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Neutrino dispersion in external magnetic fields
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We calculate the neutrino self-energy operator ��p� in the presence of a magnetic field B. In particular,
we consider the weak-field limit eB� m2

‘, where m‘ is the charged-lepton mass corresponding to the
neutrino flavor �‘, and we consider a ‘‘moderate field’’ m2

‘ � eB� m2
W . Our results differ substantially

from the previous literature. For a moderate field, we show that it is crucial to include the contributions
from all Landau levels of the intermediate charged lepton, not just the ground state. For the conditions of
the early universe where the background medium consists of a charge-symmetric plasma, the pure B-field
contribution to the neutrino dispersion relation is proportional to �eB�2 and thus comparable to the
contribution of the magnetized plasma.
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I. INTRODUCTION

The presence of matter or electromagnetic fields modi-
fies the dispersion relation of neutrinos in rather subtle
ways because these elusive particles interact only by the
weak force. However, Wolfenstein was the first to recog-
nize that the feeble matter effect is enough to affect neu-
trino flavor oscillations in dramatic ways because the
neutrino mass differences are very small [1], with practical
applications in physics and astrophysics whenever neutrino
oscillations are important [2]. The presence of external
fields will lead to additional modifications of the neutrino
dispersion relation. There is a natural scale for the field
strength that is required to have a significant impact on
quantum processes, i.e. the critical value

Be � m2
e=e � 4:41� 1013 G: (1)

Note that we use natural units where @ � c � 1 and the
Lorentz-Heaviside convention where � � e2=4� �
1=137 so that e � 0:30> 0 is the elementary charge, taken
to be positive.

There are reasons to expect that fields of such or even
larger magnitudes can arise in cataclysmic astrophysical
events such as supernova explosions or coalescing neutron
stars, situations where a gigantic neutrino outflow should
also be expected. There are two classes of stars, i.e. soft
gamma-ray repeaters [3,4] and anomalous x-ray pulsars
[5,6] that are believed to be remnants of such cataclysms
and to be magnetars [7], neutron stars with magnetic fields
1014–1015 G. The possible existence of even larger fields
of order 1016–1017 G is subject to debate [8–12]. The early
universe between the QCD phase transition (� 10�5 s)
and the nucleosynthesis epoch (� 10�2–10	2 s) is be-
lieved to be yet another natural environment where strong
magnetic fields and large neutrino densities could exist
simultaneously [13].

The modification of the neutrino dispersion relation in a
magnetized astrophysical plasma was studied in the pre-
06=73(2)=023001(8)$23.00 023001
vious literature [14–17]. In particular, a charge-symmetric
plasma with me � T � mW and B & T2 was considered
for the early-universe epoch between the QCD phase tran-
sition and big-bang nucleosynthesis. Ignoring the neutrino
mass, the dispersion relation for the electron flavor was
found to be [16,17]
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where p is the neutrino momentum and � is the angle
between B and p. The first term in Eq. (2) is the dominating
pure plasma contribution [18], whereas the second term is
caused by the common influence of the plasma and mag-
netic field [16]. The third term is of second order in
�eB=T2� � 1 but was included because of the large loga-
rithmic factor ln�T=me� 
 1 [17]. The dispersion relation
of Eq. (2) applies to both �e and ��e without sign change in
any of the terms [19].

The B-field induced pure vacuum modification of the
neutrino dispersion relation was assumed to be negligible
in these papers. However, recently this contribution was
calculated for the same early-universe conditions as de-
scribed above [20,21]. The dispersion relation obtained in
these papers for both �e and ��e can be expressed as
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where p? is the momentum component perpendicular to
the B field. It is easy to check that this would be the
dominant B-field induced contribution by far and thus
would lead to important consequences for neutrino physics
in media [22–24]. The importance of the question whether
the B-field contribution to the neutrino dispersion relation
is dominant or negligible calls for an independent
calculation.
-1 © 2006 The American Physical Society
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A literature search reveals that calculations of the neu-
trino dispersion relation in external B fields have a long
history [25–27]. To compare the different results we in-
troduce the neutrino self-energy operator ��p� that is
defined in terms of the invariant amplitude for the transi-
tion �! � by the relation

M ��! �� � � ���p���p���p�; (4)

where p is the neutrino four-momentum. Note that we use
the signature �	;�;�;�� for the four-metric. Within the
standard model, the general Lorentz structure of ��p� in
the presence of a magnetic field can be expressed in terms
of four numerical coefficients a, b, c, and d as

��p� � �a�p�� 	 b�p��k 	 c�p~’�� 	 id�p’���L; (5)

where �� are the Dirac matrices in the standard represen-
tation and L � 1

2 �1� �5� is the left-handed projection
operator. The Lorentz indices of four-vectors and tensors
within parentheses are contracted consecutively. For ex-
ample, �p’�� � p�’����. Further, ’ is the dimension-
less tensor of the electromagnetic field, normalized to the
external B field, whereas ~’ is its dual,

’�� �
F��
B

; ~’�� �
1

2
"����’��: (6)

Finally, in the frame where only an external magnetic field
B is present, we take the spatial 3-axis to be directed along
B. Four-vectors with the indices ? and k belong to the
Euclidean f1; 2g-subspace and the Minkowski
f0; 3g-subspace, correspondingly. For example, p? �
�0; p1; p2; 0� and pk � �p0; 0; 0; p3�. For any four-vectors
X and Y we use the notation

�XY�k � �X ~’ ~’Y� � X0Y0 � X3Y3;

�XY�? � �X’’Y� � X1Y1 	 X2Y2;

�XY� � �XY�k � �XY�?:

(7)

Perturbatively, the matrix element of Eq. (4) corresponds
to the Feynman diagram shown in Fig. 1. Put another way,
the self-energy operator corresponds to this Feynman
graph with the external neutrino lines truncated. The mo-
tivation for our work is that the results obtained by differ-
FIG. 1. Feynman diagram for the field-induced contribution to
the neutrino self-energy operator. Double lines denote exact
propagators of the charged lepton and the W boson in an external
B field. The contribution of the unphysical Higgs particles can be
neglected in the limit m2

‘ � m2
W .
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ent authors at one-loop level do not agree with each other.
We anticipate our results in Table I where we show b, c and
d obtained by previous authors and from our calculation
detailed below.

Turning to the interpretation of the coefficients in Eq. (5)
we note that a does not have an independent meaning
because for small neutrino energies, E� mW , when
a�p� � const, the first term in Eq. (5) is fully absorbed
by the neutrino wave-function renormalization. The coef-
ficient d corresponds to an induced electric dipole moment
and as such can be nonzero only in the presence of the CP-
odd field invariant �F ~F� � 4E  B. Even in this case it is
strongly suppressed [26].

Therefore, in our case of a pure external B field only the
coefficients b and c are relevant for neutrino dispersion.
For a massless neutrino the Dirac equation in momentum
space is

��p�� ���p����p� � 0: (8)

The dispersion relation follows from

det��p�� � b�p��kL� c�p~’��L� � 0: (9)

For both � and �� this implies the same dispersion relation
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Actually, in a perturbative sense the quantity c2 is of higher
order, taking us to the two-loop level. Therefore, to lowest
order the dispersion relation of massless neutrinos depends
only on b.

For massive neutrinos the situation is more complicated
because a transverse B field induces transitions between
positive- and negative-helicity states by the usual spin
precession. Put another way, in the standard model neutri-
nos with mass inevitably have magnetic dipole moments.
In this situation it is not particularly illuminating to express
the effect of the B field in terms of a modified dispersion
relation because an entirely new phenomenon appears, the
mixing of positive- with negative-helicity states. Formally
one can still proceed as above by ��p� ! m	��p� in the
Dirac equation and obtain the new dispersion relation.
However, the energy eigenstates are no longer the left-
and right-handed helicity states but rather a superposition
that depends on the magnetic field orientation relative to p.

Therefore, for massive neutrinos the effect of B is better
illustrated in terms of the equation of motion of a free
neutrino state in an external homogeneous B field. In this
situation neutrino and antineutrino states are not con-
nected. The Dirac equation implies for the helicity ampli-
tudes �� of a massive neutrino
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where Ep � �p2 	m2�1=2. The dimensionless B-field in-
duced mixing matrix is
-2



TABLE I. Coefficients in Eq. (5) for the neutrino self-energy operator ��p� in an external B field.

Authors Reference Field strengtha b�
��
2
p
�2

GF
c�

��
2
p
�2

GF
d�

��
2
p
�2

GF

McKeon (1981) [25]    0 	3eB 	2eB
Erdas and Feldman (1990) [27] Moderate � �eB�

2

3m2
W
�ln

m2
W

m2
‘
	 3

4� 0 0

Elizalde et al. (2002)b [20] Moderate 	 eB
2 � eB

2 0

Elizalde et al. (2004)b [21] Moderate 	 eB
4 e
�p2

?
=�2eB� � eB

4 e
�p2

?
=�2eB� 0

Our result (2005)c Weak � �eB�
2

3m2
W
�ln

m2
W

m2
‘
	 3

4� 	 3eB
4 0

Our result (2005)c Moderate � �eB�
2

3m2
W
�ln

m2
W
eB 	 2:542� 	 3eB

4 0

aB is ‘‘weak’’ for eB� m2
‘ and ‘‘moderate’’ for m2

‘ � eB� m2
W .

bNeutrino momentum range 0< p2
? � eB.

cNeutrino momentum range 0< p2
? � m2

W .
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where v � jpj=E is the neutrino velocity. The first term
would represent at v � 1 the energy shift for massless
neutrinos of Eq. (10) where we have dropped the higher-
order c2 term. Of course, positive-helicity (right-handed)
massless neutrinos do not suffer an energy shift.

The last terms in Eq. (12) proportional to the coefficient
c are identical to the effect caused by a neutrino magnetic
moment

�� �
mc
2B

: (13)

Therefore, within the standard model the coefficient c is
implied by the well-known result for the neutrino magnetic
moment [28,29]

�� �
3eGFm

8�2
���
2
p : (14)

Likewise, c can be extracted from Refs. [30,31], where the
neutrino transitions �i $ �j in an external electromagnetic
field were investigated. From Eq. (12) and Table I one
concludes that for m * 10�4 eV� �p?=1 MeV��B=Be�
the neutrino energy shift becomes essentially nondiagonal.

If the neutrino mass is of Majorana type, the four neu-
trino components in the full Dirac equation are not inde-
pendent and the mass-implied term vanishes—Majorana
neutrinos do not have a magnetic moment. On the other
hand, once neutrino masses are included one cannot avoid
flavor mixing so that the situation becomes yet more
complicated by the presence of ordinary flavor oscillations
and flavor off-diagonal magnetic spin precessions caused
by magnetic transition moments which exist for both Dirac
023001
and Majorana neutrinos. We will not entangle our discus-
sion with these complications because in the standard
model the mass-induced effects all happen on the external
neutrino legs in the Feynman graph of Fig. 1. The self-
energy operator ��p� itself is independent of neutrino
masses, at least to one-loop order.

We begin in Secs. II and III with the technique to
calculate the neutrino self-energy operator by using the
charged-lepton and W-boson propagators in a magnetic
field. In Sec. IV we calculate the neutrino self-energy
contribution from the nth Landau level of the charged-
lepton propagator in combination with the exact W propa-
gator. In contrast to previous assumptions [20,21] we find
that it is not enough to use only the lowest Landau level. In
Sec. V we derive explicit results for the neutrino self-
energy operator in the limiting cases of a ‘‘weak field’’
eB� m2

‘ and a ‘‘moderate field’’ m2
‘ � eB� m2

W before
concluding in Sec. VI.

II. DEFINITION OF ��p�

The S matrix element for the transition �! � corre-
sponds to the Feynman diagram shown in Fig. 1. A detailed
description of the calculational techniques for quantum
processes in external electromagnetic fields can be found
in Ref. [32].

For the charged lepton ‘ we consider a negative electric
charge Q‘ � �e < 0. The propagator in the presence of a
constant and uniform magnetic field is translationally and
gauge noninvariant [33]. It can be expressed as

SF�x; y� � ei��x;y�S�x� y�: (15)

Here, S�x� y� is the translationally and gauge invariant
part of the propagator. The translationally and gauge non-
invariant phase can be defined in terms of an integral along
an arbitrary contour as

��x; y� � �e
Z y

x
d��K����; (16)

where K���� � A���� 	 1
2F

����� y��.
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The corresponding W-boson propagator can be repre-
sented in a similar form

GF
	
�x; y� � ei��x;y�G	
�x� y�; (17)

where ��x; y� is also given by Eq. (16).
It is useful to consider the Fourier transforms of the

translationally invariant parts of the propagators

S�X� �
Z d4q

�2��4
S�q�e�iqX; (18)

G	
�X� �
Z d4q

�2��4
G	
�q�e�iqX: (19)

The sum of the translationally noninvariant phases of the
lepton and W propagators Eqs. (15) and (17) in the loop
vanishes,

��x; y� 	��y; x� � 0: (20)

This allows one to extract the amplitude M from the S
matrix element by the standard method,

M ��! ��

�
ig2

2
���p���L

Z d4q

�2��4
S�q�G���q� p��

�L��p�;

(21)

where g is the electroweak SU�2� coupling constant of the
standard model. Comparing this result with Eq. (4) one can
express the neutrino self-energy operator as

��p� � �
ig2

2
��LJ���p���L; (22)

where

J���p� �
Z d4q

�2��4
S�q�G���q� p�: (23)

To calculate J���p� we need to unravel the propagators.

III. CHARGED-LEPTON AND W-BOSON
PROPAGATORS IN A MAGNETIC FIELD

For the Fourier transform S�q� of the translationally
invariant part of the lepton propagator Eq. (18) one obtains
in the Fock proper-time formalism [33]

S�q� �
Z 1

0

ds
cos��s�

exp
�
�is

�
m2
‘ � q

2
k
	

tan��s�
�s

q2
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�
��q��k 	m‘�

�
cos��s� �

��’��
2

sin��s�
�

�
�q��?

cos��s�

�
; (24)

where � � eB and m‘ is the lepton mass. Similarly, the
Fourier transform of the translationally invariant part of the
W-boson propagator Eq. (19) can be written in the
023001
Feynman gauge as [27]

G	
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Manipulations with the exact expressions Eqs. (24) and
(25) are extremely cumbersome. Magnetic fields existing
in nature probably are always weak compared with the
critical field for the W boson, m2

W=e ’ 1024 G. Therefore,
the W propagator can be expanded in powers of � as a
small parameter. We find up to second order

G	
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q2 �m2
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	 i�2
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3 	
2q2
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1
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W�

3

�
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Likewise, the asymptotic expression for the lepton
propagator S�q� is realized when the field strength is the
smallest dimensional parameter, �� m2

‘ � m2
W . In this

‘‘weak-field approximation’’ the charged-lepton propaga-
tor can be expanded as [34]

S�q� � i
�q�� 	m‘

q2 �m2
‘

	 �
�q��k 	m‘

2�q2 �m2
‘�

2 ��’��

	 �2
2i��q2

k
�m2

‘��q��? � q
2
?��q��k 	m‘��

�q2 �m2
‘�

4

	O��3�: (27)

One can see from this expansion that the contribution of the
region of small virtual momenta q2 �m2

‘ � m2
W is en-

hanced in each succeeding term. If the propagator is used
for a moderate field, m2

‘ � �� m2
W , the expansion is not

applicable and the exact propagator Eq. (24) must be used.
When the magnetic field is strong enough, B * B‘ �

m2
‘=e, another possibility is to express the charged-lepton

propagator as an expansion in terms of Landau levels [35]

S�q� �
X1
n�0

i

q2
k
�m2

‘ � 2n�

�
��q��k 	m‘�

�
dn�v�

�
i
2
��’��d0n�v�

�
� �q��?2n

dn�v�
v

�
; (28)

where v � q2
?=� and

dn�v� � ��1�ne�v�Ln�2v� � Ln�1�2v��: (29)

Here, Ln�x� are the Laguerre polynomials with the addi-
tional definition L�1�x� � 0.
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IV. CONTRIBUTION OF THE LEPTON LOW
LANDAU LEVELS

As we have already stressed in the Introduction, our final
result derived in Sec. V below strongly disagrees with that
of Refs. [20,21]. We think that the disagreement arises
because these authors use only one lowest Landau level
in the charged-lepton propagator in the case of moderate
field strengths which they call ‘‘strong fields.’’ However,
the contributions of the next Landau levels can be of the
same order as the ground-level contribution because in the
integration over the virtual lepton four-momentum in the
loop the region q2

k
�m2

W 
 � appears to be essential.
To substantiate this point we calculate the contribution

to the neutrino self-energy operator from the nth charged-
lepton Landau level in conjunction with the exact
W propagator in the limit p2

?=m
2
W � m2

W=�.
Substituting the exact W propagator Eq. (25) and the nth
charged-lepton Landau level from Eq. (28) into Eq. (23) we
find

J�n�
	�p���
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�2��4
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2
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���~’ ~’�	
��’’�	
cos�2�s��’	
 sin�2�s��:

(30)

Terms with even numbers of � matrices were omitted
because they are removed by the chiral structure of the
operator Eq. (22). Next we perform a clockwise rotation in
the complex plane s � �i� and use the identity

1

q2
k
�m2

‘ � 2n�
� �

Z 1
0
d�0 exp���0�m2

‘ 	 2n�� q2
k
��:

(31)

These manipulations allow us to rewrite the integral
Eq. (30) as

J�n�
	�p��
Z d4q

�2��4

�
�q��k

�
dn�v��

i
2
��’��d0n�v�

�

��q��?2n
dn�v�
v

�Z 1
0

d�d�0

cosh����

�
�~’ ~’�	


��’’�	
cosh�2���	 i’	
 sinh�2���
�

�exp
�
��0�m2

‘	2n��q2
k
����m2

W��q�p�
2
k
�

�
tanh����

�
�q�p�2?

�
: (32)

In the integration over d4q � d2qkd2q?, the integrals over
023001
d2qk can be easily calculated because they are of Gaussian
form. As a result we find

J�n�
	�p��
i

16�3m2
W

Z 1
0

dxdy
�x	y�cosh��x�

exp
�
�x	�

xy
x	y

�y�2n�	�
�
��~’ ~’�	
��’’�	
cosh�2�x�

	 i’	
 sinh�2�x��
Z
d2q?exp

�
�

tanh��x�
�

��q�p�2?

��
�p��k

x
x	y

�
dn�v��

i
2
��’��d0n�v�

�

��q��?2n
dn�v�
v

�
; (33)

where the dimensionless variables x � m2
W� and y �

m2
W�
0 have been introduced as well as the parameters � �

�=m2
W , � � p2

k
=m2

W ’ p
2
?=m

2
W and  � m2

‘=m
2
W . From

Eq. (33) it follows that the essential region of the x variable
is x� 1 due to the exponential e�x. Given the condition
�� 1, the argument of the hyperbolic functions is small,
�x� 1, leading to an obvious simplification. One should
also take into account the condition q2

? � � caused by the
functions dn�v�, see Eq. (29), containing the exponential
e�v. For a wide range of the numbers n the exponential in
the integral over d2q? is simplified, with the only restric-
tion n� 1=� � m2

W=�:

exp
�
�

tanh��x�
�

�q� p�2?

�
’ exp

�
�x

p2
?

m2
W

�

� exp
�
�x

q2
? � 2�qp�?

m2
W

�
:

(34)

Here, the first exponential is equal to e��x. We consider the
value p2

? to vary in a very wide range, 0<p2
? � m4

W=�.
The second exponential is equal to unity with a good
accuracy, because q2

? � �� m2
W and �qp�? � m2

W .
With these approximations, the integration over d2q? can
be easily performed,Z

d2q?dn�v� � ���2� �n0�;

Z
d2q?d

0
n�v� � ����n0;

Z
d2q?�q��?

dn�v�
v
� 0:

(35)

The investigated integral acquires the form

J�n�
	�p� �
i�

16�2m2
W

�p��kg	


�
2�

�
1�

i
2
��’��

�
�n0

�

�
Z 1

0

xdxdy

�x	 y�2
exp

�
�x� �

x2

x	 y

� y�2n�	 �
�
: (36)
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Taking into account the smallness of the parameters � and
, one finally obtains for n� m2

W=�
J�n�
	�p� �
i�

16�2p2
?

ln
�
1	

p2
?

m2
W

�

� �p��kg	


�
2�

�
1�

i
2
��’��

�
�n0

�
: (37)
Substituting Eq. (37) into Eq. (22) we finally find the
contribution of the nth Landau level of the lepton propa-
gator to the neutrino self-energy operator
��n��p� � �
GFeB

2
���
2
p
�2

m2
W

p2
?

ln
�
1	

p2
?

m2
W

�
� ��2� �n0��p��k � �n0�p~’���L: (38)
We conclude from Eq. (38) that, contrary to the treatment
of Refs. [20,21], the lowest Landau level does not
dominate.

For higher Landau levels, n * m2
W=�, the calculation is

more cumbersome. Therefore, using the lepton propagator
expanded in terms of the Landau levels, with a further
summation, is extremely inconvenient. It is much simpler
to take the exact lepton propagator in the form of Eq. (24).
This approach is used in Sec. V below.

In Ref. [21] a numerical test of the lowest Landau level
domination was made. However, we believe that the results
of this test are misleading. In the right-hand side of Fig. 2
of Ref. [21], corresponding to strong fields eB ’ 104m2

e,
the value ßa defined in Eq. (89) of Ref. [21] tends to unity.
From this behavior it was concluded that the lowest
Landau level domination worked well in this region.
However, the left-hand side of that plot, corresponding to
weak fields eB ’ 10�4m2

e, would have to coincide with, but
strongly contradicts, the weak-field result of Ref. [27]. An
accurate analysis of Eqs. (89) and (90) of Ref. [21] shows
that a precise cancellation of the two infinities arises,
whereas the rest appears to be of order eB=m2

W & 10�6

for the relevant field values, but not of order unity as
claimed there.
V. NEW CALCULATION OF ��p�

We begin our calculation of ��p� with the simpler case
of a weak field where B defines the smallest energy scale of
the problem, eB� m2

‘ � m2
W . As an essential simplifica-

tion we use the field expansions of the Fourier transformed
W and lepton propagators. Substituting Eqs. (26) and (27)
in Eq. (23), and assuming in addition that p2

? � m2
W , we

find an expansion of J���p� in powers of the field strength,
023001
J���p� �
1

16�2

�
eB

m2
W

�
�
i
2
g���p~’���5 	 ’���p��

�

	 i
�
eB

m2
W

�
2
�
g���p��k

�
2

3
ln
m2
W

m2
‘

�
3

2

�

	 i’���p~’���5 � �’’����p��
��
	    :

(39)

The dots include terms having the structure g���p�� and
contain, in particular, the ultraviolet divergence, to be fully
absorbed by the neutrino wave-function renormalization.
They also include terms with an even number of �matrices
that are removed by the chiral structure of ��p�.

Substituting Eq. (39) into Eq. (22) we finally find

��p��
GF

4
���
2
p
�2

�
3e�p ~F���

e2�p ~F ~F��

m2
W

�
4

3
ln
m2
W

m2
‘

	1
��
L:

(40)

The corresponding coefficients b and c are shown in
Table I.

For a moderate field, m2
‘ � eB� m2

W we use the exact
expression Eq. (24) for the charged-lepton propagator and
the expansion Eq. (26) for theW propagator, with the same
assumption p2

? � m2
W . After a straightforward but cum-

bersome calculation we find

J���p� �
1

16�2

�
eB

m2
W

�
�
i
2
g���p~’���5 	 ’���p��

�

	 i
�
eB

m2
W

�
2
�
g���p��k

�
2

3
ln
m2
W

eB
�

7

6
	

1

3
ln3

	
2

3
�E � 2I

�
	 i’���p~’���5

� �’’����p��
��
	    ; (41)

where �E � 0:577 . . . is the Euler constant, and

I �
Z 1

0

dz

z3

�
z2

sinh2z
�

3

3	 z2

�
� �0:055: (42)

The presence of the term �2 ln� with � � eB in Eq. (41)
shows that an expansion of the lepton propagator in powers
of � as a small parameter is not possible.

Finally we find

��p� �
GF

4
���
2
p
�2

�
3e�p ~F�� �

e2�p ~F ~F��

m2
W

�

�
4

3
ln
m2
W

eB
	 3:389

��
L: (43)

Again, the corresponding coefficients b and c are shown in
Table I.
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VI. SUMMARY

We have calculated the neutrino self-energy operator
��p� in a magnetic field at one-loop order. Our results
for the invariant coefficients of Eq. (5) that characterize
��p� are shown in Table I for weak and moderate field
strengths and are compared to those of previous authors.
Our results strongly disagree with those of the recent
Refs. [20,21] where a large effect was found. For moderate
fields we have shown that considering only the lowest
Landau level contribution in the lepton propagator is in-
correct because the contributions of the next Landau levels
are of similar magnitude.

It is instructive to reproduce explicitly the energy of a �e
or ��e in the presence of a CP-symmetric plasma and the
simultaneous presence of a magnetic field. We write the
energy shift in the form of Eq. (2). For a weak field eB�
m2
e we find

E
jpj
� 1	

���
2
p
GF

3

�
�

7�2T4

15

�
1

m2
Z

	
2

m2
W

�
	
T2eB

m2
W

cos�

	
�eB�2

2�2m2
W

sin2�
�
ln
T2

m2
e
� ln

m2
W

m2
e
�

3

4

��
: (44)

Interestingly, the logarithmic B-field induced plasma term
in the third term and the logarithmic pure B-field term add
to ln�T2=m2

W� so that no electron-mass dependence re-
023001
mains. For a moderate field m2
e � eB� m2

W the third
term is

	
�eB�2

2�2m2
W

sin2�
�
ln
T2

m2
e
� ln

m2
W

eB
� 2:542

�
: (45)

In this case an electron-mass dependence remains.
In a plasma, the pure B-field term is comparable to the

logarithmic contribution of the B-field induced plasma
term derived in Ref. [17]. However, these logarithmic
terms do not seem to be numerically important relative to
the term linear in eB.
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