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Nonsymmetric trapped surfaces in the Schwarzschild and Vaidya spacetimes
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Marginally trapped surfaces (MTSs) are commonly used in numerical relativity to locate black holes.
For dynamical black holes, it is not known generally if this procedure is sufficiently reliable. Even for
Schwarzschild black holes, Wald and Iyer constructed foliations which come arbitrarily close to the
singularity but do not contain any MTSs. In this paper, we review the Wald-Iyer construction, discuss
some implications for numerical relativity, and generalize to the well-known Vaidya spacetime describing
spherically symmetric collapse of null dust. In the Vaidya spacetime, we numerically locate non
spherically symmetric trapped surfaces which extend outside the standard spherically symmetric trapping
horizon. This shows that MTSs are common in this spacetime and that the event horizon is the most likely
candidate for the boundary of the trapped region.

DOI: 10.1103/PhysRevD.73.021502 PACS numbers: 04.25.Dm, 04.70.Bw
Introduction.—In stationary black hole spacetimes,
there is a strong correspondence between marginally
trapped surfaces (MTSs) and event horizons (EHs) because
cross sections of stationary EHs are MTSs. MTSs are also
featured prominently in the frameworks of isolated, dy-
namical and trapping horizons which have shed consider-
able light on the properties of classical and quantum black
holes even in the dynamical regime. See e.g. [1–3] for
reviews. Numerical simulations routinely look for MTSs to
locate black holes on a Cauchy surface. This is because,
while MTSs can be located on a Cauchy surface in real
time, the EH can only be located a posteriori after the
simulation has been successfully completed. MTSs can be
useful for extracting physical information about a black
hole in a numerical simulation [4].

However, in dynamical situations, the correspondence
between MTSs and EHs is lost (beyond the fact that MTSs
are enclosed by the EH); the event horizon is, in general, an
expanding null surface, while outgoing light rays from a
MTS have, by definition, zero expansion. An explicit
example was constructed by Wald and Iyer [5] where
they showed that even in the Schwarzschild spacetime,
there exist perfectly regular Cauchy surfaces which come
arbitrarily close to the singularity and foliate the space-
time, but which nevertheless do not contain any MTSs.
While this has not been an issue in most numerical simu-
lations to date, it raises the question of whether MTSs can
be found generally in numerical simulations of black hole
spacetimes.

However, there are other results which indicate that
MTSs should be common in black hole spacetimes. For
example, it was suggested by Eardley [6] that an MTS can
be locally perturbed in an arbitrary spacelike direction to
yield a 1-parameter family of MTSs. A precise formulation
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of this idea and its proof follows from recent results of
Andersson et al. [7]. From this result, it seems plausible
that for a ‘‘generic’’ Cauchy surface � passing through the
black hole region, one should be able to perturb a nearby
MTS to lie on �. Thus, Cauchy surfaces passing through
the black hole should ‘‘generically’’ contain a MTS. A
related issue is the question of the boundary of the trapped
region of a black hole spacetime; clearly, a MTS cannot be
perturbed to lie outside this boundary. Eardley suggests
that the boundary should be the event horizon, while argu-
ments by Hayward suggest that the boundary should be a
trapping horizon [8]. For stationary black holes the two
notions coincide, but not for dynamical black holes.

In this paper, we study these issues from a numerical
relativity perspective. In particular, we study the spheri-
cally symmetric Schwarzschild and Vaidya spacetimes
using foliations not adapted to the spherical symmetry.
Very little is known so far about trapped or marginally
trapped surfaces on such slices, either analytically or nu-
merically. We find that for Vaidya, MTSs are indeed easy to
locate, and we do not encounter the problem suggested by
Wald and Iyer. This suggests that Cauchy surfaces of the
type suggested by Wald and Iyer (which presumably exist
also in the Vaidya spacetime) are exceptional. In Vaidya,
we find that the nonsymmetric marginal surfaces lie par-
tially outside the standard r � 2M surface (which in this
case is a trapping horizon, and lies inside the event hori-
zon), thus indicating that the event horizon is a better
candidate for the boundary of the trapped region as sug-
gested by Eardley. In the remainder of this paper, we
review basic concepts regarding trapped surfaces and hori-
zons, outline Wald and Iyer’s construction with an explicit
example and remark on its implications for numerical
relativity, and finally discuss trapped surfaces in the
Vaidya spacetime.

Trapped surfaces and horizons.—Let ‘a and na be the
future directed null normals of a closed 2-surface S. Let
qab be the 2-metric on S induced by the spacetime metric.
-1 © 2006 The American Physical Society
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FIG. 1. Penrose diagram of the extended Schwarzschild space-
time, from a numerical relativity point of view. The bold line is
the null world tube of marginal surfaces. The hatched area is the
region of spacetime that is invisible to the ‘‘observer at infinity,’’
which is located at the I� to the right. Every point in this figure
is a sphere as in conventional Penrose diagrams, except for the
curves labeled NP and SP. If we represent the Cauchy surface as
f�T; X; �;�� � 0, then NP and SP are, respectively, the projec-
tions of the north pole (� � 0) and south pole (� � �); the
intermediate angles lie in between. NP enters the trapped region,
but SP does not.
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The expansion of ‘a is ��‘� � qabra‘b with a similar
definition for ��n�. The surface S is said to be trapped if
both expansions are negative: ��‘� < 0 and ��n� < 0. For a
marginally trapped surface, one or both of these inequal-
ities are replaced by an equality instead. Weakly trapped
surfaces have ��n� � 0, ��‘� � 0. All these definitions are
invariant under arbitrary positive rescalings of ‘a and na.

The definition of a marginally outer-trapped surface
(MOTS) requires a choice of an ‘‘outgoing’’ direction
with respect to future null infinity or spatial infinity. This
choice of outgoing direction breaks the symmetry between
the two null normals ‘a and na. A MOTS is thus a MTS
with ��‘� � 0, where ‘ is the outgoing direction.

The trapped region is the region where trapped surfaces
exist. This is defined either in the full spacetime or on a
Cauchy surface �. A point is in the trapped region if there
is a trapped surface which contains that point. Similarly, a
point is in the trapped region of � iff there is a trapped
surface on � that contains this point. The apparent horizon
(AH) on � is the boundary of the trapped region of �. As
such, its definition is so complicated that it is numerically
not feasible to look for it directly. However, an AH is also a
MTS [9], and these can be efficiently detected.

Finally, a marginal surface (MS) [8] is a surface where
one of the null normal’s expansion vanishes, i.e., ��‘� � 0
where ‘ can be any of the two null directions, with no
restriction on ��n�. Unlike the definition of a MOTS,
marginal surfaces do not require globally defined out-
going/ingoing directions. It is called a future marginal
surface if ��n� < 0 and a past marginal surface if ��n� >
0. A future marginal surface is the same as a MTS and
usually arises in numerical simulations as the cross section
of a dynamical horizon (DH) [10] or an isolated horizon
(IH) [4], or more generally, a trapping horizon [8].

The Wald-Iyer construction.—Wald and Iyer [5] con-
struct a foliation of the extended Schwarzschild spacetime
in which the spacelike hypersurfaces come arbitrarily close
to the singularity, but nevertheless do not contain any
trapped surfaces. It should be noted that these foliations,
while special, are not pathological in any sense and they
can be readily constructed in a numerical code. Wald and
Iyer prove that, if the intersection of the slice with the
trapped region lies in the past of, roughly speaking, ‘‘a
single event on the future singularity,’’ no slice of such a
foliation contains a trapped surface. This construction
relies on the existence of angular horizons in the black
hole region, just as in a cosmological spacetime near the
initial singularity.

An explicit example of one such Cauchy surface is easy
to construct. Consider the extended Schwarzschild space-
time in Kruskal coordinates �T; X; �; �� [see Eq. (6.4.29) of
[11]]. The hypersurface T � k cos� can be easily shown to
satisfy the Wald-Iyer condition for k < 1=2. Thus, even
though this surface enters the black hole region, it does not
contain any trapped surfaces. Such a slice is depicted
021502
schematically in Fig. 1. It intersects the black hole horizon
for T > 0, and the white hole horizon for T < 0.

Even though it is a fact that the above Cauchy surface
does not contain a MOTS, standard apparent horizon
trackers employed in numerical simulations will happily
find an ‘‘apparent horizon’’ on this slice. This apparent
contradiction is an issue of terminology. What the apparent
horizon tracker will locate is the intersection of the Cauchy
surface with the surface T � X, which is the bold line in
Fig. 1. The intersection is the 2-sphere given by T � X �
k cos�. In numerical relativity, one typically chooses that
part of I� which belongs to one specific asymptotically
flat end of the spacetime. Thus, the outgoing null normal ‘a

and the ingoing null normal na are the ones shown in
Fig. 1. With this choice of ‘a, the surface given above
satisfies ��‘� � 0. However, this ‘‘apparent horizon’’ is not
a MTS because ��n� < 0 on the black hole portion and
��n� > 0 on the white hole portion.

What is often loosely called an ‘‘apparent horizon’’ in
numerical relativity, or almost as loosely, ‘‘marginally
outer-trapped surface,’’ is really only a marginal surface,
or a future marginal surface if the condition ��n� < 0 is
checked (which it is often not). Determining the globally
outgoing direction is usually either unpractical or impos-
sible in numerical simulations. If done, it requires some
additional knowledge of the simulated spacetime that the
code itself generally does not have. The easiest way to
avoid such situations in numerical relativity is to explicitly
make sure that the apparent horizon is future trapped by
verifying that ��n� is negative everywhere, both in the
initial data and during evolution. Regarding black hole
-2
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FIG. 2 (color online). The t-z section of the Vaidya spacetime
where t � v� r. The tilted lines are (sections of) the axisym-
metric surfaces given in Eq. (4) for a range of �t values. The
marginal surfaces on these sections are marked by a ‘‘?.’’ The
dynamical horizon H [the r � 2M�v� surface] are the pair of
bold curves, and the two dashed straight lines are the v � 0 light
cone which is the boundary of the flat portion of the spacetime.
The singularity is the positive t axis (z � 0, t � 0).
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initial data, the construction presented in [12] will ensure
that the marginal surfaces are future trapped and will
therefore avoid any of the Wald-Iyer slices if the lapse
function is kept nonnegative everywhere.

Trapped surfaces in the Vaidya spacetime.—
Generalizing to dynamical situations, consider the Vaidya
spacetime which describes a spherically symmetric col-
lapse of null dust (radiation) [13]. This is an astrophysi-
cally unrealistic toy model, but it does serve as a very
useful testing ground. It has been extensively used, for
example, to study the formation of naked singularities. In
ingoing Eddington-Finkelstein coordinates �v; r; �; ��, the
metric is

ds2 � �

�
1�

2M�v�
r

�
dv2 � 2dvdr� r2d�2; (1)

where the mass function M�v� can be specified as a func-
tion of the null coordinate v. For constant M�v�, this is just
the standard Schwarzschild metric in ingoing Eddington-
Finkelstein coordinates. The stress energy tensor is deter-
mined by the derivative of M�v�:

Tab �
_M�v�

4�r2 @av@bv (2)

where _M � @M=@v � 0. We shall use a time coordinate
defined as t � v� r and we shall take the mass function to
be nonzero only for v > 0. Thus, the spacetime is flat for
v � 0.

It is easy to see that the only spherically symmetric
MTSs are the spheres given by r � 2M�v0� for a specified
v0. These will be the apparent horizons on spherically
symmetric Cauchy surfaces which intersect the r �
2M�v� surface. Let us denote the r � 2M�v� surface by
H. It is easy to show that H is spacelike and is a trapping
horizon. The EH lies outside H and is strictly separated
fromH when _M> 0; at late times,H asymptotes to the EH
[10].

Let us now consider non spherically symmetric Cauchy
surfaces. There is now an important qualitative difference
from the Schwarzschild case. There, the analog of H was
null and expansion free; the intersection of any spacelike
surface with H was then a marginal surface, as long as this
intersection was, topologically, a complete sphere. This is
also true more generally when the black hole is isolated in
an otherwise dynamical spacetime (if H is an isolated
horizon). However, in genuinely dynamical situations, H
is spacelike as in the Vaidya example. In this case, if the
intersection of a Cauchy surface with H is not one of the
spherically symmetric marginal surfaces, then the inter-
section cannot be a marginal surface even if it is a com-
plete 2-sphere. This statement follows directly from
Theorem 4.2 of [14]. Thus the question naturally arises:
are there apparent horizons on nonsymmetric Cauchy sur-
faces in the Vaidya spacetime? One would expect there to
be Wald-Iyer Cauchy surfaces which come arbitrarily close
021502
to the singularity but which do not contain any marginal
surfaces, but we shall now see that apparent horizons do
exist on a large class of nonsymmetric Cauchy surfaces.

We choose the mass function

M�v� �
�

0 for v � 0;
M0v2=�v2 �W2� for v > 0;

(3)

with the constants M0 � 1 and W � 1=10. This is a short
pulse of radiation that forms a black hole with the final
mass M0. This mass function is only C1 at v � 0, but our
results are unchanged qualitatively for other mass func-
tions with higher differentiability. For this mass function
the singular point v � 0, r � 0 is locally naked (see e.g.
[15]), but this is not relevant for our purposes.

We examine the spacetime with a slicing that is only
axially symmetric. We use a time coordinate �t given by

�t � t� �z � v� r�1� � cos��; (4)

where t � v� r is the standard Vaidya time, and the
constant � determines how much the slice is boosted in
the z direction. We chose � � 10=11. We have also exam-
ined other more complicated foliations, but the results
presented below do not change qualitatively.

The results are shown in Figs. 2 and 3. Figure 2 shows
the t-z section of the Cauchy surfaces for a range of �t
values, and the distorted MSs on these sections. This
clearly shows that the MSs extend outside H and can
also extend into the flat region. Figure 3 shows the MS
on the �t � �0:3 and �t � 0 slices. The MS at �t � 0 is a
-3
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FIG. 3 (color online). The location of the distorted marginal surface on the x-z section of the Cauchy surfaces at �t � �0:3; 0:0. The
solid curve is the intersection with the dynamical horizon H, the dotted curve is the distorted MS, and the region inside the dashed
curve is the v < 0 region, i.e., the flat portion of spacetime. Note that at �t � 0:0, the Cauchy surface does not intersect the flat portion at
all, and the distorted MS coincides closely with the DH except near its south pole. In both cases, the north pole is inside the DH while
the south pole is outside.
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future marginally trapped surface, i.e., ��n� < 0. At �t �
�0:3, the MS extends into the flat portion, and this part of
S is planar, with ��n� � ��‘� � 0. On the rest of the sphere,
��n� < 0 as expected; this is therefore a weakly marginally
trapped surface. Furthermore, the 3-dimensional world
tube obtained by stacking up all the MSs turns out to be
spacelike; the ones with ��n� < 0 form a dynamical
horizon.

We also look for surfaces with a small nonvanishing
expansion ��‘� � �10�3. These surfaces can be viewed as
radial deformations of the MS; the outward deformation
has ��‘� > 0, and ��‘� < 0 for the inward deformation. At
�t � 0, the inward deformation is strictly trapped and the
outward deformation is strictly untrapped. At �t � �0:3,
the inward deformation has ��n� > 0 in the flat region and
��n� < 0 elsewhere. The outward deformation has ��n� <
0 everywhere and is thus strictly untrapped. We have not
been able to find strictly trapped surfaces which extend into
the flat portion of spacetime. Sufficiently far in the future,
the MSs asymptote to the spherically symmetric DH and
also come arbitrarily close to the EH. Finally, there are
restrictions on the location of trapped surfaces in the
presence of a dynamical horizon [14]. We have verified
that these restrictions are satisfied. The existence of such
distorted MSs was already suggested in [14], but with no
restrictions on ��n�; here we have also shown ��n� � 0.

Conclusions.—We have numerically studied nonsym-
metric trapped surfaces in simple spherically symmetric
spacetimes. We have seen that the Wald-Iyer example
illustrates the importance of verifying ��n� � 0 for appar-
ent horizons located numerically. In Vaidya, we have found
trapped surfaces which extend outside the usual r � 2M
surface H. This shows that H is not the boundary of the
021502
trapped region. We have also found marginal surfaces that
extend into the flat region of the spacetime.

The boundary of the trapped region should be spheri-
cally symmetric, since it is an invariantly defined geomet-
ric quantity in a spherically symmetric spacetime. This
lends support to Eardley’s conjecture that the event horizon
is the boundary of the trapped region, since the EH is the
only natural candidate. However, we have not found
strictly trapped surfaces that extend into the flat region of
the spacetime, so that the boundary may be inside the EH.

We conclude with some open questions that need to be
addressed: (i) Is it possible to push the marginal surfaces
arbitrarily close to the event horizon, even in the flat
region? This would verify that the EH is truly the boundary
of the trapped region. (ii) For asymptotically flat space-
times, the event horizon is the natural candidate for the
boundary of the trapped region. What is this boundary for
non asymptotically flat spacetimes, e.g. asymptotically
de Sitter spacetimes where the event horizon is not strictly
defined?
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valuable discussions and comments. As always, our nu-
merical calculations would have been impossible without
the large number of people who made their work available
to the public: we used the Cactus Computational Toolkit
[16,17] with a number of locally developed thorns, J.
Thornburg’s apparent horizon finder AHFINDERDIRECT

[18], and the GNU Scientific Library GSL [19]. E.
Schnetter was funded by the DFG’s special research center
TR-7 ‘‘Gravitational Wave Astronomy.’’ This work was
supported by the Albert-Einstein-Institut and the Center for
Computation & Technology at Louisiana State University.
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