
PHYSICAL REVIEW D 73, 023008 (2006)
Clarifying inflation models: Slow roll as an expansion in 1=Nefolds

D. Boyanovsky,1,3,* H. J. de Vega,2,3,† and N. G. Sanchez3,‡

1Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
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3Observatoire de Paris, LERMA, Laboratoire Associé au CNRS UMR 8112, 61, Avenue de l’Observatoire, 75014 Paris, France

(Received 26 July 2005; published 26 January 2006)
*Electronic
†Electronic
‡Electronic

1550-7998=20
Slow-roll inflation is studied as an effective field theory. We find that the form of the inflaton potential
consistent with Wilkinson Microwave Anisotropy Probe (WMAP) data and slow roll is V��� �
NM4w� ����

N
p

MPl
�, where � is the inflaton field, M is the inflation energy scale, and N � 50 is the number

of e-folds since the cosmologically relevant modes crossed the Hubble radius until the end of inflation.
The inflaton field scales as � �

����
N
p

MPl�. The dimensionless function w��� and field � are generically
O�1�. The WMAP value for the amplitude of scalar adiabatic fluctuations j��S�kadj

2 fixes the inflation scale
M� 0:77� 1016. This form of the potential makes manifest that the slow-roll expansion is an expansion
in 1=N. A Ginzburg-Landau realization of the slow-roll inflaton potential reveals that the Hubble
parameter, inflaton mass and nonlinear couplings are of the seesaw form in terms of the small ratio
M=MPl. For example, the quartic coupling �� 1

N �
M
MPl
�4. The smallness of the nonlinear couplings is not a

result of fine-tuning but a natural consequence of the validity of the effective field theory and slow-roll
approximation. We clarify Lyth’s bound relating the tensor/scalar ratio and the value of �=MPl. The
effective field theory is valid for V��� � M4

Pl for general inflaton potentials allowing amplitudes of the
inflaton field � well beyond MPl. Hence bounds on r based on the value of �=MPl are overly restrictive.
Our observations lead us to suggest that slow-roll, single field inflation may well be described by an
almost critical theory, near an infrared stable Gaussian fixed point.
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I. INTRODUCTION AND RESULTS

Inflation was originally proposed to solve several out-
standing problems of the standard big bang model [1–5]
thus becoming an important paradigm in cosmology. At
the same time, it provides a natural mechanism for the
generation of scalar density fluctuations that seed large
scale structure, thus explaining the origin of the tempera-
ture anisotropies in the cosmic microwave background
(CMB), as well as that of tensor perturbations (primordial
gravitational waves). A distinct aspect of inflationary per-
turbations is that these are generated by quantum fluctua-
tions of the scalar field(s) that drive inflation. After their
wavelength becomes larger than the Hubble radius, these
fluctuations are amplified and grow, becoming classical
and decoupling from causal microphysical processes.
Upon reentering the horizon, during the matter era, these
classical perturbations seed the inhomogeneities which
generate structure upon gravitational collapse. While there
is a great diversity of inflationary models, most of them
predict fairly generic features: a Gaussian, nearly scale
invariant spectrum of (mostly) adiabatic scalar and tensor
primordial fluctuations. These generic predictions of most
inflationary models make the inflationary paradigm fairly
robust.
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Inflationary dynamics is typically studied by treating the
inflaton as a homogeneous classical scalar field [2–5]
whose evolution is determined by a classical equation of
motion, while the quantum fluctuations of the inflaton
provide the seeds for the scalar density perturbations of
the metric and are treated in the Gaussian approximation.
In quantum field theory, the classical inflaton corresponds
to the expectation value of a quantum field operator in a
translational invariant state.

Although there is a wide variety of inflationary models,
the Wilkinson Microwave Anisotropy Probe (WMAP) [6]
data can be fit outstandingly well by simple single field
slow-roll models.

Inflation based on a scalar inflaton field should be con-
sidered as an effective theory, that is, not necessarily a
fundamental theory but as a low energy limit of a micro-
scopic fundamental theory. The inflaton may be a coarse-
grained average of fundamental scalar fields, or a compos-
ite (bound state) of fields with higher spin, just as in
superconductivity. Bosonic fields do not need to be funda-
mental fields, for example, they may emerge as conden-
sates of fermion-antifermion pairs h ���i in a grand unified
theory (GUT) in the cosmological background. In order to
describe the cosmological evolution is enough to consider
the effective dynamics of such condensates. The relation
between the low energy effective field theory of inflation
and the microscopic fundamental theory is akin to the
relation between the effective Ginzburg-Landau theory of
superconductivity and the microscopic BCS theory, or like
-1 © 2006 The American Physical Society
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the relation of the O�4� sigma model, an effective low
energy theory of pions, photons and chiral condensates
with QCD [7]. The guiding principle to construct the
effective theory is to include the appropriate symmetries
[7]. Contrary to the sigma model where the chiral symme-
try strongly constraints the model [7], only general covari-
ance can be imposed to the inflaton model.

While inflationary cosmology is currently studied from
the point of view of classical field theory with small
quantum corrections, nonperturbative quantum aspects of
the dynamics of inflation were studied in Refs. [8–11].
More recently particle decay in a de Sitter background as
well as during slow-roll inflation has been studied in
Ref. [12] together with its implication for the decay of
the density fluctuations. Quantum corrections to slow-roll
inflation including quantum corrections to the effective
inflaton potential and its equation of motion are derived
in Ref. [13].

Recent studies of quantum corrections during inflation
[12,13] revealed the robustness of classical single field
slow-roll inflationary models as a result of the validity of
the effective field theory description. The reliability of an
effective field theory of inflation hinges on a wide separa-
tion between the energy scale of inflation, determined byH
and that of the underlying microscopic theory which is
taken to be the Planck scale MPl.

The data from WMAP provides an upper bound on the
scale of the inflationary potential [6] V1=4 < 3:3�
1016 GeV (95% CL), thereby establishing an upper bound
on the scale of inflation H < 2:6� 1014 GeV. Hence, the
smallness of the ratio H=MPl & 10�4 warrants the relia-
bility of the effective field theory approach. A simple
Ginzburg-Landau realization of the inflationary potential
as an effective field theory has been recently shown to fit
the WMAP data remarkably well [14].

As mentioned in Refs. [12,13] there are two independent
expansions: the effective field theory (EFT) one based on
the small dimensionless ratio H=MPl and the slow-roll
expansion. The latter one is an adiabatic expansion which
relies on a fairly flat inflationary potential and invokes a
hierarchy of dimensionless ratios that involve derivatives
of the inflationary potential [4,6,15,16].

A. The goal of this article

In this article we combine the results from WMAP and
the slow-roll expansion to suggest that the inflationary
potential has a universal form which helps to clarify both
the (EFT) and slow-roll expansions. The main point of the
argument is the presence of two independent small pa-
rameters in single field inflationary cosmology: H=MPl

and 1=N, where N is the number of e-folds before the
end of inflation during which wavelengths of cosmological
relevance today first cross the horizon. Consistent infla-
tionary models require that N � 50–60. We argue that the
form of the potential suggested by the data and slow roll
023008
leads naturally to the identification of the slow-roll expan-
sion as an expansion in 1=N.

While the (EFT) ratio H=MPl and the slow-roll parame-
ters are logically independent, slow roll implies a large
number of e-folds, therefore the hierarchy of slow-roll
parameters is related to the smallness of 1=N. While this
point is widely known and understood, our main observa-
tion is that the slow-roll expansion is a systematic expan-
sion in the small parameter 1=N.

B. Brief summary of results
(i) W
-2
e observe that combining the WMAP data with
the slow-roll expansion suggests a consistent de-
scription of single field inflation in terms of a
classical potential of the form

V��� � NM4w��� (1.1)

where w��� �O�1�, N� 50 and � is a dimension-
less, slowly varying field

� �
�����
N
p

MPl

(1.2)

The WMAP data constrains M to be at the grand
unification (GUT) scale M� 0:77� 1016 GeV,
which suggests a connection between inflation
and the physics at the GUT scale in a cosmological
space-time.
(ii) T
he dynamics of the rescaled field � exhibits the
slow time evolution in terms of the stretched (slow)
dimensionless time variable,

� �
tM2

MPl

����
N
p (1.3)

The form of the potential and the rescaled dimen-
sionless field and time variable lead consistently to
slow-roll as an expansion in powers of 1=N.
(iii) T
he inflaton mass around the minimum is given by
a seesaw formula

m �
M2

MPl
� 2:45� 1013 GeV:

The Hubble parameter when the cosmologically
relevant modes exit the horizon is given by

H �
����
N
p

mh� 1:0� 1014 GeV � 4:1m;

using h� 1. As a result, m� M and H� MPl. A
Ginzburg-Landau realization of the inflationary
potential that fits the WMAP data remarkably
well [14], reveals that the Hubble parameter, the
inflaton mass and nonlinear couplings are seesaw-
like, namely, powers of the ratio M=MPl multiplied
by further powers of 1=N. Therefore, their small-
ness is not a result of fine-tuning but a natural
consequence of the form of the potential and the
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validity of the effective field theory description and
slow roll. The quantum expansion in loops is there-
fore a double expansion on �H=MPl�

2 and 1=N.
Notice that graviton corrections are also at least
of order �H=MPl�

2 because the amplitude of tensor
modes is or order H=MPl . While the hierarchy
between the amplitude of the field, H, and MPl is
known, we argue that the form of the potential that
fits the WMAP data and is consistent with slow roll
suggests the above result for the nonlinear
couplings.
(iv) W
e discuss critically Lyth’s bound on the ratio r of
the amplitudes of tensor to curvature perturbations.
This bound has been often used to assess the fea-
sibility of detection of tensor modes in forthcoming
searches [17–19]. Since r can be related to the
change of the inflaton field while the cosmologi-
cally relevant modes exit the horizon [17], the
restriction to models with �

MPl
& 1 [17,18] yield

very small values of r. We argue that Lyth’s bound
is overly restrictive by making precise the regime
of validity of the effective field theory approach:
the use of the inflaton potential V��� is consistent
for V��� � M4

Pl. This inequality is fulfilled for
values of the inflaton field � well beyond the
Planck mass allowing r * 1. We provide elemen-
tary, yet illuminating examples of potentials that
help precise these statements. Furthermore, the true
value of r may be very well much smaller than the
present upper bound r & 0:16 from WMAP [6]. If
for whatever reason, a restriction to values for � &

1 is invoked, then an improved Lyth bound emerges
from our analysis. This improved bound allows
values for r larger than the previous bounds due
to the presence of the new factor

����
N
p
� 7 [17,18].
(v) F
or polynomial realizations of the inflationary po-
tential, our analysis yields that the nonlinear cou-
plings scale with inverse powers of 1=N. In an
expanding cosmology the logarithm of the scale
factor is the number of e-folds, thus these couplings
scale as powers of 1= ln�a�. In a quantum field
theory, the behavior of the couplings under a
change of scale is dictated by the renormalization
group. For example, at one-loop level, the quartic
coupling of the �4 model in four dimensional
euclidean (flat) space precisely scales as 1= loga �
1=N, approaching the trivial (zero coupling) infra-
red stable (critical) point when a! 1. Hence, it is
suggestive that the underlying reason for the scal-
ing of the couplings in powers of 1=N in the
potential Eq. (1.1) [see Eq. (2.30) below] may be
the infrared renormalization group running (RG) of
long wavelength modes. This observation leads us
to conjecture that slow-roll inflation strongly sug-
gests that the effective field theory is near (but not
exactly) a trivial Gaussian infrared fixed point dur-
023008-3
ing the stage in which scales of cosmological rele-
vance today crossed the Hubble radius. In this
interpretation the theory hovers near the Gaussian
fixed point with an almost scale invariant spectrum
of scalar fluctuations during the slow-roll stage, but
eventually it must move away from the neighbor-
hood of this fixed point by the end of inflation to
reach the standard radiation dominated stage.
Equation (1.1) for the inflaton potential resembles (be-
sides the factor N) the moduli potential arising from su-
persymmetry breaking [5],

Vsusy��� � m4
susyv

�
�
MPl

�
; (1.4)

where msusy stands for the supersymmetry breaking scale.
In our context, Eq. (1.4) indicates that msusy ’ M ’ MGUT.
That is, the susy breaking scale msusy turns out to be at the
GUT and inflation scales. This may be a first observational
indication of the presence of supersymmetry.

In summary, we find that a form of the inflaton potential
for single field models consistent with the WMAP data and
slow-roll is given by Eq. (1.1). There is no requirement of
fine-tuning small parameters, as these appear in w���
naturally in terms of the effective field theory ratio
�H=MPl�

2 and 1=N. The form of the potential Eq. (1.1)
encodes the energy scale of inflation as well as slow-roll,
and is valid for practically all slow-roll inflaton potentials.
In particular, Eq. (1.1) applies for all polynomial potentials
investigated in [14].

II. BASIC MASS SCALES IN THE INFLATON
POTENTIAL AND THE NUMBER OF E-FOLDS

The description of cosmological inflation is based on an
isotropic and homogeneous geometry, which, assuming flat
spatial sections, is determined by the invariant distance

ds2 � dt2 � a2�t�d~x2: (2.1)

The scale factor obeys the Friedmann equation�
1

a�t�
da
dt

�
2
�
��t�

3M2
Pl

; (2.2)

where MPl � 1=
����������
8�G
p

� 2:4� 1018 GeV. In single field
inflation the energy density is dominated by a homogene-
ous scalar condensate, the inflaton, whose dynamics can be
described by an effective Lagrangian

L � a3�t�
� _�2

2
�
�r��2

2a2�t�
� V���

�
: (2.3)

The inflaton potential V��� is a slowly varying function of
� in order to permit a slow-roll solution for the inflaton
field ��t�.

Slow-roll inflation corresponds to a fairly flat potential
and the slow-roll approximation invokes a hierarchy of
dimensionless ratios in terms of the derivatives of the
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potential. Some [4,6,15] of these (potential) slow-roll pa-
rameters are given by1

�V �
M2

Pl

2

�
V0���
V���

�
2
; �V � M2

Pl

V00���
V���

;

	V � M4
Pl

V 0���V 000���

V2���
; 
V � M6

Pl

�V 0���	2V�IV����

V3���
:

(2.4)

where V��� is the inflaton potential and primes stand for
the derivative with respect to the inflaton field. The slow-
roll approximation [4,6,15,16] corresponds to �V � �V �
1 with the hierarchy 	V �O��2

V�;
V �O��3
V�, namely �V

and �V are first order in slow roll, 	V second order in slow
roll, etc.

As stressed in Ref. [14], in order to reproduce the CMB
data, the inflationary potentials in the slow-roll scenarios
must have the structure

V��� � M4v
�
�
MPl

�
; (2.5)

where v is dimensionless and M determines the energy
scale of the potential during inflation. The minimum of the
potential �min is chosen such that V��min� � 0 in order to
ensure that inflation ends after a finite number of e-folds.
This form of the potential is also suggested by the dimen-
sionless slow-roll parameters, because the combination
�=MPl in the argument of the potential cancels the ubiq-
uitous factors MPl in the slow-roll variables.

During slow-roll inflation the number of e-folds before
the end of inflation at which the value of the scalar field is
�end, is given by

N���t�	 � �
1

M2
Pl

Z �end

����
V���

d�
dV

d�: (2.6)

It is convenient to introduce N � 50 as the typical scale of
e-folds during which wavelengths of cosmological rele-
vance today first cross the horizon during inflation, namely

50 � �
1

M2
Pl

Z �end

�50

V���
d�
dV

d�: (2.7)

where �50 is the value of the scalar field 50 e-folds before
the end of inflation.

The form of the potential Eq. (2.5) combined with the
above definition, strongly suggests the following rescaling
of the field and the potential

� �
����
N
p

MPl�; V��� � NM4w���; (2.8)

where � is dimensionless. With this definition, the expres-
sion (2.7) simply becomes
1We follow the definitions of 	V ;
V in Ref. [6]. (	V ;
V are
called 	2

V ;
3
V , respectively, in [15]).
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1 � �
Z �end

�50

w���
w0���

d�; (2.9)

where the prime stands for the derivative with respect to the
argument. The dimensionless field � is slowly varying
during the stage of slow-roll inflation: a large amplitude
change in the field� results in a small amplitude change in
�,

�� �
1����
N
p

��
MPl

; (2.10)

a change in � with ���MPl results in a change ���
1=

����
N
p

. The number of e-folds during the cosmologically
relevant stage of inflation can now be written as

N��	
N
� �

Z �end

�

w���
w0���

d� < 1: (2.11)

In terms of the rescaled field and potential, the hierarchy of
slow-roll parameters now becomes from Eqs. (2.4) and
(2.8),

�V �
1

2N

�
w0���
w���

�
2
; �V �

1

N
w00���
w���

; (2.12)

	V �
1

N2

w0���w000���

w2���
; 
V �

1

N3

�w0���	2w�IV����

w3���
:

(2.13)

It is clear from Eqs. (2.9), (2.12), and (2.13) that during the
inflationary stage when wavelengths of cosmological rele-
vance cross the horizon w���; w0��� �O�1� and that this
statement leads to a consistent slow-roll expansion as an
expansion in 1=N, namely, the inverse of the number of e-
folds.

This equivalence between the slow roll and the 1=N
expansion can be made even more explicit by analyzing
the Friedmann equation and the equation of motion for the
inflaton in terms of the rescaled field and potential. For this
purpose, let us also introduce a stretched (slow) dimen-
sionless time variable � and a rescaled dimensionless
Hubble parameter h as follows

t �
����
N
p MPl

M2 �; H �
����
N
p M2

MPl
h (2.14)

in terms of which the Friedmann equation reads

h2��� �
1

3

�
1

2N

�
d�
d�

�
2

 w���

�
(2.15)

and the evolution equation for the field � is given by

1

N

d2�

d�2 
 3h
d�
d�

 w0��� � 0 (2.16)

The slow-roll approximation follows by neglecting the 1
N

terms in Eqs. (2.15) and (2.16). Both w��� and h��� are of
order N0 for large N. Both equations make manifest the
-4
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slow-roll expansion as an expansion in 1=N. The possibil-
ity of using 1=N as an expansion to study inflationary
dynamics was advocated previously in Ref. [20]. The
analysis above confirms this early suggestion and estab-
lishes the slow-roll expansion as a systematic expansion in
1=N.

In addition, at the absolute minimum of the potential
w���; �min, one has to require w��min� � w0��min� � 0 to
guarantee that inflation ends after a finite number of
e-folds. Moreover, we can choose jw00��min�j � 1 without
loss of generality. Then, the inflaton mass around the
minimum is given by a seesaw formula

m �
M2

MPl
: (2.17)

This seesaw form of the inflaton mass is again a hallmark
of an effective field theory and its smallness compared both
to MPl as well as M� 1016 GeV is a consequence of the
wide separation of scales.

In particular the equation of motion (2.16) can be solved
in an adiabatic expansion in terms of 1=N, with the follow-
ing result to zeroth order

dw���
d�

� �
�w0���	2

3h���

�
1
O

�
1

N

��
; (2.18)

which again requires for consistency that w0��� � w��� �
O�1� during slow roll. From Eqs. (2.16), (2.17), and (2.18)
it is clear that the slow field � is a function of the stretched
(slow) time scale �.

We can now input the results from WMAP [6] to con-
strain the scale M. The amplitude of adiabatic scalar
perturbations in slow-roll is expressed as

j��S�kadj
2 �

1

12�2M6
Pl

V3

V 02
�

N2

12�2

�
M
MPl

�
4 w3���

w02���
; (2.19)

Since, w��� and w0��� are of order one, we find�
M
MPl

�
2
�

2
���
3
p
�

N
j��S�kadj ’ 1:02� 10�5: (2.20)

where we used N ’ 50 and the WMAP value for j��S�kadj �
�4:67� 0:27� � 10�5 [6]. This fixes the scale of inflation
to be

M ’ 3:19� 10�3MPL ’ 0:77� 1016 GeV:

This value pinpoints the scale of the potential during
inflation to be at the GUT scale suggesting a deep connec-
tion between inflation and the physics at the GUT scale in
cosmological space-time.

That is, the WMAP data fix the scale of inflation M for
single field potentials with the form given by Eq. (2.10).
This value for M is below the WMAP upper bound on the
inflation scale 3:3� 1016 GeV [6].

Furthermore, the Hubble scale during (slow-roll) infla-
tion and the inflaton mass near the minimum of the poten-
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tial are thereby determined from Eqs. (2.14) and (2.17) to
be

m �
M2

MPl
� 2:45� 1013 GeV;

H �
����
N
p

mh� 1:0� 1014 GeV � 4:1m:

(2.21)

since h � O�1�.
In the absence of an underlying microscopic model from

which the effective field theory description can be reliably
extracted, we can only surmise the above form of the
potential. Our main observation is that the current phe-
nomenological success of single field slow-roll inflaton
models, validated by the wealth of observational data
from WMAP strongly suggests the universal form (2.10).
Furthermore, such form yields a slow-roll expansion con-
sistently organized in powers of the small parameter 1=N.

A. A polynomial realization

The results obtained above are very general and they
only depend on a recognition of the fast and slow fields and
time scales during the stage of slow-roll inflation of cos-
mological relevance. For specific models this general form
severely constrains the value of the couplings. In Ref. [14]
a thorough study of a general quartic potential revealed that
this simple Ginzburg-Landau type effective field theory fits
the WMAP data remarkably well. Therefore, following
Ref. [14] we consider the potential

V��� � V0 �
m2

2
�2 


mg
3
�3 


�
4
�4: (2.22)

where g; � are dimensionless couplings. The sign 
 in the
quadratic term corresponds to unbroken symmetry while
the� sign describes the broken symmetry case. We choose
� > 0 as a stability condition in order to have a potential
bounded from below while g may have any sign (but we
always have m2 > 0).

The WMAP results rule out the purely quartic potential
(m � 0; g � 0). From the point of view of an effective field
theory it is rather unnatural to set m � 0, since this is a
particular point at which the correlation length is infinite
and the theory is critical. Indeed the systematic study in
Ref. [14] shows that the best fit to the WMAP data requires
m> 0.

The general quartic Lagrangian Eq. (1.1) describes a
renormalizable theory. However, one can choose in the
present context arbitrary high order polynomials for
V���. These nonrenormalizable models are also effective
theories where MPl plays the rôle of UV cutoff. However,
already a quartic potential is rich enough to describe the
full physics and to reproduce accurately the data [14].

Introducing the slow field � as in Eq. (2.8) the potential
(2.22) can be written in the simple form
-5
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with g dimensionless in the Lagrangian Eq. (2.22). In
Ref. [12,13] it was established that loop corrections involve
the ratio g=H in the notation of that reference.
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V��� � Nm2M2
Pl

�
w0 �

�2

2


G3

3
�3 


G4

4
�4

�
; (2.23)

where

w0 �
V0

Nm2M2
Pl

; G3 � g
����
N
p MPl

m
;

G4 � �N
�
MPl

m

�
2

(2.24)

That is from Eq. (2.8),

w��� � w0 �
1

2
�2 


G3

3
�3 


G4

4
�4:

Comparing Eqs. (2.8) and (2.23) we read off the relation
(2.21) between the inflaton mass m, the scale of the poten-
tial M and the Hubble parameter H during slow-roll
inflation

Since slow-roll inflation is consistently described with
w��� �O�1�, this in turn implies that G3; G4 �O�1�. This
statement translates into the following seesaw-like rela-
tions,

g �
G3����
N
p

�
M
MPl

�
2
; � �

G4

N

�
M
MPl

�
4
: (2.25)

Therefore, we naturally find the order of magnitude of the
couplings to be:

g� 10�6; �� 10�12: (2.26)

Since M=MPl � 3� 10�3, these relations are a natural
consequence of the validity of the effective field theory
and of slow roll and relieve the fine-tuning of the smallness
of the couplings. We emphasize that the ‘‘seesaw-like’’
form of the couplings is a natural consequence of the form
of the potential (2.8) and of the inequality (2.11). While the
hierarchy between the Hubble parameter, the inflaton mass
and the Planck scale during slow-roll inflation is well
known, our analysis reveals that small couplings are natu-
rally explained in terms of powers of the ratio between the
inflationary and Planck scales and integer powers of
1=

����
N
p

.
Therefore, one of our main results in this article, is that

the effective field theory and slow-roll descriptions of
inflation, both validated by WMAP, lead us to conclude
that there is no fine-tuning for the numerical values of the
couplings. The smallness of the inflaton mass and the
coupling constants in this polynomial realization of the
inflationary potential is a direct consequence of the validity
of both the effective field theory and the slow-roll approx-
imations through a seesaw-like mechanism.

For a general potential V���,

V��� �
X1
n�0

�n�n; (2.27)

we find from Eq. (2.8)
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�n �
Gnm

2

�NM2
Pl�
�n=2��1

where w��� �
X1
n�0

Gn�n; (2.28)

and the dimensionless coefficients Gn are of order one. We
find the scaling behavior �n � 1=N�n=2��1. Equation (2.25)
displays particular cases of Eq. (2.28) for n � 3 and 4.

There are several remarkable features and consistency
checks of the relations (2.25):
(i) N
-6
ote the relation �� g2. This is the correct con-
sistency relation in a renormalizable theory be-
cause at one-loop level there is a renormalization
of the quartic coupling (or alternatively a contribu-
tion to the four points correlation function) of
orders �2; g4 and �g2 which are of the same order
for �� g2. Similarly, at one-loop level there is a
renormalization of the cubic coupling (alterna-
tively, a contribution to the three point function)
of orders g3 and �g which again require g2 � � for
consistency.
(ii) I
n terms of the effective field theory ratio H=MPl
and slow-roll parameters, the dimensionless cou-
plings are2

mg
H
�

1

N
H
MPl

; ��
1

N2

�
H
MPl

�
2
: (2.29)

These relations agree with those found for the
dimensionless couplings in Refs. [12,13] once the
slow-roll parameters are identified with the expres-
sions (2.12) and (2.13) in terms of 1=N. The results
of Refs. [12,13] revealed that the loop expansion is
indeed an expansion in the effective field theory
ratio H=MPl and the slow-roll parameters. Our
study here allows us to go further and state that
the loop expansion is a consistent double series in
the effective field theory ratio H=MPl and 1=N.
Loops are either powers of g2 or of �which implies
that for each loop there is a factor H2=M2

Pl. The
counting of powers of 1=N is more subtle: the
nearly scale invariant spectrum of fluctuations
leads to infrared enhancements of quantum correc-
tions in which the small factor 1=N enters as an
infrared regulator. Therefore, large denominators
that feature the infrared regulator of order 1=N
cancel out factors 1=N in the numerator. The final
power of 1=N must be computed in detail in each
loop contribution.
(iii) W
e find the relation (2.25) to be very suggestive.
Since the scale of inflation M is fixed, presumably
by the underlying microscopic (GUT) theory, the
scaling of � with the inverse of the number of e-
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folds strongly suggests a renormalization group
explanation of the effective field theory because
the number of e-folds is associated with the loga-
rithm of the scale N � lna. A renormalization
group improved scale dependent quartic coupling
behaves [21] as ��K� / 1= lnK with K the scale at
which the theory is studied. Since in an expanding
cosmology the physical scale grows with the scale
factor it is natural to expect that a renormalization
group resummation program would yield that the
renormalized coupling scales as

�� 1= lna� 1=N:

This of course requires further study.
B. Gauge invariant scalar perturbations

Let us now see that the slow-roll approximation appears
as a consistent expansion in 1=N in the mode equations for
the gauge invariant scalar perturbations uk���. These can
be written as [16]

�
d2

d�2 
 k
2 �

1

z
d2z

d�2

�
uk��� � 0; (2.30)

where � is the conformal time related, as usual, to cosmic
time t by dt � a�t�d� and z��� stands for

z��� � a2 d�
da

:

In terms of the slow and dimensionless variables

�� � �
����
N
p

m; � �
�

MPl

����
N
p ;

h �
H

m
����
N
p ; �k �

k

m
����
N
p ;

Equation (2.30) takes the form

�
d2

d ��2 

�k2 �

1

z
d2z

d ��2

�
uk� ��� � 0 : (2.31)

We can compute the ‘‘potential’’ in Eq. (2.31) in terms of
w��� and its derivatives using the evolution Eqs. (2.16). We
find to first order in 1=N,

1

z

d2z

d ��2 �
2

��2

�
1


3

2N

�
�
w00���
w���



3w02���

2w2���

�

O

�
1

N2

��

where we used the following expression for the dimension-
less conformal time

�� � �
1

ha

�
1


1

2N
w02���

w2���

O

�
1

N2

��
:
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Equation (2.31) takes the familiar form [16] in terms of the
above dimensionless variables,

�
d2

d ��2

�k2�

2

��2

�
1


1

2
�9�V�3�V�
O

�
1

N2

���
uk� ��� � 0;

(2.32)

and explicitly exhibiting [see Eq. (2.12)], once again, that
the slow-roll approximation is an expansion in 1=N.

Relevant modes for the large scale structure and the
CMB are today in the range from 0.1 Mpc to 103 Mpc.
These scales at the beginning of inflation correspond to
physical wave numbers in the range

eNT�601016 GeV< k< eNT�601020 GeV

where NT stands for the total number of e-folds (see, for
example, Ref. [22]). Therefore, �k 1 and Eq. (2.32) is
deep in the semiclassical regime.
III. THE TENSOR/SCALAR RATIO r AND LYTH’S
BOUND CLARIFIED

The next step in CMB observations is the search for
B-modes which, if observed, can place a direct bound on
the scale of inflation. The measurement of B-modes or
tensor perturbations with CMB experiments depends on
the magnitude of the ratio r between tensor and scalar
perturbations.

As noticed by Lyth [17] the ratio of tensor/scalar fluc-
tuations r can be related to the change of the inflaton field
while the cosmologically relevant modes exit the horizon
by

��
MPl
�

���
r
8

r
�N: (3.1)

For �N ’ 4 this gives

��
MPl
�

�����
2r
p

: (3.2)

A more stringent bound has been found in Ref. [18] by a
statistical analysis of over 2� 106 slow-roll inflationary
models

��
MPl

� 6
�������
8�
p

r1=4: (3.3)

Inflationary model building proposes an effective field
theory description of the inflationary potential of the
form [17,19]

V��� � V0 

m2

2
�2 
�4

X1
p�0

�p

�
�
MP

�
p
: (3.4)
-7
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Within this framework, it is often stated that the validity of
the effective field theory description entails that

�
MPl

� 1: (3.5)

A tension between this stringent constraint on the validity
of an effective field theory and the bounds (3.2) and (3.3) is
evident. The validity of the constraint (3.5) entails that
��=MPl � 1 suggesting that effective field theory pre-
dicts values of r� 1 probably too small to be observed in
the next generation of CMB experiments [19].
Alternatively if larger values of r are measured then this
would entail a breakdown of the effective field theory
approach to inflation.

We find this line of reasoning incorrect for three differ-
ent but complementary reasons:
(i) T
he validity of an effective field theory expansion
does not rely on �=MPl � 1, instead it relies on a
wide separation between the scale of inflation and
the higher energy scale of the underlying micro-
scopic theory. If the effective field theory emerges
from integrating out degrees of freedom at the GUT
scale, then H=MGUT � 10�2, if such scale is in-
stead the Planck scale then H=MPl � 4� 10�5,
and in either case an effective field theory descrip-
tion is valid. Indeed, detailed calculations in
Refs. [12,13] reveal that the quantum corrections
to slow-roll inflation are of the order �H=MPl�

2.
Any breakdown of an effective field theory is typi-
cally manifest in large quantum corrections but the
results of [12,13] unambiguously point out that
quantum corrections are well under control for
H=MPl � 1. This provides a reassuring confirma-
tion of the validity of the effective field theory for a
scale of inflation consistent with the WMAP data.
(ii) T
hree simple examples highlight that the criterion
�=MPl � 1 cannot be the deciding factor for the
reliability of the effective field theory: consider the
following series

X1
p�0

��1�p
�
�
MPl

�
2p
�

1

1
 � �MPl
�2

(3.6)

X1
p�0

��1�p

�2p�!

�
�
MPl

�
2p
� cos

�
�
MPl

�
(3.7)

X1
p�0

�
�
MPl

�
2p
�

1

1� � �MPl
�2
: (3.8)

The sum of both series (3.6) and (3.7) is perfectly
well defined for �>MPl. In particular, the series
(3.7) is a prototype for an axion-type potential [23],
while certainly the series (3.8) breaks down for
023008-8
��MPl. The series (3.6) and (3.7) do not feature
any real singularity in the variable �=MPl whereas
Eq. (3.8) has a singularity at � � MPl. These ele-
mentary examples highlight that what constraints
the reliability of the effective field theory descrip-
tion of the inflationary potential is not the value of
the ratio �=MPl but the position of the singularities
as a function of this variable. These singularities
are determined by the large order behavior of the
coefficients in the series. If the series has a nonzero
radius of convergence or if it is just Borel sum-
mable, it defines the function V��� uniquely.
Clearly, a thorough knowledge of the radius of
convergence of the series in the effective field
theory requires a detailed knowledge of the under-
lying microscopic theory. However, it should also
be clear that the requirement �=MPl � 1 is overly
restrictive in general.
(iii) O
ne of the main results of this article is that the
combination of WMAP data and slow-roll expan-
sion suggest a universal form of the inflation po-
tential,

V��� � NM4w���; � �
�����
N
p

MPl

: (3.9)

Even in the case when the coefficients in a �-series
expansion ofw��� lead to a breakdown of the series
at �� 1, namely, at��

����
N
p

MPl, there is still room
for values of MPl <�<

����
N
p

MPl for which the
series would be reliable. However, no a priori
physical reason for such a breakdown can be in-
ferred without a reliable calculation of the effective
field theory from a microscopic fundamental the-
ory. Therefore, we expect that the effective field
theory potential V��� � NM4w��� would be reli-
able at least up to ��

����
N
p

MPl and most generally
for values � 1 and hence � MPl.
As mentioned above, the studies in Refs. [12,13] reveal
that quantum corrections in the effective field theory yields
an expansion in � HMPl

�2 for general inflaton potentials. This
indicates that the use of the inflaton potential V��� from
effective field theory is consistent for

�
H
MPl

�
2
� 1 and hence V��� � M4

Pl:

We find using Eq. (2.8):

w��� �
1

N

�
MPl

M

�
4
�

1

N
1012: (3.10)

This condition yields an upper bound in the inflaton field�
depending on the large field behavior of w���. We find for
relevant behaviors of the inflaton potential the following
upper bounds on � and �:
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w��� ’�1 �2:��
106����
N
p ; �� 106MPl;

w��� ’�1 �4:��
103

N1=4
; �� 2659MPl for N ’ 50;

w��� ’�1 �n:��
�

1012

N

�
1=n
; �� 1012=nN1=2�1=nMPl;

w��� ’�1 e�:�� 12 ln10� lnN � 23:72; �� 167MPl for N ’ 50: (3.11)

��������r

We see that the effective field theory is consistent for
values of the inflaton field well beyond the Planck mass
even for very steep potentials, such as the exponential
function e�.

We summarize this discussion with the following two
remarks, which when taken together, relieve the tension
between the accessible experimental values of r and the
validity of the effective field theory description:
(i) T
he inflaton potential V��� may be applicable even
for large values of �

MPl
invalidating the arguments

leading to the bounds Eqs. (3.2) and (3.3) for r. The
WMAP data constrains r & 0:16 [6], the true value
for r may be very well much smaller than the
present upper bound.
(ii) I
f for some reason (or prejudice) one wishes to
restrict the analysis to values of the field where � &

1, then we provide from our study the following
improved bounds:

�� �
������
N
p

MPl

�

�����
2r
N

s
for the bound in Ref. �17	

�� �
������
N
p

MPl

’
6����
N
p

�������
8�
p

r1=4

for the bound in Ref. �18	

(3.12)

This gives for ��� 1, the improved bounds on r:

r &
N
2
’ 25 for the bound in Ref. �17	

r &
N2

64�8��2
’ 0:003 for the bound in Ref. �18	

and N ’ 50: (3.13)

It must be noticed that these bounds depend on
whether one uses as Planck’s mass MPl �
1=

����������
8�G
p

or mPl � 1=
����
G
p

, G being Newton’s con-
stant. Here we have used the first definitionMPl as in
ref.[17]. Reference [18] uses the second definition
mPl. We find using mPl � 1=

����
G
p

023008-9
���������
8�
p �

������
N
p

mPl

�
1

2

r
�N

for the bound in Ref. �17	

���������
8�
p �

������
N
p

mPl

’
6����
N
p r1=4 for the bound in Ref. �18	:

(3.14)

And we then find for �������
8�
p � 1:

r & 4�N ’ 628 for the bound in Ref. �17	

r &
N2

64 ’ 1:93 for the bound in Ref. �18	

and N ’ 50: (3.15)
In conclusion, even under the more conservative as-
sumption � & 1, we provide the improved bounds
Eqs. (3.12), (3.13), (3.14), and (3.15) which allow values
of r substantially larger than the original ones [17,18]. This
is a consequence of the factor

����
N
p
� 7 in our slow variable

�, which in turn is the result of a consistency between the
WMAP data and slow roll in an effective field theory
description. The structure Eq. (2.8) of the inflaton potential
therefore relieves the tension between the values of �

MPl

and r.
We remark that the arguments presented above suggest

that the reluctance to use the inflaton potential V��� for
� * MPl arises from a prejudice which is unwarranted
under the most general circumstances, unless of course,
the inflaton potential features singularities. The true upper
bound for the validity of the effective field theory descrip-
tion of inflation is V��� � M4

Pl which in fairly general
cases allows large values of �

MPl
as emphasized by

Eqs. (3.11).
IV. CONCLUSIONS

In this article we show that the consistency of an effec-
tive field theory description of inflation with the WMAP
data and the slow-roll approximation provide a universal
form of the inflationary potential. This form leads to a clear
understanding of the validity of the effective field theory
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and makes manifest that the slow-roll expansion is an
expansion in 1=N where N � 50 is the number of e-folds
before the end of inflation when cosmologically relevant
scales exit the Hubble radius. The inflaton potential is of
the form,

V��� � NM4w���;

where the WMAP data pinpoints M at the GUT scale M�
0:77� 1016 GeV, � is a slowly varying dimensionless
field,

� �
�

MPl

����
N
p ;

and w��� �O�1�.
The dynamics of the field � depends solely on the

stretched (slow) time variable

� �
tM2

MPl

����
N
p �

mt����
N
p ;

and is determined by the equation of motion (2.16) which
can be solved consistently in an expansion in 1=N.

This form of the potential makes explicit that the slow-
roll expansion is a consistent expansion in 1=N, see
Eqs. (2.12) and (2.13). This also shows up in the equations
of motion for the mode functions of gauge invariant scalar
perturbations.

A polynomial realization of the inflaton potential as an
effective field theory of the Ginzburg-Landau form, which
has recently been shown to fit the WMAP data remarkably
well [14], indicates that the Hubble parameter, the inflaton
mass and the nonlinear couplings emerge as powers of the
seesaw-like ratio M=MPl � 3� 10�3. The smallness of
which warrants the validity of the effective field theory.
Thus, it is clear that the smallness of the nonlinear self-
couplings is not a result of fine-tuning, but a natural con-
sequence of an effective field theory in which self-
couplings emerge from seesaw like mechanisms with two
widely different scales: the inflation (or GUT) and Planck
scales. Furthermore, the consistency between the slow-roll
and 1=N expansions implies that the quartic self-coupling
� scales as �� 1=N � 1= lna and that the cubic self-
coupling g and the quartic self-coupling are such that
g2 � �.

Our observations and results here relieve the tension
between the validity of the effective field theory approach
and the values of the ratio r between tensor and scalar
023008
perturbations. This tension is actually an artificial result of
a prejudice on the validity of the effective field theory. This
validity is not determined by the maximum value of
�=MPl but rather on the smallness of the ratio H=MPl.
These arguments pave the way for an unprejudiced obser-
vational exploration of B-modes in the next generation of
CMB experiments within the theoretical description of
slow-roll inflation based on an effective field theory.

The effective field theory describing slow-roll inflation
during the stage relevant for cosmology features remark-
able properties which indicate that inflation is hovering
near a trivial Gaussian infrared fixed point in the renor-
malization group sense. Three important aspects are be-
hind this conjecture:
(i) t
-10
he nearly scale invariant power spectrum of scalar
perturbations,
(ii) t
he fact that the coupling constant associated with a
dimension four operator, � (the quartic coupling)
scales with the scale factor as �� 1= lna and
(iii) t
he fact that the quantum corrections [12,13] are in
terms of the effective field theory ratio H=MPl and
powers of 1= lna.
This behavior is similar to that of a renormalizable field
theory near its trivial fixed point. We will continue to
explore this remarkable aspect of slow-roll inflation and
expect to report on these studies in the future.

We can summarize our main present results as follows:
we trade the small parameters in the inflationary models for
appropriate slow variables by introducing two crucial and
independent ingredients:
(i) F
irst, by introducing the inflationary or GUT energy
scaleM� 1016 GeV and the Planck scaleMPl in the
inflaton field and in the inflaton potential.
(ii) S
econd, by rescaling the inflaton field with the
square root of the number of e-folds

����
N
p

. This turn
to introduce a dependence of the couplings on N
similar to a renormalization group running of the
couplings.
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