
PHYSICAL REVIEW D 73, 023007 (2006)
Anisotropically inflating universes
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We show that in theories of gravity that add quadratic curvature invariants to the Einstein-Hilbert action
there exist expanding vacuum cosmologies with positive cosmological constant which do not approach the
de Sitter universe. Exact solutions are found which inflate anisotropically. This behavior is driven by the
Ricci curvature invariant and has no counterpart in the general-relativistic limit. These examples show that
the cosmic no-hair theorem does not hold in these higher-order extensions of general relativity and raises
new questions about the ubiquity of inflation in the very early universe and the thermodynamics of
gravitational fields.
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I. INTRODUCTION

The inflationary universe is the central cosmological
paradigm which astronomical observations aim to test,
and by which we seek to understand how the universe
might have evolved from a general initial condition into
its present state of large-scale isotropy and homogeneity
together with an almost flat spectrum of near-Gaussian
fluctuations. The essential feature of this inflationary pic-
ture is a period of accelerated expansion during the early
stages of the universe [1]. The simplest physically moti-
vated inflationary scenario drives the acceleration by a
scalar field with a constant potential, and the latter can
also be described by adding a positive cosmological con-
stant to the Einstein equations. In order to understand the
generality of this scenario it is important to determine
whether universal acceleration and asymptotic approach
to the de Sitter metric always occurs. A series of cosmic
no-hair theorems of varying strengths and degrees of ap-
plicability have been proved to demonstrate some neces-
sary and sufficient conditions for its occurrence [2–6].
Similar deductions are possible for power-law [7,8] and
intermediate inflationary behavior, [9], where accelerated
expansion is driven by scalar-field potentials that have slow
exponential or power-law falloffs, but we will confine our
discussion to the situation that occurs when there is a
positive cosmological constant, �> 0. So far, investiga-
tions have not revealed any strong reason to doubt that,
when �> 0 and other matter is gravitationally attractive,
any stable, ever-expanding general-relativistic cosmologi-
cal model will approach isotropic de Sitter inflation ex-
ponentially rapidly within the event horizon of any
geodesically moving observer. Similar conclusions result
when we consider inflation in those generalizations of
general relativity in which the Lagrangian is a function
only of the scalar curvature, R, of spacetime. This similar-
ity is a consequence of the conformal equivalence between
address: J.D.Barrow@damtp.cam.ac.uk
address: herviks@mathstat.dal.ca

06=73(2)=023007(5)$23.00 023007
these higher-order theories in vacuum and general relativ-
ity in the presence of a scalar field [10–12]. In this paper
we will show that when quadratic terms formed from the
Ricci curvature scalar, R��R�� are added to the
Lagrangian of general relativity, then new types of cosmo-
logical solution arise when �> 0 which have no counter-
parts in general relativity. They inflate anisotropically and
do not approach the de Sitter spacetime at large times. We
give two new exact solutions for spatially homogeneous
anisotropic universes with �> 0 which possess this new
behavior. They provide counterexamples to the expectation
that a cosmic no-hair theorem will continue to hold in
simple higher-order extensions of general relativity.
Other consequences of such higher-order theories have
been studied in [13–15]. The presence of such quadratic
terms as classical or quantum corrections to the description
of the gravitational field of the very early universe will
therefore produce very different outcomes following ex-
pansion from general initial conditions to those usually
assumed to arise from inflation. This adds new consider-
ations to the application of the chaotic and eternal infla-
tionary theories [16] in conjunction with anthropic
selection [17].

We will consider a theory of gravity derived from an
action quadratic in the scalar curvature and the Ricci
tensor. More specifically, ignoring the boundary term, we
will consider the D-dimensional gravitational action
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�R� �R2 � �R��R�� � 2��:

(1)

Variation of this action leads to the following generalized
Einstein equations (see, e.g., [18]):

G�� ���� ��g�� � �T��; (2)

where T�� is the energy-momentum tensor of the ordinary
matter sources, which we in this paper will assume to be
zero, and
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with � � r�r�. The tensor ��� incorporates the devia-
tion from regular Einstein gravity, and we see that � �
� � 0 implies ��� � 0.

First, consider an Einstein metric, so that R�� � �g��.
This is a solution of Eq. (2) with T�� � 0 provided that

� �
�
2
��D� 4��D�� ���� �D� 2��: (5)

Hence, when D � 4 any Einstein space is a solution to
Eq. (2) provided that � � �D� 2��=2. In particular, if
�> 0, de Sitter spacetime is a solution to Eq. (2). If � �
0, we need � � 0 and de Sitter spacetime cannot be a
solution.

Now consider solutions to Eq. (2) which are nonpertur-
bative and � and � are not small. We know that solutions
with � � 0, � � 0 are conformally related to Einstein
gravity with a scalar field 	 � ln�1� 2�R� that possesses
a self-interaction potential of the form V�	� �
�e	 � 1�2=4�, [10–12], and their inflationary behaviors
for small and large j	j, along with that of theories derived
from actions that are arbitrary functions of R, are well
understood. However, there is no such conformal equiva-
lence with general relativity when � � 0 and cosmologies
with �> 0 can then exhibit quite different behavior.
II. THE FLAT DE SITTER SOLUTION

First consider the spatially flat de Sitter universe with
metric

ds2
dS � �dt

2 � e2Ht�dx2 � dy2 � dz2�; H �

����
�

3

s
:

(6)

The stability of this solution in terms of perturbations of
the scale factor depends on the sign of �3�� ��. In 4D, we
can use the Weyl invariant and the Euler density, E, defined
by [19]

C����C
���� � R����R

���� � 2R��R
�� � 1

3R
2;

E � R����R
���� � 4R��R

�� � R2;
(7)

to eliminate the quadratic Ricci invariant in the action,
since

�R2��R��R
���

1

3
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Since integration over the Euler density is a topological
invariant, the variation of E will not contribute to the
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equations of motion. The Friedmann-Robertson-Walker
(FRW) universes are conformally flat so, for a small varia-
tion, the invariant C����C���� will not contribute either.
Hence, sufficiently close to a FRW metric only the R2 term
will contribute. The stability of the FRW universe is there-
fore determined by the sign of �3�� �� [20]. One can
check this explicitly using Eq. (2). We start with the metric
ansatz:

ds2 � �dt2 � e2b�t��dx2 � dy2 � dz2�; H �

����
�

3

s
;

and note that in 4D the trace of Eq. (2) reduces to

�R� 2�3�� ���R� 4� � 0; (8)

which can be used to determine the stability of the Ricci
scalar. We can perturb the Ricci scalar by assuming a small
deviation from the flat de Sitter metric of the form:

b�t� � Ht� b1e
�1t � b2e

�2t �O�e2�it�;

where b1 and b2 are arbitrary constants. Equation (8)
implies

�1;2 � �
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�������������������������������������
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9H2�3�� ��

s �
; (9)

if �3�� �� � 0. For �3�� �� � 0, we must have b1 �
b2 � 0. From this expression we see that if �3�� ��> 0
then the solution will asymptotically approach the flat
de Sitter spacetime as t! 1; however, for �3�� ��< 0
the solution is unstable. For the special case of � � 0, this
result agrees with the stability analysis of [20]. A construc-
tion of an asymptotic series approximation around the
de Sitter metric for the case� � 0 has also been performed
[21–25]. In the case of general relativity (� � � � 0) a
number of results for the inhomogeneous case of small
perturbations from isotropy and homogeneity when �> 0
have also been obtained [2–5,26–29].

We see that, as long as �3�� ��> 0, any FRW model
sufficiently close to the flat de Sitter model will asymptoti-
cally approach de Sitter spacetime and consequently obeys
the cosmological no-hair theorem. We should emphasize
that only FRW perturbation modes have been considered
here. The question of whether the flat de Sitter universe is
stable against general anisotropic or large inhomogeneous
perturbations when � � 0 and � � 0 is still unsettled. In
the case of universes that are not ‘‘close’’ to isotropic and
homogeneous FRW models we shall now show that the
cosmic no-hair theorem for �> 0 vacuum cosmologies is
not true: there exist ever-expanding vacuum universes with
�> 0 that do not approach the de Sitter spacetime.
III. EXACT ANISOTROPIC SOLUTIONS

We now present two new classes of exact vacuum an-
isotropic and spatially homogeneous universes of Bianchi
-2
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types II and VIh with �> 0. These are new exact solutions
of Eq. (2) with ��;�� � �0; 0�.

A. Bianchi type II solutions

ds2
II � �dt

2 � e2bt
�
dx�

a
2
�zdy� ydz�

�
2

� ebt�dy2 � dz2�; (10)

where

a2 �
11� 8��11�� 3��

30�
; b2 �

8���� 3�� � 1

30�
:

(11)

These solutions are spacetime homogeneous with a 5-
dimensional isotropy group. They have a one-parameter
family of 4-dimensional Lie groups, as well as an isolated
one (with Lie algebras Aq4;11 and A1

4;9, respectively, in
Patera et al.’s scheme [30]) acting transitively on the space-
time. An interesting feature of this family of solutions is
that there is a lower bound on the cosmological constant,
given by �min � �1=�8��� 3��� � �a2=8 for which the
spacetime is static. For �>�min the spacetime is inflating
and shearing. The inflation does not result in an approach
to isotropy or to asymptotic evolution close to the de Sitter
metric. Interestingly, even in the case of a vanishing � the
universe inflates exponentially but anisotropically. We also
note from the solutions that the essential term in the action
causing this solution to exist is the �R��R�� term and the
distinctive behavior occurs when � � 0. The solutions
have no well-defined �! 0 limit, and do not have a
general-relativistic counterpart. They are nonperturbative.
Similar solutions exist also in higher dimensions. Their
existence seems to be related to so-called Ricci nilsolitons
[31,32].

B. Bianchi type VIh solutions

ds2
VIh
� �dt2 � dx2 � e2�rt�ax��e�2�st�a~hx�dy2

� e�2�st�a~hx�dz2�; (12)

where

r2 �
8�s2 � �3� ~h2��1� 8��� � 8���1� ~h2�

8�~h2
;

a2 �
8�s2 � 8��3�� �� � 3

8�~h2
;

(13)

and r, s, a, and ~h are all constants. These are also homoge-
neous universes with a 4-dimensional group acting transi-
tively on the spacetime. Both the mean Hubble expansion
rate and the shear are constant. Again, we see that the
solution inflates anisotropically and is supported by the
existence of � � 0. It exists when � � 0 and � � 0 but
not in the limit �! 0.
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IV. AVOIDANCE OF THE NO-HAIR THEOREM

The no-hair theorem for Einstein gravity states that for
Bianchi types I–VIII the presence of a positive cosmologi-
cal constant drives the late-time evolution towards the
de Sitter spacetime. An exact statement of the theorem
can be found in the original paper by Wald [6]. It requires
the matter sources (other than �) to obey the strong-energy
condition. It has been shown that if this condition is relaxed
then the cosmic no-hair theorem cannot be proved and
counterexamples exist [7,33–35]. In [36], the cosmic no-
hair conjecture was discussed for Bianchi cosmologies
with an axion field with a Lorentz Chern-Simons term.
Interestingly, exact Bianchi type II solutions, similar to the
ones found here, were found which avoided the cosmic no-
hair theorem. However, unlike for our solutions, these
violations were driven by an axion field whose energy-
momentum tensor violated the strong and dominant energy
condition. The no-hair theorem for spatially homogeneous
solutions of Einstein gravity also requires the spatial 3-
curvature to be nonpositive. This condition ensures that
universes do not recollapse before the � term dominates
the dynamics but it also excludes examples like that of the
Kantowski-Sachs S2 
 S1 universe which has an exact
solution with �> 0 which inflates in some directions but
is static in others. These solutions, found by Weber [37],
were used by Linde and Zelnikov [38] to model a higher-
dimensional universe in which different numbers of dimen-
sions inflate in different patches of the universe. However,
it was subsequently shown that this behavior, like the
Weber solution, is unstable [39,40]. We note that our new
solutions to gravity theories with � � 0 possess aniso-
tropic inflationary behavior without requiring that the spa-
tial curvature is positive and are distinct from the
Kantowski-Sachs phenomenon.

The Bianchi type solutions given above inflate in the
presence of a positive cosmological constant �. However,
they are neither de Sitter, nor asymptotically de Sitter; nor
do they have initial singularities. Let us examine how these
models evade the conclusions of the cosmic no-hair theo-
rem. Specifically, consider the type II solution, Eq. (10).
We define the timelike vector n � @=@t orthogonal to the
Bianchi type II group orbits, and introduce an orthonormal
frame. We define the expansion tensor 
�� � n�;� and
decompose it into the expansion scalar, 
 � 
�� and the
shear, ��� � 
�� � �1=3��g�� � n�n��, in the standard
way. The Hubble scalar is given by H � 
=3. For the
type II metric, we find (in the orthonormal frame)


 � 2b; ��� �
1
6 diag�0; 2b;�b;�b�:

As a measure of the anisotropy, we introduce dimension-
less variables by normalizing with the expansion scalar:

��� �
3���


� diag

�
0;

1

2
;�

1

4
;�

1

4

�
:

Interestingly, the expansion-normalized shear components
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are constants (and independent of the parameters �, �, and
�) and this shows that these solutions violate the cosmo-
logical no-hair theorem (which requires���=
! 0 as t!
1). To understand how this solution avoids the no-hair
theorem of, say, Ref. [6], rewrite Eq. (2) as follows:

G�� � ~T��; ~T�� � ��g�� ���� � �T��:

In this form the higher-order curvature terms can be inter-
preted as matter terms contributing a fictitious energy-
momentum tensor ~T��. For the Bianchi II solution we find

~T�� �
1
4 diag�5b2 � a2;�3b2 � 3a2;

� 7b2 � a2;�7b2 � a2�

� diag�~�; ~p1; ~p2; ~p3�; (14)

where ~� and ~pi are the energy density and the principal
pressures, respectively. The no-hair theorems require the
dominant energy condition (DEC) and the strong-energy
condition (SEC) to hold. However, since ~�� ~p1 � ~p2 �
~p3 � �3b2 < 0 the SEC is always violated when b � 0.
The DEC is violated when ~� < 0 and the weak energy
condition is also violated because ~�� ~p2 � ~�� ~p3 �
��a2 � b2�=2< 0. These violations also ensure that the
singularity theorems will not hold for these universes and
they have no initial or final singularities.

Are these solutions stable? Because of the complexity of
the equations of motion it is difficult to extract information
about the stability of these nonperturbative solutions in
general. In the class of spatially homogeneous cosmologies
the dynamical systems approach has been extremely
powerful for determining asymptotic states of Bianchi
models. A similar approach can be adopted to the class
of models considered here; however, the complexity of the
phase space increases dramatically due to the higher-
derivative terms. Nonetheless, some stability results can
be easily extracted. Consider, for example, a perfect fluid
with a barotropic equation of state, p � w�, where w is
constant. Because of the exponential expansion, the value
of the deceleration parameter is q � ��1� _H=H2� � �1
for the type II and VIh solutions given. Hence, these
vacuum solutions will be stable against the introduction
of a perfect fluid with w>�1. This includes the important
cases of dust (w � 0), radiation (w � 1=3) and inflationary
stresses (� 1<w<�1=3).

For perturbations of the shear and the curvature, the
situation is far more complicated. Even within the class
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of Bianchi models in general relativity a full stability
analysis is lacking. However, in some cases, some of the
modes can be extracted. Consider again the Bianchi type II
solution, Eq. (10). Using the trace of the evolution equa-
tions, Eq. (8), we consider a perturbation of the Ricci
scalar:

R � 4�� r1e�1t � r2e�2t:

Using �R � �� �R� 
 _R�, which is valid for spatially ho-
mogeneous universes, Eq. (8) again implies, to lowest
order:

�1;2 � �
3H
2

�
1	

�������������������������������������
1�

2

9H2�3�� ��

s �
;

for �3�� �� � 0. This shows that the perturbation of the
Ricci scalar gives the same eigenmodes for the anisotropic
solutions of types II and VIh as it did for perturbations of
de Sitter spacetime in Eq. (9). In order to determine the
stability of other modes, like shear and anisotropic curva-
ture modes, further analysis is required.
V. DISCUSSION

The solutions that we have found raise new questions
about the thermodynamic interpretation of spacetimes. We
are accustomed to attaching an entropy to the geometric
structure created by the presence of a cosmological con-
stant, for example, the event horizon of de Sitter spacetime.
Do these anisotropically inflating solutions have a thermo-
dynamic interpretation? If they are stable they may be
related to dissipative structures that appear in nonequilib-
rium thermodynamics and which have appeared to have
been identified in situations where de Sitter metrics appear
in the presence of stresses which violate the strong-energy
condition [7,33–35]. They also provide a new perspective
on the physical interpretation of higher-order gravity terms
in the gravitational Lagrangian.

In summary: we have found exact cosmological solu-
tions of a gravitational theory that generalizes Einstein’s by
the addition of quadratic curvature terms to the action.
These solutions display the new phenomenon of aniso-
tropic inflation when �> 0. They do not approach the
de Sitter spacetime asymptotically and provide examples
of new outcomes for inflation that is driven by a p � ��
stress and begin from ‘‘general’’ initial conditions.
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