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The quantum nondemolition (QND) intracavity topologies of gravitational-wave detectors proposed
several years ago allow us, in principle, to obtain sensitivity significantly better than the standard quantum
limit using relatively small amount of optical pumping power. In this article we consider an improved
more practical version of the optical lever intracavity scheme. It differs from the original version by the
symmetry which allows to suppress influence of the input light amplitude fluctuation. In addition, it
provides the means to inject optical pumping inside the scheme without increase of optical losses. We
consider also sensitivity limitations imposed by the local meter which is the key element of the intracavity
topologies. Two variants of the local meter are analyzed, which are based on the spectral variation
measurement and on the discrete sampling variation measurement, correspondingly. The former one,
while can not be considered as a candidate for a practical implementation, allows, in principle, to obtain
the best sensitivity and thus can be considered as an ideal ‘‘asymptotic case’’ for all other schemes. The
DSVM-based local meter can be considered as a realistic scheme but its sensitivity, unfortunately, is by far
not so good just due to a couple of peculiar numeric factors specific for this scheme. From our point of
view search of new methods of mechanical QND measurements probably based on improved DSVM
scheme or which combine the local meter with the pondermotive squeezing technique, is necessary.

DOI: 10.1103/PhysRevD.73.022002 PACS numbers: 04.80.Cc, 04.30.Db
I. INTRODUCTION

The large-scale laser interferometric gravitational-wave
detectors [1–4] which have been built to search gravita-
tional waves from very distant astrophysical sources rep-
resent now the most sensitive measurement devices for
mechanical acceleration and displacement. Currently their
sensitivity is close to

�����
Sx
p

� 10�19 m=Hz1=2 in frequency
range 100� 200 Hz [5]. This value is only �30 times
larger than the standard quantum limit (SQL) of these
devices sensitivity [6–8].

The next generation of terrestrial gravitational-wave
detectors probably will reach this limit in 2008–2010
[9,10], and then overcome it. The overcoming of the
SQL will require more or less significant modification of
the detectors topology. Several variants of this modifica-
tion have been proposed. They can be divided into two
groups.

The first group [11–23] (which can be considered as the
‘‘mainstream’’) preserves in general the current detector
topology. We will refer to these schemes below as extrac-
avity ones because all of them convert phase shift of the
optical pumping field created by the gravitational-wave
signal into some modulation of the output light beam
which is detected by photodetector(s) outside the interfer-
ometer optical cavities.

Unfortunately, due to semitechnological limitations
common for all these schemes [24] they can not provide
sensitivity significantly better than the SQL. The second
group of methods, so-called intracavity schemes [25–29],
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requires more radical modification of the detector topology
but can provide substantially better sensitivity with smaller
value of optical pumping power. The basic idea of this
method was proposed in the article [25] and can be for-
mulated as the following: measure directly the redistrib-
ution of optical energy created by the gravitational wave
inside the detector in a QND way (without absorption of
optical quanta).

In the article [26] a possible implementation of this idea,
the optical bars scheme, was proposed (see Fig. 1, left). In
this scheme the end mirrors E1, E2 and the central mirror C
form two Fabry-Perot cavities coupled by means of a partly
transparent mirror C. Relatively weak external optical
pumping is necessary in order to compensate internal
losses in the optical elements and support the steady value
of optical energy circulating inside the cavities. It can be
injected into the scheme through the slightly transparent
auxiliary mirror D.

Such system set of eigenfrequencies represents a series
of doublets, with frequencies in each doublet separated by
the beating frequency

�B �
cTC
L

(1)

(notations used in this paper are gathered in Table I). If the
upper frequency mode of some of the doublets is pumped
then optical field acts as two rigid springs one of which is
located between the mirrors E1 and C and the second one
(L-shaped)—between the mirrors E2 and C. This is the
same optical rigidity that can exist in a single cavity [30–
32] and in the signal-recycled topology of laser interfero-
metric gravitational-wave detectors [14].
-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.73.022002


E1

E2

C

D

E1

E2

I1I2 C

D

FIG. 1 (color online). The ‘‘optical bars’’ (left) and ‘‘optical lever’’ (right) intracavity schemes.
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Because of these springs displacement of the end mirrors
E1;2 caused by the gravitational wave produces displace-
ment of the local mirror C. The local mirror should have an
attached measurement device (local meter) which moni-
tors its position relative to some reference mass placed
outside the optical field.

In the article [28] an improved version of the optical
bars scheme was proposed. It differs from the original
TABLE I. Main notatio

Quantity Value

A
��������������������
3� 10�5
p

Alocal

��������������������
5� 10�6
p

c
F
F �

2

�
F

@

L 4 km
l
MC

ME

MI
M �

2MEMI

ME �MI
40 kg

� � M=�2

m� � MC ��

m� �
�MC

��MC
RC; TC
Tlocal

W
w
�
�loss �

cA2

4L
0:6 s�1

!o 1:8� 1015 s�1

� 2�� 100 s�1

�B

�0

�
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‘‘optical bars’’ scheme by two additional mirrors I1 and I2
(see Fig. 1, right) which turn the antenna arms into two
Fabry-Perot cavities, similar to the standard Fabry-Perot—
Michelson topology of the contemporary gravitational-
wave antennae. In this topology,

�B � �
TC
RC

: (2)
ns used in this paper.

Description

Arm cavities amplitude loss per bounce
Local meter cavity amplitude loss per bounce

Speed of light
Arm cavities finesse

Signal displacement gain
Plank’s constant

Arm cavities length
Local meter cavity length

Central mirror mass
End mirrors mass
Input mirrors mass

Equivalent sum mass of the system

Equivalent reduced mass of the system

Central input mirror amplitude reflectivity and transmittance
Local meter input mirror amplitude transmittance

Optical power circulating in the arm cavities
Optical power circulating in local meter cavity

Arm cavities half-bandwidth
Part of � caused by the optical losses

Optical pumping frequency
Signal (side-band) frequency

Beating frequency
Mechanical resonance frequency

DSVM sampling time
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This scheme was called optical lever because it can pro-
vide the gain in signal displacement of the local mirror
similar to the gain which can be obtained using ordinary
mechanical lever with unequal arms. The value of this gain
is equal to
F �
c
�L
�

2

�
F : (3)
1In this article, we use ‘‘two-sided’’ spectral densities which 2
times smaller than ‘‘one-sided’’ ones and provide a bit more
consistent formulae.
In the article [28] it was shown that in all other aspects the
optical lever scheme is identical to the optical bars one, but
in the former one the local mirror C mass has to be F 2

times smaller. Because of this scaling of mass the gain in
signal displacement by itself does not allow to overcome
the SQL, because the SQL value increases exactly in the
same proportion. But it allows to use less sensitive local
position meter (thus decreasing substantially required op-
tical power in it) and increases the signal-to-noise ratio for
miscellaneous noises of nonquantum origin.

In the article [29] prospects of use of QND local meter
(mentioned first briefly in the article [27]) were analyzed. It
was shown that QND local meter allows to decrease sig-
nificantly the optical power circulating in the main cavity,
while providing sensitivity several times better than the
standard quantum limit.

The main goal of the current paper is further develop-
ment of the optical lever topology towards practical design
of the intracavity gravitational-wave detector. In particular,
we consider its integration with the local meter based on
the discrete sampling variation measurement (DSVM) pro-
cedure [33].

This paper is organized as the following.
In the Sec. II we discuss the semitechnological limita-

tions mentioned above and estimate sensitivities which can
be provided by extracavity and intracavity topologies.

In the Sec. III A modified topology of the optical lever
scheme which can be considered as more ‘‘practical’’ one
is proposed. It differs from the previous one by its sym-
metry, which allows to suppress influence of the input light
amplitude fluctuation. In addition, it provides the means to
inject optical pumping inside the scheme without increase
of the signal mode coupling with the external world (i.e.
without increase of the optical losses).

In the Sec. III B scheme potential sensitivity, i.e. the
sensitivity limitation imposed by the optical losses, is
analyzed. In the previous papers [27,29] this limitation
was estimated only for the simplified model based on
two harmonic oscillators. Now we calculate it accurately.

In the Sec. IV possible implementation of the local
meter, which is evidently the key element of the intracavity
topologies, is analyzed in detail. We consider in this sec-
tion the combination of the optical lever topology with the
DSVM scheme [33] and calculate its sensitivity.
022002
II. INTRACAVITY VS. EXTRACAVITY
TOPOLOGIES

A. Optical power

It is well known that in order to detect tiny gravitational-
wave signal huge amount of optical quanta is required.
Usual explanation of this requirement is the following. In
the interferometric gravitational-wave detectors the phase
of the optical field is monitored. Precision of this measure-
ment is limited by the phase quantum fluctuations (i.e. the
shot noise) which spectral density is inversely proportional
to the mean optical power.

In the QND modifications of the standard topology, for
example, variational input/output schemes [8,16,17], not
phase but some combination of the phase and amplitude
quadratures of the optical field is monitored. In this case
more general explanation [24] based on the Heisenberg
uncertainty relation can be provided.

Really, in order to detect displacement �Lh of the end
mirrors created by the gravitational wave it is necessary to
provide perturbation of its momentum �p 	 @=2�x. The
only source of this perturbation in the interferometric
gravitational-wave antennae is the uncertainty of the opti-
cal pumping energy: �p / �E � hEi=�2, where � � e�R

is the squeeze factor and hEi is the mean energy. Therefore,
the smaller �x has to be detected, the higher energy is
required.

In spectral representation uncertainty relation for the
interferometric gravitational-wave detectors can be pre-
sented as the following1:

L2Sh
4
� SB:A: �

@
2

4
; (4)

where Sh is the spectral density of the measurement noise,
normalized as fluctuation metrics variation, and SB:A: is the
spectral density of the fluctuation radiation pressure differ-
ential force acting on each of the test mirrors.

It is evident that for all extracavity topologies SB:A: /
W=�2. Exact form of this spectral density depends on the
specific topology. For the ordinary Initial LIGO topology

SB:A: �
8@!pW

�2cL

�

�2 ��2 ; (5)

and therefore

Sh �
�2
@c

8L!pW
�2 ��2

�
: (6)

It is convenient to compare this spectral density with the
one corresponding to the standard quantum limit:
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FIG. 2 (color online). (a): Sensitivity which can be obtained in
the standard extracavity topology for the coherent pumping; (b):
the same for the 10 dB squeezed pumping; (c): 20 dB squeezed
pumping. The left more steep parts of curves (a)–(c) correspond
to Eq. (7) with � � �, the right more flat ones—to Eq. (20). (d):
Potential sensitivity of the intracavity optical lever topology; (e)
sensitivity of the optical lever scheme with the spectral variation
measurement-based local meter; (f) sensitivity of the optical
lever scheme with the DSVM-based local meter.
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�2
extra 


Sh
SSQL
h

�
�2

2

WSQL

W
�2 ��2

2��
; (7)

where

SSQL
h �

4@

M�2L2 (8)

(see [8]), and

WSQL �
McL�3

8!o
(9)

is the circulating optical power in the SQL-limited detector
which is necessary to reach the SQL. Factor 1=2 corre-
sponds to the evident fact that QND techniques provide

���
2
p

times better sensitivity than SQL-limited detector even if
W � WSQL, because they ‘‘filter out’’ backaction noise
which for W � WSQL corresponds to one half of the total
noise.

In the speed-meter topologies [18–23] SB:A: differs only
by an additional factor 2�2=��2 ��2�. Therefore, if � ’
� then sensitivity is close to 1 defined by Eq. (6).

On the other hand, in the signal-recycled ‘‘optical
springs’’ topology [12–17] it is possible to create high
narrow peak in spectral dependence of SB:A::

SB:A: �
4@!pW

�2cL

��=2

����0�
2 � ���=2�2

: (10)

The peak width �� and the mean frequency �0 depend on
the signal recycling mirror cavity parameters. Therefore, in
this case it is possible to obtain sensitivity much better than
the SQL without increase of optical power, but only in
narrow spectral band �� �0:

�2
extra �

�2

2

WSQL

W
����0�

2 � ���=2�2

�0��=2
; (11)

�2
extra

�����������0

�
�2

2

WSQL

W
��=2

�0
: (12)

Below we limit ourselves to the wide-band case (7) only.

B. Optical losses

It follows from Eq. (7) that the best sensitivity can be
achieved if � ’ �, and at this point

�2
meter �

�2

2

WSQL

W
: (13)

Unfortunately, situation is possible where this optimization
can not be provided. Really, it can be shown that internal
losses in the optical elements impose the following addi-
tional limitation on the sensitivity:

�2
loss �

����������������
�2 �loss

�load

s
�

���������������
�2 �loss

�

s
: (14)
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Suppose that � � �. In this case sensitivity will be limited
by the following value:

�2
loss �

���������������
�2 �loss

�

r
: (15)

For the Advanced LIGO values of parameters (see Table I),

�loss �
cA2

4L
’ 0:6 s�1; (16)

and

�loss � 0:2
���
�

p
: (17)

In order to obtain smaller �loss it is necessary to increase �
thus increasing �meter. It is evident that the optimal value of
� exists, which provides minimum to the sum noise spec-
tral density:

�2
sum � �2

extra � �
2
loss �

�2

2

WSQL

W
�

2�
�

���������������
�2 �loss

�

s
(18)

(it is supposed here for simplicity that �� �loss, �� �).
The minimum is reached when

� �
�

4�loss�
2

�2

W2

W2
SQL

�
1=3
; (19)

and is equal to:
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�2
sum �

3

2

�
�4 �loss

2�

WSQL

W

�
1=3
: (20)

For the values of �loss and � mentioned above we obtain
that

�sum � 0:34� �2=3 �

�
WSQL

W

�
1=6
: (21)

Note the very weak dependence on pumping power.
The sensitivity estimates based on Eqs. (7) and (20) are

plotted in Fig. 2 as functions of optical power, see curves
(a),(b),(c).
III. PRACTICAL VERSION OF THE OPTICAL
LEVER INTRACAVITY TOPOLOGY

A. Discussion of the topology

The scheme which is analyzed in this paper is presented
in Fig. 3. Consider step by step the additional optical
elements of this scheme.

1. Symmetrization of the topology

The evident disadvantage of simple schemes shown in
Fig. 1 is their nonsymmetry: pumping power enters the
‘‘north’’ (vertical on the picture) arm first and only then,
through the coupling mirror C, the ‘‘east’’ one. Because of
this nonsymmetry the input optical field amplitude fluctu-
ations will create differential pondermotive force acting on
the central mirror and imitating gravitational-wave signal.
In order to eliminate this effect, symmetric power injection
scheme shown in Fig. 3 has to be used. It consists of the
beamsplitter BS which splits the input beam into two, and
E1

E2

I1

I2

C

D1

D2

P1

P2

S

BS

FIG. 3 (color online). Practical design of the optical lever
intracavity scheme.
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two additional power injection mirrors D1 and D2 placed
symmetrically on both sides of the central mirror C.

2. Power recycling mirrors

It can be shown that without power recycling mirrors P1,
P2 one quarter of input power is reflected from the mirrors
D1 and D2 back to the laser, another quarter is reflected to
the side direction, and only one half enters the scheme. The
mirrors P1, P2 cancel both reflected beams and increase
twice the circulating power inside the scheme (for the same
value of input power).

3. Signal recycling mirror

It can be shown also that if the mirrors D1;2 transmittan-
ces are tuned in optimal way to provide maximal optical
power in the scheme [see Eq. (A9)] then these transmit-
tances will create an additional ‘‘hole’’ which will increase
two-fold total optical losses in the scheme.

This hole can be closed without affecting optimal cou-
pling condition using symmetry of the scheme. Indeed,
similar to traditional interferometric gravitational-wave
detectors topology, the mean value of optical power inside
the scheme depends on the bandwidth of the symmetric
optical mode which is coupled with ‘‘western’’ port of the
beamsplitter, and the detector sensitivity depends on the
bandwidth of antisymmetric mode which is coupled with
‘‘south’’ port of the beamsplitter. The only difference is
that in traditional topology the antisymmetric mode band-
width has to be close to the signal frequency � to provide
optimal coupling with photodetector, while in the intra-
cavity topology it has to be as small as possible. Therefore,
high-reflectivity signal recycling mirror has to be placed in
the south port as shown in Fig. 3.

B. Sensitivity limitation due to optical losses

The topology described in the previous subsection is
analyzed in the Appendix A. In particular, the sensitivity
limitation imposed by optical losses is calculated. Spectral
density of the corresponding equivalent noise (normalized
as fluctuation metrics variation) is equal to

Sloss
h �

@c�loss

2!oWL

�
1�

�2

�2
B

�
: (22)

(slightly simplified form is presented here, which takes into
account that �B 	 �� �loss; for the exact form, see
Eq. (A44)).

Compare this spectral density with the one correspond-
ing to the Standard Quantum Limit [see Eqs. (8) and (9)]:

�2
loss 


Shloss

SSQL
h

�
�loss

�

WSQL

W

�
1�

�2

�2
B

�
: (23)

It was noted in the article [29] that due to the fact that
factor �loss=� can be as small as�10�3, the value �loss 
1 can be obtained even with W  WSQL.
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Estimate of �loss as a function of W=WSQL (the potential
sensitivity) is plotted in Fig. 2, see curve (d).

IV. LOCAL METER

A. Options for the local meter

Taking into account the gain F � 10� 100 in the local
mirror mechanical displacement, sensitivity of the local
meter has to be several times better than SQL for the mass
� � M=F 2:�����������

@

��2

s
�F

�����������
@

M�2

s
��10�100��2:5�10�19 m�s�1=2:

(24)

Several types of devices have been proposed, which can, in
principle, provide this sensitivity, in particular: SQUID-
based schemes used in solid-state gravitational-wave an-
tennae; microwave speed meter [18]; small-scale optical
speed meter [21]; spectral variation measurement-based
schemes (a.k.a. schemes with modified input-output op-
tics) [11,17]; and the discrete sampling variation measure-
ment (DSVM) based optical position meter [33].

The first two types require cryogenic equipment. In
addition, estimates made in the article [18] show that due
to the internal losses the microwave spped meter can
provide sensitivity only slightly better than SQL.

The Sagnac-based optical spped meter (as well as other
practical speed-meter schemes) requires that its optical
storage time has to be larger than ��1 � 10�3 s. Simple
estimates show that due to this limitation the interferome-
ter size can not be smaller than �100 m, i.e. an additional
setup comparable with a full scale gravitational-wave de-
tector, such as GEO-600, is necessary.

In spectral variation measurement-based (variational
input/output) schemes a short (desktop-scale) main cavity
can be used. However, they require an additional cavity
with bandwidth comparable with the signal frequency and
thus with hundreds meters length.

We consider here two variants of the local meter: the
spectral variation measurement-based and DSVM-based
schemes. The former one, while it can not be considered
as a candidate for a practical implementation, allows, in
principle, to obtain the best sensitivity and thus can be
considered as an ideal ‘‘asymptotic case’’ for all other
schemes. The DSVM-based local meter can be considered
as a realistic scheme but its sensitivity, unfortunately, is by
far not so good just due to a couple of peculiar numeric
factors specific for this scheme.

Both these schemes use Fabry-Perot cavity-based posi-
tion meter with a homodyne detector. The evident technical
challenge in this case is how to attach this meter to the
small (with the mass of about 1 g) local mirror which is
also the part of the main large-scale optical setup. Possible
solution which is based on the scheme proposed in the
paper [34] is shown in Fig. 4.
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B. Ideal variation measurement

Suppose that the local oscillator phase �LO of the ho-
modyne detector mentioned above can depend on the ob-
servation frequency � in an arbitrary way. It was shown in
the article [11] that by special tuning of the function
�LO��� it is possible to eliminate the backaction noise
from the output signal and thus to overcome the SQL.

Spectral density of this scheme measurement noise is
calculated in Appendix , see Eq. (B7). It follows from this
equation that the sensitivity limitation imposed by the
meter can be presented as follows:

�2
meter 


Smeter
h

SSQL
h

�
I

2

m2
�

�MC

wSQL

w
; (25)

where

I �
��4 ��2�2

B ��2
0�2

B�
2

�4
0�4

B

; (26)

and

wSQL �
MCc

2T2
local�

2

32!o
(27)

is circulating power in an ordinary (SQL-limited) Fabry-
Perot cavity-based position meter which is necessary to
reach the SQL for the test mass MC.

Factor I has rather sophisticated spectral dependence. It
is evident, however, that the best sensitivity area corre-
sponds to values ���0 ��B, and the noise spectral
density increases as �4 if �� �B ��0.

We consider here simple particular case when

� � �B � 2
���
2
p

�0: (28)

(for more general optimization, see Appendix C of the
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article [29]). In this case I � 1. On the other hand, con-
dition (29) together with Eq. (A47) lead to the following
limitation on the pumping power W:

W 	
F 2m�cL�3

64!o
�

1

8

m�
�
WSQL: (29)

It was pointed in the article [29] that it is possible to reduce
pumping power by using small local mirror with mass
MC  �. In this case,

m� � �; m� � MC; (30)

and Eqs. (26) and (30), can be simplified:

�2
meter �

I

2F 2

M
MC

wSQL

w
;(31a)

W 	
F 2

8

MC

M
WSQL;(31b)

The meaning of these equations is evident. The larger is
F , the better is sensitivity because the local mirror signal
displacement is proportional to F . On the other hand, the
larger is F , the larger has to be circulating power in the arm
cavities to keep optical springs sufficiently stiff. Excluding
factor F Eqs. (31) can be combined into the following one:

�2
meter �

1

16

WSQL

W

wSQL

w
: (32)

In Eq. (32) optical losses in the local meter cavity have
not been taken into account. These losses impose an addi-
tional sensitivity limitation which has the same form as
condition (14):

�2
loss �

�����������
A2

local

T2
local

s
: (33)

The smaller is Tlocal, the smaller is �meter, but the larger is
�loss. Therefore, an optimal value of Tlocal exists where the
sum

�2
meter loss � �2

meter � �
2
loss (34)

is minimum. It is easy to show that at this point,

�2
meter loss �

�2
0

2

�
WSQL

W

�
1=3
; (35)

where

�2
0 �

3

2

�
MCc2A2

local�
2

32!ow

�
1=3
: (36)

For numeric estimates, we will use the same values as
proposed for the pondermotive squeezing experiment in
[34], see Table I. For these values �0 � 0:1 thus allowing
to obtain for the optical power W & WSQL the value of
�meterloss which is also close to 0.1. Graphs of �meter loss as a
function of W are plotted in Fig. 2, see curve (e).
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C. DSVM-based local meter

The scheme of the DSVM-based local meter, similar to
the previous one, consists of a Fabry-Perot cavity-based
position meter with a homodyne detector. However, in-
stead of the frequency-dependent local oscillator phase
time-dependent one is used in order to exclude the back-
action noise.

This method is based on variation measurement tech-
nique proposed in [35] and analyzed in [36,37]. Severe
disadvantage of this original form of variation measure-
ment is the necessity to know the shape and arrival time of
the signal being detected. DSVM procedure suggests the
way to overcome this disadvantage by approximating the
real signal with the sequence of rectangular pulses which
amplitude is the mean value of the signal over the pulse
duration � � �=�max, where �max is the upper frequency
of the signal.

Sensitivity of the DSVM-based local meter is calculated
in Appendix B 2. It is shown that if this meter is used then

�2
DSVM 


Smeter
h

SSQL
h

�
720

�4G��B�;�0��

m2
�

�MC

wSQL

w
(37)

(it is supposed here that � � �max).
Dimensionless function G��B�;�0�� is calculated nu-

merically and its 3D-plot is presented in Fig. 5. Three areas
can be clearly distinguished on this plot depending on the
mechanical eigenfrequency �0 and beating frequency �B.

1. �0 >�B=2. In this area the system is extremely
unstable: its eigenfrequencies have imaginary parts of
both signs comparable with the real ones. We expressed
symbolically this instability by setting G � 0 (i.e. Smeter

h !
1) in this area.

2. �B=2>�0 * 3�max. In this area, G is close to its
maximum value 1 and therefore the best sensitivity is
provided. Condition �0 * 3�max describes sufficiently
stiff optical springs that provide the local mirror signal
displacement equal to the end mirrors displacement multi-
plied by factor F .
-7
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3. �0 & 3�max. In this area optical springs are too weak
to move local mirror effectively. In this case the local
mirror displacement is proportional to the rigidity �2

0
and the noise spectral density (B20) to ��4

0 ,
correspondingly.

Below we consider the best sensitivity case where the
condition

�B=2>�0 * 3�max (38)

is fulfilled and thus

�2
DSVM �

720

�4

m2
�

�MC

wSQL

w
: (39)

On the other hand, condition (38) together with Eq. (A47)
lead to the limitation on the pumping power W:

W * 2� 33 �
F 2m�cL�3

8!o
� 60

m�
�
WSQL: (40)

Note that Eqs. (39) and (40) have exactly the same
structure as Eqs. (25) and (29) for the ideal meter case
and differ by numerical factors only. Therefore, the next
consideration follows the previous subsection.

We suppose again that MC  � and thus obtain that:

�2
DSVM �

720

�4F 2

M
MC

wSQL

w
;(41a)

W � 60F 2 MC

M
WSQL:(41b)

Combining again these two equation we obtain the follow-
ing formula for the DSVM-based local meter:

�2
DSVM �

720� 60

�4

WSQL

W

wSQL

w
: (42)

The final step is again optimization of Tlocal which gives
that:

�2
DSVM loss � �2

0

�
720� 60

�4

WSQL

W

�
1=3
; (46)

Graphs of �DSVMloss as a function of W are also plotted in
Fig. 2, see curve (f).
V. CONCLUSION

Comparing traditional extracavity topologies and intra-
cavity topologies discussed in this article, one can con-
clude that the possibility to obtain sensitivity substantially
better than the standard quantum limit in both cases de-
pends in a crucial way on additional ‘‘supporting’’ device:
squeezed state generator for traditional topologies, and the
local meter for intracavity ones.

In both cases the best design of the supporting device,
from the contemporary point of view, is based on small-
022002
scale Fabry-Perot cavity, with approximately the same
requirements for the parameters.

However, intracavity topologies promise significantly
better sensitivity, especially for the relatively small values
of pumping power: W <WSQL. Unfortunately, none of the
mechanical QND schemes known today which can be
considered as practical ones, can fully realize this high
potential sensitivity of intracavity topologies. From the
authors point of view the search of new methods of me-
chanical QND measurements probably based on improved
DSVM scheme or which combine the local meter with the
pondermotive squeezing technique, is necessary.
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APPENDIX A: DERIVATION OF THE
MECHANICAL EQUATIONS OF MOTION

1. Notations and approximations

Additional notations used in this Appendix and not listed
in Table I are gathered in Table II. Note that the optical
distances between the beamsplitter and the mirror P1, and
between the beamsplitter and the mirror P2 differ by a
quarter of wave length, exactly as in the standard LIGO
topology.

The following suppositions and approximation will be
used:
(a) T
-8
he optical !o pumping frequency is much larger
than all other characteristic frequencies of the
system.
(b) T
he arm cavities are tuned in resonance: e2i!oL=c �
1.
(c) T
he ‘‘central station’’ size is sufficiently small and it
is possible to neglect the values of the order of
�lD�I
c

,
�lC�D
c

,
�lD�P
c

, and
�lBS�P

c
.

(d) A
ll optical losses are concentrated in the arm cav-
ities. This assumption is reasonable because losses
in arm cavities appear in the final expressions am-
plified by the cavities finesse factor.
(e) W
e neglect the recycling mirrors P;S transmittan-
ces: TS � TP � 0 because they appear in the final
expressions reduced by the mirrors D transmittance
TP.
(f) A
nalyzing the power (symmetric) and the signal
(antisymmetric) modes we will keep first nonvan-
ishing terms for each mode: classical (zeroth-order)
field amplitudes for the power mode and linear in
the mirror displacements and in the fields quantum
fluctuations (i.e. first-order) terms for the signal one.



TABLE II. Some additional notations not listed in Table I.

Quantity Description

a1;2 � j1;2 Field amplitudes, see Fig. 6 (Roman letters are used)
A1;2 � J1;2 Corresponding mean (classical) values (capital Roman letters are used)
n1;2 Noises created by optical losses
RE, RI, etc Amplitude reflectivities of the mirrors
TE, TI, etc Amplitude transmittances of the mirrors
lC�D, lD�I, etc. Optical distances between the corresponding optical elements

a1

a2

b1

b2

c1

c2

d1

d2

e1

e2

f0

f1

f2

g1

g2

h1

h2

i1

i2

j1

j2

n1

n2

E1

E2

I1

I2

C

D1

D2

P1

P2

S

BS

β′′

β′′ +
π

2

β′

β′

θ′

θ′

θ′′

θ′′

xI1

xI2

xE1

xE2

y

FIG. 6 (color online). The scheme.
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2. Power mode

Zeroth approximation equations for the field amplitudes
are the following:

A1;2 � �RDD1;2 � iTDF1;2; (A1a)

B1;2 � RFP�0�A1;2e2i	0 ; (A1b)

C1;2 � �RDB1;2 � iTDH1;2; (A1c)

D1;2 � ��RCC1;2 � iTCC2;1�e2i	00 ; (A1d)

E1;2 � �RDH1;2 � iTDB1;2; (A1e)

F1;2 � �
E1 � E2

2
e2i
00 �

F0���
2
p ; (A1f)

G1;2 � �RDF1;2 � iTDD1;2; (A1g)

H1;2 � �G1;2e2i
0 ; (A1h)

I1;2 �
i
������������������
c�load=L

p
�

A1;2e
i	0 ; (A1i)

where F0 is the input pumping wave amplitude,

RFP�0� �
��
�

(A2a)

is the arm cavities reflection factor at resonance frequency,

� � �load � �loss; (A2b)

�� � �load � �loss; (A2c)

�load �
cT2

I

4L
; (A2d)

�loss �
cA2

4L
; (A2e)

For Eqs. (A1b) and (A1i), see papers [22,23].
Introduce the symmetric mode (it is easy to see that the

antisymmetric mode is not pumped):

A �
A1 � A2���

2
p ; (A3)

and correspondingly for all other fields amplitudes.
Equations for these amplitudes are the following:

A � �RDD� iTDF; (A4a)

B � RFP�0�Ae2i	0 ; (A4b)

C � �RDB� iTDH; (A4c)

D � �Cei�2	
00���; (A4d)

E � �RDH� iTDB; (A4e)

F � F0; (A4f)

G � �RDF� iTDD; (A4g)

H � �Ge2i
0 ; (A4h)

I �
i
������������������
c�load=L

p
�

Aei	
0
; (A4i)

where
022002
� � arctan
TC
RC

: (A5)

The solution of these equations is the following (only those
amplitudes which will be required later are presented):

A �
iTD
Det
�1� ei�2


0�2	00����F0; (A6a)
C �
iTDRD

Det
�e2i
0 � RFP�0�e

2i	0 �F0; (A6b)
D � �
iTDRD

Det
�ei�2


0�2	00��� � RFP�0�ei�2	����F0; (A6c)
E � �
1

Det
� �R2

De
2i
0 � RFP�0�

� �T2
D � e

i�2
0�2	00����e2i	0 �F0; (A6d)

where

Det � 1� T2
De

i�2
0�2	00��� � RFP�0�R2
De

i�2	���: (A6e)

Suppose then that cavities CI are tuned in resonance and
cavities CP are tuned in antiresonance:

ei�2	��� � �1, 2	 � ��� ��mod2�; (A7a)

ei�2

0�2	00��� � 1, 2
0 � ��2	00 ���mod2�

� �2	0 � ��2�: (A7b)

In this case,

A �
iTD�

�loss � T2
D�load

F0; (A8a)

C � �
iRDTD�load

�loss � T
2
D�load

F0e2i	0 ; (A8b)

D � �
iRDTD�load

�loss � T
2
D�load

F0; (A8c)

E �
�loss � T2

D�load

�loss � T
2
D�load

F0; (A8d)

If TD  1, then the maximum value of the amplitudes A;B
is reached when

TD �
�loss

�load
: (A9)

In this case (we add here Eq. (A4i) for convenience):
-10



PRACTICAL DESIGN OF THE OPTICAL LEVER . . . PHYSICAL REVIEW D 73, 022002 (2006)
A �
i�

2
�������������������
�load�loss
p F0; (A10a)

C � �
iRD

2

����������
�load

�loss

s
F0e2i	0 � �RD

�load

�
Ae2i	0 ; (A10b)

D � �
iRD

2

����������
�load

�loss

s
F0 � �RD

�load

�
A; (A10c)

E � 0 �there is no reflected wave�; (A10d)

I �
i
������������������
c�load=L

p
�

Aei	
0
: (A10e)
3. Signal mode

The first-order equations are the following (see papers
[22,23]):

â1;2�!� � �RDd̂1;2�!� � iTDf̂1;2�!�; (A11a)

b̂1;2�!� � RFP���â1;2�!�e2i	0 � b̂01;02�!�; (A11b)

ĉ1;2�!� � �RDb̂1;2�!� � iTDĥ1;2�!�; (A11c)

d̂1;2�!� � ��RCĉ1;2�!� � iTCĉ2;1�!��e2i	00

� d̂01;02�!�; (A11d)

ê1;2�!� � �RDĥ1;2�!� � iTDb̂1;2�!�; (A11e)

f̂1;2�!� � �
ê1�!� � ê2�!�

2
e2i
00 � f̂0; (A11f)

ĝ1;2�!� � �RAf̂1;2�!� � iTDd̂1;2�!�; (A11g)

ĥ1;2�!� � �ĝ1;2�!�e
2i
0 ; (A11h)

î1;2�!� �
i
���������������
�load=�

p
�� i�

�â1;2�!�ei	
0
� ŝ1;2�!��; (A11i)

where

� � !�!o; (A12a)

b̂01;02�!� �
2�load

�� i�
ŝ1;2���ei	

0
; (A12b)

d̂01;02�!� � �
2i!oC1;2RC

c
ŷ���e2i	00 ; (A12c)

ŝ1;2�!� � �

����������
�loss

�load

s
n̂1;2�!� �

!oI1;2����������������
c�loadL
p x̂1;2���; (A12d)

x̂1;2��� � x̂E1;2��� � x̂I1;2���; (A12e)

n̂1;2�!� are the noises created by the internal losses in the
Fabry-Perot cavities normalized as zero-point fluctuations
and

RFP��� �
�� � i�
�� i�

(A12f)

is the arm cavities reflection factor at the (side-band)
frequency �.
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Introduce the antisymmetric mode:

â�!� �
â1�!� � â2�!����

2
p ; (A13)

and correspondingly for all other field amplitudes. Taking
into account that

C 1 � C2 �
C���
2
p ; I1 � I2 �

I���
2
p ; (A14)

we obtain the following equations for this mode field
amplitudes:

â�!� � �RDd̂�!� � iTDf̂�!�; (A15a)

b̂�!� � RFP���â�!�e2i	0 � b̂0�!�; (A15b)

ĉ�!� � �RDb̂�!� � iTDĥ�!�; (A15c)

d̂�!� � �ĉ�!�ei�2	
00��� � d̂0�!�; (A15d)

ê�!� � �RDĥ�!� � iTDb̂�!�; (A15e)

f̂�!� � ê�!�e2i
00 ; (A15f)

ĝ�!� � �RAf̂�!� � iTDd̂�!�; (A15g)

ĥ�!� � �ĝ�!�e2i
0 ; (A15h)

î�!� �
i
������������������
c�load=L

p
�� i�

�â�!�ei	
0
� ŝ�!��; (A15i)

where

b̂0�!� �
2�load

�� i�
ŝ���ei	

0
; (A16a)

d̂0�!� �
2i!oCRC

c
ŷ���e2i	00 ; (A16b)

ŝ�!� � �

����������
�loss

�load

s
n̂�!� �

i!oA

c�L
x̂���ei	

0
; (A16c)

x̂��� �
x̂1��� � x̂2���

2
: (A16d)

Solution of these equations is the following:

det���â�!����R2
De

i�2	00����T2
De

2i
00 �ei�2
�2	00����

� b̂0�!��RD�1�e2i
�d̂0�!�; (A17a)

det���ĉ�!���RD�1�e2i
�b̂0�!���RFP���

��R2
D�e

2i
�e2i	0 �T2
De

2i
0 �d̂0�!�; (A17b)

det���d̂�!��RDei�2	
00����1�e2i
�b̂0�!���1�R2

De
2i


��RFP���T
2
De

2i�
00�	0��d̂0�!�; (A17c)

where

det��� � 1� R2
De

2i
 � T2
De

i�2
0�2	00��� � RFP���

� �R2
De

i�2	��� � T2
De

2i�
00�	0� � ei�2
�2	����:

(A17d)
-11
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Now conditions Eqs. (A7) and, in addition, the dark port
condition for the D–P cavities

ei�2	
00��� � e2i
00 , 2
00 � 2	0 ��2�

� �2	0 � 2�� �2� (A18)

are fulfilled. In this case,

det��� � �1� e2i���1� RFP���e2i��; (A19)

and

ĉ�!��
�RDb̂0�!��R

2
DRFP���d̂0�!�e

2i	0

1�RFP���e2i�

�
T2
Dd̂0�!�e2i	0

1�e2i� ; (A20a)

d̂�!��
�RDb̂0�!�e

2i��	0����R2
Dd̂0�!�

1�RFP���e2i�

�
T2
Dd̂0�!�

1�e2i� ; (A20b)

î�!��
i
������������������
c�load=L

p
�� i�

�1�e2i��ŝ�!��RDd̂0�!�e
i	0

1�RFP���e2i� : (A20c)
4. Pondermotive forces

a. Central mirror

Force acting on the central mirror is equal to (taking into
account that � !o):

F̂y�t� �
@!o

c
�jC2j

2 � jD2j
2 � jC2j

2 � jD2j
2�

�
@!o

c

�Z 1
0
�C�2ĉ2�!� � D�2d̂2�!� � C�1ĉ2�!�

� D�1d̂1�!�� � e
i�!o�!�t

d!
2�
� h:c:

�

� �@
Z 1

0
��!��C�ĉ�!� � D�d̂�!��ei�!o�!�t

d!
2�

� h:c:; (A21)

where h.c. stands for ‘‘Hermitian conjugate.’’
In the spectral domain this equation has the following

form:

F̂ y��� � F̂ y��� � F̂�y ����; (A22)

where

F̂ y��� � �
@!o

c
�C�ĉ�!o ��� � D�d̂�!o ����:

(A23)

Substituting here field amplitudes (A10) and (A 3) we
obtain:
022002
F̂ y����
@!oC�RD

c�1�RFP���e2i��
��1�e2i��b̂0�!�

�RD�1�RFP����d̂0�!�e
2i	0 �

� F̂ yloss����Kyx���x̂����Kyy���ŷ���;

(A24)

where

F̂ y loss��� �
2@!oC�RD

�������������������
�load�loss
p

ic��B � i�loss ���
n̂�!�ei	

0
; (A25a)

Kyy��� �
2@!2

ojCj
2R2

D�load

c2��B � i�loss ���
; (A25b)

Kyx��� �
2@!2

ojACjRD�load

c�L��B � i�loss ���
; (A25c)

and

�B � �load tan�: (A26)

It should be noted that Eq. (A26) is valid only if

�load tan� c=L; (A27)

more precise formula is the following:

�B �
c
L

arctan
�
�loadL
c

tan�
�
; (A28)

see [28].

b. Arm cavities

Forces which act on the mirrors l;E are equal to (see
papers [22,23]):

F̂ x1;2��� � �F̂I1;2��� � F̂E1;2���

� F̂ x1;2��� � F̂�x1;2����; (A29)

where

F̂ x1;2��� �
2@!oI�1;2î1;2�!�

c
: (A30)

Introduce differential force:

F̂ x��� � F̂x1��� � F̂x2��� � F̂ x��� � F̂�x ����:

(A31)

For this force we obtain:

F̂ x��� � F̂ x1��� � F̂ x2���

� F̂ xfl��� �Kxx���x̂��� �Kxy���ŷ���;

(A32)

where
-12
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F̂ xloss��� � �F F̂ yloss���; (A33a)

Kxy��� �
2@!2

ojACjRD�load

c�L��B � i�loss ���
; (A33b)

Kxx��� �
2@!2

ojAj
2�load

��L�2��B � i�loss ���
: (A33c)
5. Mechanical equations of motion

It is easy to note that

F̂ xloss��� � �F F̂ yloss���; (A34a)

Kxx��� � FKxy��� � FKyx���

� F 2Kyy���: (A34b)

where

F �
c

�loadLR
2
D

� 1: (A35)

Therefore, the fluctuation forces spectral densities and the
pondermotive rigidities are described by the following
equations:

Sxloss����F 2Sy;loss����
8@!oW�loss

cL
�2
B��

2
loss��2

jD���j2
;

(A36a)

Kxx����Kxy����Kyx����F 2Kyy����
8!oW
cL

�B

D���
;

(A36b)

where

D ��� � ��i�� �loss�
2 ��2

B; (A37)

and

W � @!ojI1;2j
2 �

@!ojIj
2

2
(A38)

is the optical power circulating in the arm cavities.
The ‘‘raw’’ set of the mechanical equations for all five

test masses is the following:

Ml
d2x̂l1;2�t�

dt2
� �F̂x1;2�t�; (A39a)

ME
d2x̂E1;2�t�

dt2
� F̂x1;2�t� �MEasign�t�; (A39b)

MC
d2ŷ�t�

dt2
� F̂y�t� � F̂meter�t�; (A39c)

where

asign�t� �
L �h�t�

2
(A40)

is the signal acceleration, h�t� is the gravitational-wave
signal and F̂meter is the meter backaction force.
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Excluding mechanical degrees of freedom not coupled
with the local mirror these five equations can be reduced to
the following two ones:

M
d2x̂�t�

dt2
� F̂x�t� �Masign�t�; (A41a)

MC
d2ŷ�t�

dt2
� F̂y�t� � F̂meter�t�: (A41b)

Insert here pondermotive forces calculated in the pre-
vious subsubsection and rewrite the equations in spectral
representation:

��M�2 � Kxx����x̂��� � Kxy���ŷ��� � F̂xloss���

�Masign���; (A42a)

��MC�2 � Kyy����ŷ��� � Kyx���x̂��� � F̂yloss���

� F̂meter���: (A42b)

Taking into account symmetry conditions (A34) we obtain:

�m��2��m��
2 � Kyy����ŷ���

� �Kyy���Fasign��� ���2F̂yloss���

� ����2 � Kyy����F̂meter���: (A43)

The ratio of the first two terms in the right-hand part of
this equation defines the sensitivity limitation imposed by
optical losses. Spectral density of the corresponding
equivalent noise (normalized as fluctuation metrics varia-
tion) is equal to

Sloss
h ��� �

4

L2�4

�4Sloss
y ���

F 2L2jKyy���j
2

�
@c�loss

2!oWL
�2
B � �

2
loss ��2

�2
B

: (A44)

In the next section analyzing the local meter schemes we
will neglect optical losses both in the main (large) scheme
and in the local meter. In this case Eq. (A43) can be
simplified:

D�i��ŷ��� � ��2
B�2

0Fasign��� �DF�i��F̂meter���;

(A45)

where

D�s� � m�s2�s4 ��2
Bs

2 ��2
B�2

0�; (A46a)

DF�s� �
�
m�

s2�s2 ��2
B� ��2

B�2
0; (A46b)

�2
0 �

Kyy�0�

m�
�

8!oW

F 2m�cL�B
: (A47)
-13
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APPENDIX B: ANALYSIS OF THE LOCAL METER

1. Ideal variation measurement

The output signal of the meter which monitors the local
mirror position y, can be presented as the following [see
Eq. (A45)]:

~y��� � ŷ��� � ŷmeter���

�
��2

0�2
BF

D�i��
�asign��� � âfluct����; (B1)

where

â fluct��� �
D�i��ŷmeter��� �DF�i��F̂meter���

��2
0�2

BF
; (B2)

and ŷmeter, and F̂meter are meter noises. If the meter cavity is
sufficiently short then these noises spectral densities are
equal to:

Sy �
S0

sin2�LO

; SF �
@

2

4S0
; SyF �

@

2
cot�LO;

(B3)

and

S0 �
@c2T2

local

64!ow
(B4)

is the residual noise of the variation meter.
Spectral density of noise âfluct��� is equal to:

Smeter
a �

1

���2
0�2

BF �2
�D2�i��Sy � 2D�i��DF�i��SyF

�D2
F�i��SF�: (B5)

It reaches minimum if

cot�LO � �
@

2S0

DF�i��
D�i��

; (B6)

and this minimum is equal to:

Smeter
a 


L2�4

4
Smeter
h �

D2�i��

���2
0�2

0�2
BF �2

S0

�
��4 ��2�2

B ��2
0�2

B�
2

�4
0�4

B

m2
�

�2

�4S0

F 2 : (B7)
2. DSVM-based local meter

In the time-domain form the Eq. (A45) can be presented
as the following:

D ŷ�t� � ��2
B�2

0Fasign�t� �DFF̂meter�t�; (B8)

where

D � D�d=dt�; DF � DF�d=dt�: (B9)

The local meter output signal is equal to:
022002
~y�t� � ŷ�t� � ŷmeter�t�; (B10)

where ŷmeter�t� is the meter additive noise.
Following the DSVM procedure (see [33]) we suppose

that: (i) noises ŷmeter�t� and F̂meter�t� correlate with each
other:

ŷmeter�t� � ŷ�0�meter�t� � ��t�F̂meter�t�; (B11)

where ��t� is some given function, and (ii) during a suffi-
ciently short time interval � the signal asign�t� can be
considered as constant one. Estimate for this constant can
be found using the following equation:

~asign �
1

��2
B�2

0F �v

Z
�
v�t�D~y�t�dt

� asign �
1

��2
B�2

0F �v

Z
�
v�t�

�
Dŷ�0�meter�t�

�

�
D��t� �

1

m�
DF

�
F̂meter�t�

�
dt; (B12)

where v�t� is filter function and

�v �
Z
�
v�t�dt: (B13)

For the short local meter cavity the local meter noises
can be considered as ‘‘white’’ or �-correlated ones.

The term proportional to the backaction force F̂meter�t�
can be canceled by the proper choice of ��t� (and this is the
essence of the variation measurement). In this case the
measurement error will be equal to:

��a�2 �
�

1

��2
B�2

0F �v

�
2
S0

Z
�
�Dv�t��2dt; (B14)

where S0 is the residual meter noise ŷ�0�meter�t� spectral
density, see Eq. (B4).

Therefore, filter function v�t� that provides minimum to
the measurement error functional should satisfy the follow-
ing Lagrange equation:

D 2v � 1; (B15)

with the following boundary conditions

v���=2� � 0;
dnv�t�
dtn

jt���=2 � 0 �n � 1 . . . 5�:

(B16)

Solution of this equation can be represented as the follow-
ing:

v�t� �
t4

24m2
��4

B�4
0

� C1t
2 � C2 � C3t sin��t

� C4 cos��t� C5t sin��t� C6 cos��t;

(B17)

where
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�2
� �

�2
B

2
�

���������������������������
�4
B

4
��2

B�2
0

s
; (B18)

and coefficients fCig can be found from boundary condi-
tions (B16). We do not give the exact formulae for fCig
because they are quite cumbersome and will add to our
article several more pages (not very informative ones, we
think).

Being substituted to (B14) function v will give the
minimum measurement error:

��a�2 �
S0

���2
B�2

0F �2 �v
�

720

�5

m2
�

�2

Sy
F 2

1

G��B;�0�
;

(B19)

where 3D-plot of the function G��B;�0� is presented in
Fig. 5. It should be noted that function G is defined only in

PRACTICAL DESIGN OF THE OPTICAL LEVER . . .
022002
the area where �0 <�B=2 and the frequencies �� are
real and the system is dynamically stable. The exact ex-
pression for G we do not give in this paper due to the same
reason as for coefficients fCig.

Sequence of discrete measurements with the measure-
ment error �a is equivalent to continuous monitoring of
the signal acceleration a with the sensitivity defined by the
equivalent spectral density

Smeter
a 


L2�4

4
Smeter
h � ��a�2�

�
720

�4

m2
�

�2

�4
maxSy
F 2

1

G��B;�0�
: (B20)
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