than 1, neglecting reduced shear corrections biases �8

by an amount greater than its unmarginalized statistical error.
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FIG. 5 (color online). Effect of reduced shear bias on the full
parameter set. If �
2 > 3:5, then neglecting reduced shear will
cause the correct parameter set to lie outside of the 1-� error
ellipsoid of the experiment. �
2 is shown here as a function of
galaxy density and sky coverage.
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�
2 �
X
i;j

biFijbj (19)

where �
2 is the difference in 
2 between the biased and
unbiased points in parameter space. We may then use a
standard table to compute the confidence level for 3 de-
grees of freedom, p��
2; ��, with � � 3. Figure 5 displays
contours of �
2 as a function of survey width and galaxy
density. LSST, for example, has �
2 	 11! p 	 0:99. In
words, if LSST does not account for reduced shear, it will
rule out the correct parameter set at the 99% level. SNAP
and DES will be biased at about the 1-� level.

Both Figs. 4 and 5 illustrate that the largest of current
experiments are already entering a regime in which the
effects of reduced shear must be considered, and future
experiments will certainly need to account for it. Note that
neither of these figures accounts for priors, which can
reduce errors and alter the bias, in turn magnifying the
impact of reduced shear. We therefore recommend the
conservative approach of using Fig. 4 as a guide to deter-
mining whether neglecting reduced shear is justified for
current experiments. In that case, virtually all upcoming
experiments will need to add in this correction when ex-
tracting information about cosmological parameters.

V. OTHER CORRECTIONS

Reducing the shear is not the only correction that needs
to be applied to weak lensing spectra [16,19,26]. For
instance, Hu and Cooray [35] have computed perturbative
corrections to the power spectrum which account for the
Born approximation and lens-lens coupling. These correc-
023009
tions are an order of magnitude smaller than the one
considered here. To understand why, recall that 	Cl from
Eq. (9) comes from considering the product of a second
order perturbation with a first order perturbation, g�1� �
g�2�. We have considered the corresponding terms for the
beyond Born and lens-lens corrections and found that they
vanish. Therefore, the first nonvanishing corrections are
the ones considered in Ref. [35]: those of order g�1�g�3� or
g�2�g�2�. We have also not considered the effects of source
clustering [36]. There is some indication [37,38] that this
may also induce percent level changes in the power spec-
trum on small scales. If so, these would need to be included
as well. Accounting for this coupling in a simulation
requires input from a real 3D galaxy catalogue.
VI. CONCLUSIONS

Deflection of light rays by gravitational potentials along
the line-of-sight introduces a mapping between the source
and image plane. The Jacobian of this mapping defines the
shear and convergence as a function of position on the sky.
In the absence of size or magnification information neither
the shear nor the convergence is observable, but only the
combination g � �=�1� ��, known as the reduced shear.
On small scales, where lensing surveys get much of their
constraining power, this must be taken into account when
predicting the observables.

We have studied the difference between cosmic shear
and the reduced shear. Our main conlusions are:
(i) T
-5
he perturbative calculation of reduced shear,
Eq. (11), agrees well with numerical simulations.
This is not too surprising, since the lensing is weak
and we use many components themselves fit to N-
body simulations, but it gives us confidence that we
can use these calculations in making predictions or
fitting to data.
(ii) T
he effects of reduced shear are on the threshhold of
becoming very relevant. As depicted in Figs. 4 and
5, upcoming surveys will need to account for re-
duced shear when extracting cosmological
parameters.
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